1
|
Carranza-Aranda AS, Diaz-Palomera CD, Lepe-Reynoso E, Santerre A, Muñoz-Valle JF, Viera-Segura O. Evaluation of Potential Furin Protease Inhibitory Properties of Pioglitazone, Rosiglitazone, and Pirfenidone: An In Silico Docking and Molecular Dynamics Simulation Approach. Curr Issues Mol Biol 2024; 46:8665-8684. [PMID: 39194728 DOI: 10.3390/cimb46080511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Furin (Fur) is a member of the protease convertase family; its expression is crucial for cleaving and maturing many proteins. Fur also represents a therapeutic target in cancer, autoimmune diseases, and viral infections. Pioglitazone (PGZ) and rosiglitazone (RGZ) are thiazolidinediones prescribed to type 2 diabetes patients and are structurally similar to the known Fur inhibitors naphthofluorescein (NPF) and pirfenidone (PFD). Thus, this study used molecular docking and molecular dynamics to assess and compare the affinities and the molecular interactions of these four ligands with the Fur active site (FurAct) and the recently described Fur allosteric site (FurAll). The 7QXZ Fur structure was used for molecular dockings, and for the best pose complexes, molecular dynamics were run for 100 ns. The best affinities of the ligand/FurAct and ligand/FurAll complexes were with NPF, PGZ, and RGZ, while PFD presented the lowest affinity. Asp154 was the central residue involved in FurAct complex formation, while Glu488 and Asn310 were the central residues involved in FurAll complex formation. This study shows the potential of RGZ, PGZ, and PFD as Fur competitive (FurAct) and non-competitive (FurAll) inhibitors. Therefore, they are candidates for repurposing in response to future emerging diseases through the modulation of Fur activity.
Collapse
Affiliation(s)
- Ahtziri Socorro Carranza-Aranda
- Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Carlos Daniel Diaz-Palomera
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Eduardo Lepe-Reynoso
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Anne Santerre
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45221, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Oliver Viera-Segura
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
2
|
Cabezuelo MT, Torres L, Ortiz-Zapater E, López-Rodas G, Marín MP, Timoneda J, Viña JR, Zaragozá R, Barber T. Vitamin A Status Modulates Epithelial Mesenchymal Transition in the Lung: The Role of Furin. Nutrients 2024; 16:1177. [PMID: 38674868 PMCID: PMC11053499 DOI: 10.3390/nu16081177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Vitamin A deficiency (VAD) induced TGF-β hyperactivation and reduced expression of cell adhesion proteins in the lung, suggesting that the disruption of retinoic acid (RA) signaling leads to epithelial-mesenchymal transition (EMT). To elucidate the role of lung vitamin A status in EMT, several EMT markers and the expression of the proprotein convertase furin, which activates TGF-β, were analyzed in two experimental models. Our in vivo model included control rats, VAD rats, and both control rats and VAD rats, treated with RA. For the in vitro studies, human bronchoalveolar epithelial cells treated with RA were used. Our data show that EMT and furin are induced in VAD rats. Furthermore, furin expression continues to increase much more markedly after treatment of VAD rats with RA. In control rats and cell lines, an acute RA treatment induced a significant increase in furin expression, concomitant with changes in EMT markers. A ChIP assay demonstrated that RA directly regulates furin transcription. These results emphasize the importance of maintaining vitamin A levels within the physiological range since both levels below and above this range can cause adverse effects that, paradoxically, could be similar. The role of furin in EMT is discussed.
Collapse
Affiliation(s)
- M. Teresa Cabezuelo
- Department of Physiology, University of Valencia, 46010 Valencia, Spain;
- Centro Salud Safranar, Hospital Universitario Doctor Peset, 46017 Valencia, Spain
| | - Luis Torres
- Department of Biochemistry and Molecular Biology-IIS INCLIVA, University of Valencia, 46010 Valencia, Spain; (L.T.); (E.O.-Z.); (G.L.-R.); (J.T.); (J.R.V.); (T.B.)
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology-IIS INCLIVA, University of Valencia, 46010 Valencia, Spain; (L.T.); (E.O.-Z.); (G.L.-R.); (J.T.); (J.R.V.); (T.B.)
| | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology-IIS INCLIVA, University of Valencia, 46010 Valencia, Spain; (L.T.); (E.O.-Z.); (G.L.-R.); (J.T.); (J.R.V.); (T.B.)
| | - M. Pilar Marín
- Microscopy Unit IIS La Fe Valencia, 46009 Valencia, Spain;
| | - Joaquín Timoneda
- Department of Biochemistry and Molecular Biology-IIS INCLIVA, University of Valencia, 46010 Valencia, Spain; (L.T.); (E.O.-Z.); (G.L.-R.); (J.T.); (J.R.V.); (T.B.)
| | - Juan R. Viña
- Department of Biochemistry and Molecular Biology-IIS INCLIVA, University of Valencia, 46010 Valencia, Spain; (L.T.); (E.O.-Z.); (G.L.-R.); (J.T.); (J.R.V.); (T.B.)
| | - Rosa Zaragozá
- Department of Human Anatomy and Embryology-IIS INCLIVA, University of Valencia, 46010 Valencia, Spain
| | - Teresa Barber
- Department of Biochemistry and Molecular Biology-IIS INCLIVA, University of Valencia, 46010 Valencia, Spain; (L.T.); (E.O.-Z.); (G.L.-R.); (J.T.); (J.R.V.); (T.B.)
| |
Collapse
|
3
|
Shu L, Tang J, Liu S, Tao Y. Plasma cell signatures predict prognosis and treatment efficacy for lung adenocarcinoma. Cell Oncol (Dordr) 2024; 47:555-571. [PMID: 37814076 DOI: 10.1007/s13402-023-00883-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
PURPOSE This study aims to identify key genes regulating tumor infiltrating plasma cells (PC) and provide new insights for innovative immunotherapy. METHODS Key genes related to PC were identified using machine learning in lung adenocarcinoma (LUAD) patients. A prognostic model called PC scores was developed using TCGA data and validated with GEO cohorts. We assessed the molecular background, immune features, and drug sensitivity of the high PC scores group. Real-time PCR was utilized to assess the expression of hub genes in both localized LUAD patients and LUAD cell lines. RESULTS We constructed PC scores based on seventeen PC-related hub genes (ELOVL6, MFI2, FURIN, DOK1, ERO1LB, CLEC7A, ZNF431, KIAA1324, NUCB2, TXNDC11, ICAM3, CR2, CLIC6, CARNS1, P2RY13, KLF15, and SLC24A4). Higher age, TNM stage, and PC scores independently predicted shorter overall survival. The AUC value of PC scores for one year, three years, and five years of overall survival were 0.713, 0.716, and 0.690, separately. The nomogram model that integrated age, stage, and PC scores showed significantly higher predictive value than stage alone (P < 0.01). High PC scores group exhibited an immune suppressing microenvironment with lower B, CD8 + T, CD4 + T, and dendritic cell infiltration. Docetaxel, gefitinib, and erlotinib had lower IC50 in high PC groups (P < 0.001). After validation through the local cohort and in vitro experiments, we ultimately confirmed three key potential targets: MFI2, KLF15, and CLEC7A. CONCLUSION We proposed a prediction mode which can effectively identify high-risk LUAD patients and found three novel genes closely correlated with PC tumor infiltration.
Collapse
Affiliation(s)
- Long Shu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Jun Tang
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, China.
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
4
|
Zaafour A, Seeneevassen L, Nguyen TL, Genevois C, Nicolas N, Sifré E, Giese A, Porcheron C, Descarpentrie J, Dubus P, Khatib AM, Varon C. Inhibition of proprotein convertases activity results in repressed stemness and invasiveness of cancer stem cells in gastric cancer. Gastric Cancer 2024; 27:292-307. [PMID: 38280128 DOI: 10.1007/s10120-023-01462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Gastric cancer (GC), the fourth leading cause of cancer-related death worldwide, with most deaths caused by advanced and metastatic disease, has limited curative options. Here, we revealed the importance of proprotein convertases (PCs) in the malignant and metastatic potential of GC cells through the regulation of the YAP/TAZ/TEAD pathway and epithelial-to-mesenchymal transition (EMT) in cancer stem cells (CSC). METHODS The general PCs inhibitor, decanoyl-RVKR-chloromethyl-ketone (CMK), was used to repress PCs activity in CSCs of various GC cell lines. Their tumorigenic properties, drug resistance, YAP/TAZ/TEAD pathway activity, and invasive properties were then investigated in vitro, and their metastatic properties were explored in a mouse xenograft model. The prognostic value of PCs in GC patients was also explored in molecular databases of GC. RESULTS Inhibition of PCs activity in CSCs in all GC cell lines reduced tumorsphere formation and growth, drug efflux, EMT phenotype, and invasive properties that are associated with repressed YAP/TAZ/TEAD pathway activity in vitro. In vivo, PCs' inhibition in GC cells reduced their metastatic spread. Molecular analysis of tumors from GC patients has highlighted the prognostic value of PCs. CONCLUSIONS PCs are overexpressed in GC and associated with poor prognosis. PCs are involved in the malignant and metastatic potential of CSCs via the regulation of EMT, the YAP/TAZ/TEAD oncogenic pathway, and their stemness and invasive properties. Their repression represents a new strategy to target CSCs and impair metastatic spreading in GC.
Collapse
Affiliation(s)
- Anissa Zaafour
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Lornella Seeneevassen
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Tra Ly Nguyen
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Coralie Genevois
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
- Vivoptic Platform, CNRS, INSERM TBM-Core UAR3427 US5, Univ. Bordeaux, 33000, Bordeaux, France
| | - Nour Nicolas
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Elodie Sifré
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Alban Giese
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Chloé Porcheron
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Jean Descarpentrie
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Pierre Dubus
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
- Department of Histology and Pathology, CHU Bordeaux, 33000, Bordeaux, France
| | - Abdel-Majid Khatib
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Christine Varon
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
5
|
Jin T, Li M, Li T, Yan S, Ran Q, Chen W. The Inactivation of Hippo Signaling Pathway Promotes the Development of Adenomyosis by Regulating EMT, Proliferation, and Apoptosis of Cells. Reprod Sci 2023; 30:2715-2727. [PMID: 36940085 PMCID: PMC10480273 DOI: 10.1007/s43032-023-01189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 03/21/2023]
Abstract
Adenomyosis is a benign gynecological disease. The pathogenesis of adenomyosis is still unclear. The Hippo signaling pathway is highly conserved in vivo and associated with endometriosis and various cancers. Our objective was to study the expression of Hippo signaling pathway-related proteins in the uterus of mice with and without adenomyosis. We also sought to determine the relationship between the Hippo signaling pathway and cell migration, invasion, proliferation, and apoptosis in adenomyosis. The inactivation of Hippo signaling pathway and abnormal expression of EMT-related proteins were observed in mice with adenomyosis. In vitro, the YAP inhibitor verteporfin can inhibit the proliferation and migration of Ishikawa cells and promote apoptosis, while inhibiting the EMT process. In addition, intraperitoneal injection of verteporfin inhibits EMT process and proliferation and promotes apoptosis of cells in the uterus of adenomyosis mice. It suggests that the Hippo signaling pathway participates in the EMT, proliferation, and apoptosis of cells in adenomyosis. In conclusion, these results suggest that Hippo signaling pathway may be involved in the development of adenomyosis by regulating EMT, proliferation, and apoptosis of cells, which provide a potential target for the treatment of adenomyosis.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, 510632, Guangdong, China
| | - Mengqi Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, 510632, Guangdong, China
| | - Ting Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, 510632, Guangdong, China
| | - Simiao Yan
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, 510632, Guangdong, China
| | - Qingzhen Ran
- Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
| | - Wanqun Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
6
|
Guo F, Kan K, Rückert F, Rückert W, Li L, Eberhard J, May T, Sticht C, Dirks WG, Reißfelder C, Pallavi P, Keese M. Comparison of Tumour-Specific Phenotypes in Human Primary and Expandable Pancreatic Cancer Cell Lines. Int J Mol Sci 2023; 24:13530. [PMID: 37686338 PMCID: PMC10488093 DOI: 10.3390/ijms241713530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
There is an ongoing need for patient-specific chemotherapy for pancreatic cancer. Tumour cells isolated from human tissues can be used to predict patients' response to chemotherapy. However, the isolation and maintenance of pancreatic cancer cells is challenging because these cells become highly vulnerable after losing the tumour microenvironment. Therefore, we investigated whether the cells retained their original characteristics after lentiviral transfection and expansion. Three human primary pancreatic cancer cell lines were lentivirally transduced to create expandable (Ex) cells which were then compared with primary (Pri) cells. No obvious differences in the morphology or epithelial-mesenchymal transition (EMT) were observed between the primary and expandable cell lines. The two expandable cell lines showed higher proliferation rates in the 2D and 3D models. All three expandable cell lines showed attenuated migratory ability. Differences in gene expression between primary and expandable cell lines were then compared using RNA-Seq data. Potential target drugs were predicted by differentially expressed genes (DEGs), and differentially expressed pathways (DEPs) related to tumour-specific characteristics such as proliferation, migration, EMT, drug resistance, and reactive oxygen species (ROS) were investigated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We found that the two expandable cell lines expressed similar chemosensitivity and redox-regulatory capability to gemcitabine and oxaliplatin in the 2D model as compared to their counterparts. In conclusion, we successfully generated expandable primary pancreatic cancer cell lines using lentiviral transduction. These expandable cells not only retain some tumour-specific biological traits of primary cells but also show an ongoing proliferative capacity, thereby yielding sufficient material for drug response assays, which may provide a patient-specific platform for chemotherapy drug screening.
Collapse
Affiliation(s)
- Feng Guo
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Kejia Kan
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Felix Rückert
- Surgical Department, Diakonissen Krankenhaus Speyer, 67346 Speyer, Germany;
| | - Wolfgang Rückert
- Ingenieurbüro Dr. Ing. Rückert Data Analysis, Kirchweg 4, 57647 Nistertal, Germany;
| | - Lin Li
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Johannes Eberhard
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany;
| | - Carsten Sticht
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Wilhelm G. Dirks
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany;
| | - Christoph Reißfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Prama Pallavi
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Michael Keese
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Department of Vascular Surgery, Theresienkrankenhaus, 68165 Mannheim, Germany
| |
Collapse
|
7
|
Horan G, Ye Y, Adams M, Parton A, Cedzik D, Tang S, Brown EA, Liu L, Nissel J, Carayannopoulos LN, Gaudy A, Schafer P, Palmisano M, Ramirez-Valle F. Safety, Pharmacokinetics, and Antifibrotic Activity of CC-90001 (BMS-986360), a c-Jun N-Terminal Kinase Inhibitor, in Pulmonary Fibrosis. Clin Pharmacol Drug Dev 2023. [PMID: 37378860 DOI: 10.1002/cpdd.1294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
Approved treatments for idiopathic pulmonary fibrosis have tolerability concerns and limited efficacy. CC-90001, a c-Jun N-terminal kinase inhibitor, is under investigation as a therapy for fibrotic diseases. A Phase 1b safety, pharmacokinetics, and pharmacodynamics study of oral CC-90001 (100, 200, or 400 mg) administered once daily for 12 weeks was conducted in patients with pulmonary fibrosis (NCT02510937). Sixteen patients with a mean age of 68 years were studied. The most common treatment-emergent adverse events were nausea and headache; all events were of mild or moderate intensity. Pharmacokinetic profiles were similar between the patients in this trial and healthy adults in previous studies. Forced vital capacity increased in the 200- and 400-mg cohorts from baseline to Week 12, and dose-dependent reductions in fibrosis biomarkers were observed. Antifibrotic activity of CC-90001 was also evaluated in vitro in transforming growth factor beta 1 (TGF-β1)-stimulated cells. CC-90001 reduced in vitro profibrotic gene expression in both lung epithelial cells and fibroblasts, supporting a potential direct antifibrotic action of c-Jun N-terminal kinase inhibition in either or both cell types. Overall, CC-90001 was generally safe and well tolerated, and treatment was associated with forced vital capacity improvement and reductions in profibrotic biomarkers.
Collapse
Affiliation(s)
| | - Ying Ye
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Mary Adams
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | | - Jim Nissel
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | |
Collapse
|
8
|
Tang B, Zhao X, Liu H, Zhang Q, Liu K, Yang X, Huang Y. Construction of an STK11 Mutation and Immune-Related Prognostic Prediction Model in Lung Adenocarcinoma. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3168. [PMID: 37228630 PMCID: PMC10203181 DOI: 10.30498/ijb.2022.307202.3168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 07/06/2022] [Indexed: 05/27/2023]
Abstract
Background STK11 mutation in LUAD affects immune cell infiltration in tumor tissue, and is associated with tumor prognosis. Objective This study aimed to construct a STK11 mutation and immune-related LUAD prognostic model. Materials and Methods The mutation frequency of STK11 in LUAD was queried via cBioPortal in TCGA and PanCancer Atlas databases. The degree of immune infiltration was analyzed by CIBERSORT analysis. DEGs in STK11mut and STK11wt samples were analyzed. Metascape, GO and KEGG methods were adopted for functional and signaling pathway enrichment analysis of DEGs. Genes related to immune were overlapped with DEGs to acquire immune-related DEGs, whose Cox regression and LASSO analyses were employed to construct prognostic model. Univariate and multivariate Cox regression analyses verified the independence of riskscore and clinical features. A nomogram was established to predict the OS of patients. Additionally, TIMER was introduced to analyze relationship between infiltration abundance of 6 immune cells and expression of feature genes in LUAD. Results The mutation frequency of STK11 in LUAD was 16%, and the degrees of immune cell infiltration were different between the wild-type and mutant STK11. DEGs of STK11 mutated and unmutated LUAD samples were mainly enriched in immune-related biological functions and signaling pathways. Finally, 6 feature genes were obtained, and a prognostic model was established. Riskscore was an independent immuno-related prognostic factor for LUAD. The nomogram diagram was reliable. Conclusion Collectively, genes related to STK11 mutation and immunity were mined from the public database, and a 6-gene prognostic prediction signature was generated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Huang
- Department of Cardio-Thoracic Surgery, Zigong Fourth People’s Hospital, Zigong, Sichuan 643099, China
| |
Collapse
|
9
|
Schepers EJ, Lake C, Glaser K, Bondoc AJ. Inhibition of Glypican-3 Cleavage Results in Reduced Cell Proliferation in a Liver Cancer Cell Line. J Surg Res 2023; 282:118-128. [PMID: 36272230 PMCID: PMC10893758 DOI: 10.1016/j.jss.2022.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/09/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Glypican-3 (GPC3) is a surface-bound proteoglycan overexpressed in pediatric liver cancer and utilized clinically as an immunohistochemical tumor marker. Furin is a proprotein convertase that is ubiquitously expressed and shown to modify GPC3 post-translationally. In experimental models of epithelial-based cancers, furin inhibition decreased tumor cell migration and proliferation representing a potential therapeutic target. METHODS Using a synthetic furin inhibitor, we evaluated proliferation, migration, protein, and RNA expression in two liver cancer cell lines, HepG2 (GPC3-positive) and SKHep1 cells (GPC3-negative). Total furin protein and GPC3 protein expression were assessed to evaluate functional levels of furin. RESULTS There was a reduction in HepG2 proliferation with addition of furin inhibitor at the 48-h timepoint, however there was an increase in HepG2 migration. CONCLUSIONS GPC3 cleavage in hepatoblastoma (HB) has a role in cell proliferation with therapeutic potential, however furin inhibition is not an appropriate target for GPC3-expressing HB due to increased migration which may enhance metastatic potential.
Collapse
Affiliation(s)
- Emily J Schepers
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | - Charissa Lake
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alexander J Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
10
|
Zhu S, Jiang N, Zhu J. miR-375 Regulates the Proliferation, Apoptosis and Colony Formation of Thyroid Cancer Cells via Targeting YAP1. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: Yes-associated protein 1 (YAP1) regulates cell proliferation and apoptosis. Abnormal miR-375 level was related to thyroid cancer. Software predicted a relationship between miR-375 and YAP1. Our study investigated whether miR-375 regulates YAP1 expression and affects
thyroid cancer cells. Methods: The tumor tissues and adjacent tissues of thyroid cancer patients were collected to measure miR-375 and YAP1 expression. The dual luciferase reporter experiment verified the regulation between miR-375 and YAP1. Thyroid cancer cell line B-CPAP and TPC-1
cells were divided into miR-NC group and miR-375 mimic group followed by analysis of cell proliferation by flow cytometry, caspase-3 activity, and cell clone formation ability by plate cloning assay. Results: Compared with adjacent cancer tissues, miR-375 in thyroid cancer tissues was
decreased and YAP1 was increased. miR-375 targets YAP1. Compared with Nthy-ori 3-1 cells, miR-375 in B-CPAP and TPC-1 cells was significantly reduced and YAP1 was increased. Transfection with miR-375 mimic significantly inhibited cell proliferation, increase caspase-3 activity, and reduced
the ability of cells to form clones. Conclusion: miR-375 can inhibit YAP1 expression, decrease the proliferation of thyroid cancer cells, induce cell apoptosis, and reduce clone formation.
Collapse
Affiliation(s)
- Shunfu Zhu
- Department of General Surgery, The First People’s Hospital of Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Neng Jiang
- Department of General Surgery, The First People’s Hospital of Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Jianjun Zhu
- Department of General Surgery, The First People’s Hospital of Fuyang District, Hangzhou, 311400, Zhejiang, China
| |
Collapse
|
11
|
Xie Y, Liu Y, Ding J, Li G, Ni B, Pang H, Hu X, Wu L. Identification of DDX31 as a Potential Oncogene of Invasive Metastasis and Proliferation in PDAC. Front Cell Dev Biol 2022; 10:762372. [PMID: 35237592 PMCID: PMC8883474 DOI: 10.3389/fcell.2022.762372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignant tumors worldwide and has poor prognosis. DEAD box proteins31 (DDX31) participate in cellular processes involving RNA secondary structure changes. However, the functions of DDX31 in PDAC remain to be elucidated. Methods: The key gene DDX31 was identified using a combination of a risk model and weighted gene co-expression network analysis (WGCNA) with R software. The biological functions of DDX31 in PDAC were investigated through bioinformatics analysis and in vitro experiments. Results: Combining with WGCNA and risk model, DDX31 was identified as a potential factor of the invasive metastasis properties of PDAC, and its expression was closely related to the malignant differentiation of PDAC. The results of gene set enrichment analysis (GSEA) showed that DDX31 was correlated with cell invasive metastasis and proliferation by activating MAPK signaling pathway. The inhibition of DDX31 inhibited the invasion and migration of PDAC cells. Survival analysis showed that DDX31 expression was negatively associated with the poor prognosis in patients with PDAC. Interpretation:DDX31 may be a potential factor for PDAC. The inhibition of DDX31 may be a potential way to treat PDAC.
Collapse
Affiliation(s)
- Yongjie Xie
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Jinsheng Ding
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Guangming Li
- Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Ni
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Huifang Pang
- Department of Gastroenterology, Digestive Endoscopy Unit, Tongliao City Hospital, Tongliao, China
| | - Xin Hu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, China
| | - Liangliang Wu
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention, Department of Gastric Cancer, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
12
|
He Z, Khatib AM, Creemers JWM. The proprotein convertase furin in cancer: more than an oncogene. Oncogene 2022; 41:1252-1262. [PMID: 34997216 DOI: 10.1038/s41388-021-02175-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023]
Abstract
Furin is the first discovered proprotein convertase member and is present in almost all mammalian cells. Therefore, by regulating the maturation of a wide range of proproteins, Furin expression and/or activity is involved in various physiological and pathophysiological processes ranging from embryonic development to carcinogenesis. Since many of these protein precursors are involved in initiating and maintaining the hallmarks of cancer, Furin has been proposed as a potential target for treating several human cancers. In contrast, other studies have revealed that some types of cancer do not benefit from Furin inhibition. Therefore, understanding the heterogeneous functions of Furin in cancer will provide important insights into the design of effective strategies targeting Furin in cancer treatment. Here, we present recent advances in understanding how Furin expression and activity are regulated in cancer cells and their influences on the activity of Furin substrates in carcinogenesis. Furthermore, we discuss how Furin represses tumorigenic properties of several cancer cells and why Furin inhibition leads to aggressive phenotypes in other tumors. Finally, we summarize the clinical applications of Furin inhibition in treating human cancers.
Collapse
Affiliation(s)
- Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Abdel-Majid Khatib
- INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.
- Institut Bergoinié, Bordeaux, France.
| | - John W M Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Wu W, Yang H, Wang Z, Zhang Z, Lu X, Yang W, Xu X, Jiang Y, Li Y, Fan X, Shao Q. A Noncanonical Hedgehog Signaling Exerts a Tumor-Promoting Effect on Pancreatic Cancer Cells Via Induction of Osteopontin Expression. Cancer Biother Radiopharm 2021. [PMID: 34978897 DOI: 10.1089/cbr.2021.0317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective: Sonic Hedgehog (Shh)-Gli1 signaling and osteopontin (OPN) play vital roles in pancreatic cancer. However, the precise mechanisms of both signals have not been fully clarified, and whether there is a correlation between them in pancreatic ductal adenocarcinoma (PDAC) is unknown. This study aims to confirm the effect of OPN on human PDAC and assess whether Hh signaling affects pancreatic cancer cells through upregulation of OPN. Materials and Methods: OPN expression in human PDAC tissues and cell lines was investigated. Proliferation, apoptosis, migration, and invasion of OPN-knockdown BxPC-3 cells were observed. We analyzed the correlation between Shh or Gli1 and OPN expression in human PDAC. Hh signaling inhibitors and shRNA against Gli1 were used to confirm if OPN expression in BxPC-3 cells was regulated by Hh canonical or noncanonical pathway. We also evaluated the proliferation, apoptosis, migration, and invasion of Gli1-knockdown BxPC-3 cells. Results: OPN is highly expressed in human PDAC tissues and cell lines. The proliferation, migration, and invasion of BxPC-3 cell lines were decreased, whereas apoptosis was increased when OPN was knocked down. Correlation analysis showed that Gli1, but not Shh, was associated with OPN expression in human PDAC, and Gli1 regulated OPN production in BxPC-3 cells through a noncanonical pathway because Gli but not Smo inhibitor reduced OPN expression. Similar to above, the proliferation, migration, and invasion of BxPC-3 cells were decreased, whereas the apoptosis was increased when Gli1 was knocked down. Supplement of exogenous OPN protein could partially reverse the effect of both OPN knockdown and Gli1 knockdown on the bio-behavior of BxPC-3 cells. Conclusion: Hh signaling promotes proliferation, migration, and invasion but inhibits apoptosis of pancreatic cancer cells through upregulation of OPN in a noncanonical pathway.
Collapse
Affiliation(s)
- Weijiang Wu
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Hanqing Yang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
- Department of Burns and Plastic Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, People's Republic of China
| | - Zhutao Wang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Zhijian Zhang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiaodong Lu
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Wenjing Yang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiayue Xu
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Yinuo Jiang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yan Li
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xin Fan
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
- Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, People's Republic of China
| |
Collapse
|
14
|
Zhang A, Aslam H, Sharma N, Warmflash A, Fakhouri WD. Conservation of Epithelial-to-Mesenchymal Transition Process in Neural Crest Cells and Metastatic Cancer. Cells Tissues Organs 2021; 210:151-172. [PMID: 34218225 DOI: 10.1159/000516466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a highly conserved cellular process in several species, from worms to humans. EMT plays a fundamental role in early embryogenesis, wound healing, and cancer metastasis. For neural crest cell (NCC) development, EMT typically results in forming a migratory and potent cell population that generates a wide variety of cell and tissue, including cartilage, bone, connective tissue, endocrine cells, neurons, and glia amongst many others. The degree of conservation between the signaling pathways that regulate EMT during development and metastatic cancer (MC) has not been fully established, despite ample studies. This systematic review and meta-analysis dissects the major signaling pathways involved in EMT of NCC development and MC to unravel the similarities and differences. While the FGF, TGFβ/BMP, SHH, and NOTCH pathways have been rigorously investigated in both systems, the EGF, IGF, HIPPO, Factor Receptor Superfamily, and their intracellular signaling cascades need to be the focus of future NCC studies. In general, meta-analyses of the associated signaling pathways show a significant number of overlapping genes (particularly ligands, transcription regulators, and targeted cadherins) involved in each signaling pathway of both systems without stratification by body segments and cancer type. Lack of stratification makes it difficult to meaningfully evaluate the intracellular downstream effectors of each signaling pathway. Finally, pediatric neuroblastoma and melanoma are NCC-derived malignancies, which emphasize the importance of uncovering the EMT events that convert NCC into treatment-resistant malignant cells.
Collapse
Affiliation(s)
- April Zhang
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hira Aslam
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Neha Sharma
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
15
|
Zhou B, Gao S. Pan-Cancer Analysis of FURIN as a Potential Prognostic and Immunological Biomarker. Front Mol Biosci 2021; 8:648402. [PMID: 33968987 PMCID: PMC8100462 DOI: 10.3389/fmolb.2021.648402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background Furin is a calcium-dependent protease that processes various precursor proteins through diverse secretory pathways. The deregulation of FURIN correlated with the prognosis of patients in numerous diseases. However, the role of FURIN in human pan-cancer is still largely unknown. Methods Multiple bioinformatic methods were employed to comprehensively analyze the correlation of FURIN expression with prognosis, mismatch repair (MMR), microsatellite instability (MSI), tumor mutational burden (TMB), DNA methylation, tumor immune infiltration, and common immune checkpoint inhibitors (ICIs) from the public database, and aim to evaluate the potential prognostic value of FURIN across cancers. Results FURIN was aberrantly expressed and was strongly correlated with MMR, MSI, TMB, and DNA methylation in multiple types of cancer. Moreover, survival analysis across cancers revealed that FURIN expression was correlated with overall survival (OS) in four cancers, disease-specific survival (DSS) in five cancers, progression-free interval (PFI) in seven cancers, and disease-free interval (DFI) in two cancers. Also, FURIN expression was related to immune cell infiltration in 6 cancers and ImmuneScore/StromalScore in 10 cancers, respectively. In addition, FURIN expression also showed strong association between expression levels and immune checkpoint markers in three cancers. Conclusion FURIN can serve as a significant prognostic biomarker and correlate with tumor immunity in human pan-cancer.
Collapse
Affiliation(s)
- Bolun Zhou
- Thoracic Surgery Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Thoracic Surgery Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Cox JR, Cruickshank SM, Saunders AE. Maintenance of Barrier Tissue Integrity by Unconventional Lymphocytes. Front Immunol 2021; 12:670471. [PMID: 33936115 PMCID: PMC8079635 DOI: 10.3389/fimmu.2021.670471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces, as a first barrier with the environment are especially susceptible to damage from both pathogens and physical trauma. Thus, these sites require tightly regulated repair programs to maintain barrier function in the face of such insults. Barrier sites are also enriched for unconventional lymphocytes, which lack rearranged antigen receptors or express only a limited range of such receptors, such as ILCs (Innate Lymphoid Cells), γδ T Cells and MAIT (Mucosal-Associated Invariant T Cells). Recent studies have uncovered critical roles for unconventional lymphocytes in regulating mucosal barrier function, and, in particular, have highlighted their important involvement in barrier repair. The production of growth factors such as amphiregulin by ILC2, and fibroblast growth factors by γδ T cells have been shown to promote tissue repair at multiple barrier sites. Additionally, MAIT cells have been shown to exhibit pro-repair phenotypes and demonstrate microbiota-dependent promotion of murine skin healing. In this review we will discuss how immune responses at mucosal sites are controlled by unconventional lymphocytes and the ways in which these cells promote tissue repair to maintain barrier integrity in the skin, gut and lungs.
Collapse
Affiliation(s)
- Joshua R Cox
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sheena M Cruickshank
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Amy E Saunders
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
17
|
Huo X, Zhou X, Peng P, Yu M, Zhang Y, Yang J, Cao D, Sun H, Shen K. Identification of a Six-Gene Signature for Predicting the Overall Survival of Cervical Cancer Patients. Onco Targets Ther 2021; 14:809-822. [PMID: 33574675 PMCID: PMC7873033 DOI: 10.2147/ott.s276553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
Background Although the incidence of cervical cancer has decreased in recent decades with the development of human papillomavirus vaccines and cancer screening, cervical cancer remains one of the leading causes of cancer-related death worldwide. Identifying potential biomarkers for cervical cancer treatment and prognosis prediction is necessary. Methods Samples with mRNA sequencing, copy number variant, single nucleotide polymorphism and clinical follow-up data were downloaded from The Cancer Genome Atlas database and randomly divided into a training dataset (N=146) and a test dataset (N=147). We selected and identified a prognostic gene set and mutated gene set and then integrated the two gene sets with the random survival forest algorithm and constructed a prognostic signature. External validation and immunohistochemical staining were also performed. Results We obtained 1416 differentially expressed prognosis-related genes, 624 genes with copy number amplification, 1038 genes with copy number deletion, and 163 significantly mutated genes. A total of 75 candidate genes were obtained after overlapping the differentially expressed genes and the genes with genomic variations. Subsequently, we obtained six characteristic genes through the random survival forest algorithm. The results showed that high expression of SLC19A3, FURIN, SLC22A3, and DPAGT1 and low expression of CCL17 and DES were associated with a poor prognosis in cervical cancer patients. We constructed a six-gene signature that can separate cervical cancer patients according to their different overall survival rates, and it showed robust performance for predicting survival (training set: p ˂ 0.001, AUC = 0.82; testing set: p ˂ 0.01, AUC = 0.59). Conclusion Our study identified a novel six-gene signature and nomogram for predicting the overall survival of cervical cancer patients, which may be beneficial for clinical decision-making for individualized treatment.
Collapse
Affiliation(s)
- Xiao Huo
- Medical Research Center, Peking University Third Hospital, Beijing,, People's Republic of China
| | - Xiaoshuang Zhou
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mei Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hengzi Sun
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
18
|
Luo C, Sun H, Peng J, Gao C, Bao L, Ji R, Zhang C, Zhu W, Jin Y. Rosmarinic acid exerts an antagonistic effect on nonalcoholic fatty liver disease by regulating the YAP1/TAZ-PPARγ/PGC-1α signaling pathway. Phytother Res 2021; 35:1010-1022. [PMID: 32914480 DOI: 10.1002/ptr.6865] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/31/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023]
Abstract
Rosmarinic acid (RA) is a water-soluble phenolic compound extracted from Boraginaceae and Lamiaceae. This study was designed to investigate the role and mechanism of action of RA in improving nonalcoholic fatty liver disease (NAFLD). Male SD rats maintained on a high fat diet and L02 cells stimulated with oleic acid were treated with RA. Our results showed that RA significantly reduced total cholesterol, triglycerides, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase, and malondialdehyde levels and increased high-density lipoprotein cholesterol, superoxide dismutase and adenosine triphosphate levels both in vivo and in vitro. Hematoxylin and eosin staining and oil red O staining showed that RA had a good lipid-lowering effect and substantial protective effects on liver injury. Transmission electron microscopy and JC-1 fluorescence results showed that RA could improve mitochondrial damage in hepatocytes. Additionally, flow cytometry results indicated that RA inhibited ROS generation and apoptosis in L02 cells. The impaired hepatocytes were restored by using RA in NAFLD models characterized by down-regulating YAP1 and TAZ, meanwhile up-regulating PPARγ and PGC-1α. When YAP1 was over-expressed, RA reduced the expression of YAP1; however, the action of RA was significantly blocked by silencing YAP1. The experimental results indicated that RA markedly alleviated NAFLD by repairing mitochondrial damage and regulating the YAP1/TAZ-PPARγ/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Chunxu Luo
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, China
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Cong Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liuchi Bao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Renpeng Ji
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chi Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Wenhan Zhu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- College of Pharmacy, Dalian Medical University, Dalian, China
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| |
Collapse
|
19
|
He Z, Thorrez L, Siegfried G, Meulemans S, Evrard S, Tejpar S, Khatib AM, Creemers JWM. The proprotein convertase furin is a pro-oncogenic driver in KRAS and BRAF driven colorectal cancer. Oncogene 2020; 39:3571-3587. [PMID: 32139876 DOI: 10.1038/s41388-020-1238-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022]
Abstract
Mutations in KRAS and/or BRAF that activate the ERK kinase are frequently found in colorectal cancer (CRC) and drive resistance to targeted therapies. Therefore, the identification of therapeutic targets that affect multiple signaling pathways simultaneously is crucial for improving the treatment of patients with KRAS or BRAF mutations. The proprotein convertase furin activates several oncogenic protein precursors involved in the ERK-MAPK pathway by endoproteolytic cleavage. Here we show that genetic inactivation of furin suppresses tumorigenic growth, proliferation, and migration in KRAS or BRAF mutant CRC cell lines but not in wild-type KRAS and BRAF cells. In a mouse xenograft model, these KRAS or BRAF mutant cells lacking furin displayed reduced growth and angiogenesis, and increased apoptosis. Mechanistically, furin inactivation prevents the processing of various protein pecursors including proIGF1R, proIR, proc-MET, proTGF-β1 and NOTCH1 leading to potent and durable ERK-MAPK pathway suppression in KRAS or BRAF mutant cells. Furthermore, we identified genes involved in activating the ERK-MAPK pathway, such as PTGS2, which are downregulated in the KRAS or BRAF mutant cells after furin inactivation but upregulated in wild-type KRAS and BRAF cells. Analysis of human colorectal tumor samples reveals a positive correlation between enhanced furin expression and KRAS or BRAF expression. These results indicate that furin plays an important role in KRAS or BRAF-associated ERK-MAPK pathway activation and tumorigenesis, providing a potential target for personalized treatment.
Collapse
Affiliation(s)
- Zongsheng He
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Lieven Thorrez
- Interdisciplinary Research Facility, Department of Development and Regeneration, KU Leuven, Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Sandra Meulemans
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Serge Evrard
- INSERM, LAMC, UMR, Allée Geoffroy St Hilaire, 1029, Pessac, France.,Institut Bergonié, Bordeaux, France
| | - Sabine Tejpar
- Digestive Oncology Unit, Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | - John W M Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
|
21
|
Abstract
In the field of molecular imaging, selectivity for target cells is a key determinant of the degree of imaging contrast. Previously, we developed a pre-targeted method by which target cells could be selectively imaged using a labeled N-glycan that was ligated in situ with an integrin-targeted cyclic RGD peptide on the cell surface. Here we demonstrate the power of our method in discriminating various cancerous and non-cancerous cells that cannot be distinguished using conventional RGD ligands. Using four cyclic RGDyK peptides with various linker lengths with five N-glycans, we identify optimal combinations to discriminate six types of αvβ3 integrin-expressing cells on 96-well plates. The optimal combinations of RGD and N-glycan ligands for the target cells are fingerprinted on the plates, and then used to selectively image tumors in xenografted mouse models. Using this method, various N-glycan molecules, even those with millimolar affinities for their cognate lectins, could be used for selective cancer cell differentiation.
Collapse
|
22
|
Lysine demethylase 2 (KDM2B) regulates hippo pathway via MOB1 to promote pancreatic ductal adenocarcinoma (PDAC) progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:13. [PMID: 31941533 PMCID: PMC6961382 DOI: 10.1186/s13046-019-1489-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Background Mps1 binding protein (MOB1) is one of the core components of the mammalian Hippo pathway and plays important roles in cancer development. However, its expression, function and regulation in pancreatic ductal adenocarcinoma (PDAC) have not been revealed yet. Methods The expression of MOB1 and lysine demethylase 2B (KDM2B) in PDAC and adjacent normal pancreas tissues were measured. Also, the underlying mechanisms of altered MOB1 expression and its impact on PDAC biology were investigated. Results We revealed for the first time that MOB1 was decreased expression in PDAC and was a statistically significant independent predictor of poor survival, and restored expression of MOB1 suppressed the proliferation, migration and invasion of PDAC cells. Further studies demonstrated that KDM2B directly bound to the promoter region of MOB1, and suppressed the promoter activity of MOB1 and transcriptionally inhibited the MOB1 expression. Furthermore, KDM2B regulated Hippo pathway and promoted PDAC proliferation, migration and invasion via MOB1. Conclusion This study demonstrated the mechanism and roles of a novel KDM2B/MOB1/Hippo signaling in PDAC progression.
Collapse
|
23
|
Xu W, Zhou G, Wang H, Liu Y, Chen B, Chen W, Lin C, Wu S, Gong A, Xu M. Circulating lncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer. Int J Cancer 2019; 146:2901-2912. [PMID: 31633800 DOI: 10.1002/ijc.32747] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer mortality worldwide. Emerging evidence indicates that tumour cells release substantial amounts of RNA into the bloodstream, in which RNA strongly resists RNases and is present at sufficient levels for quantitative analyses. Our study aimed to discover blood-based markers for the early detection of CRC and to ascertain their efficiency in discriminating healthy controls, patients with polyps and adenomas and cancer patients. We first analysed and screened ZFAS1, SNHG11, LINC00909 and LINC00654 in a bioinformatics database and then collected clinical plasma samples for preliminary small-scale analysis and further large-scale verification. We then explored the mechanism of dominant lncRNA SNHG11 expression in CRC by in vitro and in vivo assays. The combination of ZFAS1, SNHG11, LINC00909 and LINC00654 showed high diagnostic performance for CRC (AUC: 0.937), especially early-stage disease (AUC: 0.935). Plasma levels of the four candidate lncRNAs were significantly reduced in postoperative samples compared to preoperative samples. A panel including these four lncRNAs performed well in distinguishing patient groups with different stages of colon disease, and SNHG11 exhibited the greatest diagnostic ability to identify precancerous lesions and early-stage tumour formation. Mechanistically, high SNHG11 expression promotes proliferation and metastasis by targeting the Hippo pathway. Taken together, the data indicate that SNHG11 may be a novel therapeutic target for the treatment of CRC and a potential biomarker for the early detection of CRC.
Collapse
Affiliation(s)
- Wei Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Clinical Psychology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Gai Zhou
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Gastroenterology, Nanjing Jiangbei People's Hospital, Nanjing, China
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Baoding Chen
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Wei Chen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Chen Lin
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Shuhui Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Yan H, Li H, Silva MA, Guan Y, Yang L, Zhu L, Zhang Z, Li G, Ren C. LncRNA FLVCR1-AS1 mediates miR-513/YAP1 signaling to promote cell progression, migration, invasion and EMT process in ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:356. [PMID: 31412903 PMCID: PMC6694549 DOI: 10.1186/s13046-019-1356-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) have been reported to be associated with the proliferation of several cancer cells. The aim of this study was to investigate the role of FLVCR1-AS1 in ovarian serous cancer (OSC). Methods FLVCR1-AS1 expression was determined in human OSC tissues, serums and cell lines. The role of FLVCR1-AS1 knockdown or overexpression on OSC cell growth, migration, invasion, apoptosis and epithelial to mesenchymal transition (EMT) were evaluated in vitro using CCK8, colony formation assay, wound healing assay, transwell assay and western blot assay. Besides, luciferase reporter assays were performed to identify interactions among FLVCR1-AS1 and its target genes. Moreover, the in vivo effects were investigated using immunocompromised NSG female mice. Results In this study, FLVCR1-AS1 expression was upregulated in OSC tissues, serums, and cells. Knockdown FLVCR1-AS1 decreased cell growth, migration, invasion, and EMT, as well as increased apoptosis in OSC cells, whereas, overexpression of FLVCR1-AS1 increased cell proliferation, migration, invasion, and EMT, and decreased apoptosis of OSC cells. Besides, FLVCR1-AS1 directly bound to miR-513 and downregulated its expression. Moreover, FLVCR1-AS1 reversed the effect of miR-513 on the OSC cell growth, which might be associated with the role of YAP1. Furthermore, in terms of mechanism, FLVCR1-AS1 promoted EMT in OSC cells. Finally, mice models further confirmed that knockdown FLVCR1-AS1 distinctly suppressed cell growth and EMT in vivo. Conclusion Taken together, FLVCR1-AS1 mediated miR-513/YAP1 signaling to promote cell progression, migration, invasion and EMT process in OSC cells.
Collapse
Affiliation(s)
- Huan Yan
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Hong Li
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Maria A Silva
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Li Yang
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Linlin Zhu
- Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China.,Department of Clinical Laboratory, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhan Zhang
- Department of Clinical Laboratory, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Genxia Li
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Chenchen Ren
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Zhengzhou, 450052, Henan, People's Republic of China
| |
Collapse
|
25
|
Cui J, Zhou Z, Yang H, Jiao F, Li N, Gao Y, Wang L, Chen J, Quan M. MST1 Suppresses Pancreatic Cancer Progression via ROS-Induced Pyroptosis. Mol Cancer Res 2019; 17:1316-1325. [PMID: 30796177 DOI: 10.1158/1541-7786.mcr-18-0910] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/16/2018] [Accepted: 02/18/2019] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease, and its incidence is increasing annually. It is critical to reveal and delineate the molecular mechanism promoting PDAC development and progression. Mammalian STE20-like kinase 1 (MST1) is a proapoptotic cytoplasmic kinase and also one of the core components of the Hippo pathway. Here, we showed that MST1 expression was decreased in PDAC, and restored expression of MST1 promoted PDAC cell death and suppressed the proliferation, migration, invasion, and cell spheroid formation of PDAC via caspase-1-induced pyroptosis. Further studies demonstrated that pyroptosis induced by MST1 was independent of the Hippo pathway, but mediated by reactive oxygen species (ROS). And ROS scavenger N-acetyl-cysteine attenuated the activation of caspase-1 induced by MST1 and the effect of MST1 in PDAC cell death, proliferation, migration, and invasion. Collectively, our study demonstrated that MST1 suppressed the progression of PDAC cells at least partly through ROS-induced pyroptosis. IMPLICATIONS: In this study, we identified a new mechanism of MST1 in inhibiting PDAC development and progression and revealed that MST1 would be a potential prognostic and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Jiujie Cui
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuqing Zhou
- Department of Gastroenterological Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyan Yang
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Jiao
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Li
- Department of Oncology, First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Gao
- Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liwei Wang
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingde Chen
- Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ming Quan
- Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Piao L, Wang F, Wang Y, Yang Z, Li Q, Cui L, Yu Q. miR-424-5p Regulates Hepatoma Cell Proliferation and Apoptosis. Cancer Biother Radiopharm 2019; 34:196-202. [PMID: 30676784 DOI: 10.1089/cbr.2018.2625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Yes-associated protein (Yes-associated protein 1 [YAP1]) is an important oncogene that is related to the pathogenesis and progression of liver cancer. It was found that miR-424-5p expression was significantly decreased in liver cancer tissues, revealing its anticancer effect. Bioinformatic analysis demonstrated the targeted relationship between miR-424-5p and the 3' untranslated region of YAP1. This study investigated the role of miR-424-5p in regulating YAP1 expression and affecting hepatoma cell proliferation and apoptosis. MATERIALS AND METHODS Tumors and normal liver tissues adjacent to tumors were collected from patients to detect the expression of miR-424-5p and YAP1. A dual-luciferase reporter gene assay was adopted to explore the targeted regulation between miR-424-5p and YAP1. Liver cancer HCCLM3 and MHCC97-L cells and normal liver HL-7702 cells were cultured in vitro to compare expression levels of miR-424-5p and YAP1. HCCLM3 and MHCC97-L cells were divided into the miR-NC group and miR-424-5p mimic group. Cell apoptosis was detected by flow cytometry. Cell proliferation was determined by EdU staining. RESULTS Compared with normal liver tissue, miR-424-5p expression was significantly decreased, while YAP1 mRNA and protein levels were obviously upregulated in liver cancer tissues, which were related to the clinical stage. A negative correlation was found between miR-424-5p and YAP1 mRNA levels in liver cancer tissues. Dual-luciferase reporter gene assay confirmed the targeted relationship between miR-424-5p and YAP1. miR-424-5p expression in HCCLM3 and MHCC97-L cells decreased compared with L20 cells, which correlated with malignancy. YAP1 level in HCCLM3 and MHCC97-L cells was significantly enhanced, which correlated with malignancy. miR-424-5p mimic transfection significantly downregulated YAP1 expression in HCCLM3 and MHCC97-L cells, resulting in enhanced apoptosis and attenuated cell proliferation. CONCLUSIONS Decreased miR-424-5p expression and increased YAP1 expression are found in patients with liver cancer. Increased miR-424-5p can inhibit YAP1 expression, attenuate hepatoma cell proliferation, and induce cell apoptosis.
Collapse
Affiliation(s)
- Lianshu Piao
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Fei Wang
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yanyan Wang
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zirong Yang
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Qianwei Li
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Lifeng Cui
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Qinggong Yu
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
27
|
Zhong X, Lü M, Wan J, Zhou T, Qin B. Long noncoding RNA kcna3 inhibits the progression of colorectal carcinoma through down-regulating YAP1 expression. Biomed Pharmacother 2018; 107:382-389. [PMID: 30099342 DOI: 10.1016/j.biopha.2018.07.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate diverse cellular processes, and their anomalous expression exert an essential role in the progression of many kinds of cancers, including colorectal carcinoma (CRC). The objective of this study was to investigate the role of lncRNA kcna3 and its underlying mechanism in CRC progression. The expression of lncRNA kcna3 in human CRC tissues and the adjacent non-tumor tissues was evaluated by RT-PCR. The correlations between lncRNA kcna3 expression levels and the overall survival (OS), as well as the clinicopathological features of CRC patients were analyzed. Gain-of-function and loss-of-function experiments were used to evaluate the effects of lncRNA kcna3 on the proliferation, apoptosis, migration, invasion and tumorigenesis of colon cancer SW620 cells. We found that lncRNA kcna3 was lowly expressed in CRC tissues, and its low expression was closely associated with patients' higher TNM grade and the higher occurrence rate of lymphatic metastasis and distant metastasis, as well as shorter OS. Enhanced expression of lncRNA kcna3 inhibited SW620 cells' proliferation, migration and invasion, and induced cell apoptosis in vitro, and repressed CRC tumor growth in vivo. Whereas knockdown of lncRNA kcna3 showed the opposite results. Mechanistically, up-regulation of lncRNA kcna3 decreased YAP1 protein expression and accelerated its degradation. The effects of lncRNA kcna3 overexpression on cell growth and tumorigenesis inhibition and apoptosis promotion were weakened when the expression of YAP1 was up-regulated. In conclusion, this study revealed that lncRNA kcna3 exerts a tumor-inhibit role in CRC progression through down-regulating YAP1 expression, indicating that lncRNA kcna3/YAP1 might be served as a new prognostic biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Xiaolin Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Muhan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Juyi Wan
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Tiejun Zhou
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Qin
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
28
|
Tian H, Xu JY, Tian Y, Cao Y, Lian C, Ou Q, Wu B, Jin C, Gao F, Wang J, Zhang J, Zhang J, Li W, Lu L, Xu GT. A cell culture condition that induces the mesenchymal-epithelial transition of dedifferentiated porcine retinal pigment epithelial cells. Exp Eye Res 2018; 177:160-172. [PMID: 30096326 DOI: 10.1016/j.exer.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 11/16/2022]
Abstract
The pathological change of retinal pigment epithelial (RPE) cells is one of the main reasons for the development of age-related macular degeneration (AMD). Thus, cultured RPE cells are a proper cell model for studying the etiology of AMD in vitro. However, such cultured RPE cells easily undergo epithelial-mesenchymal transition (EMT) that results in changes of cellular morphology and functions of the cells. To restore and maintain the mesenchymal-epithelial transition (MET) of the cultured RPE cells, we cultivated dedifferentiated porcine RPE (pRPE) cells and compared their behaviors in four conditions: 1) in cell culture dishes with DMEM/F12 containing FBS (CC dish-FBS), 2) in petri dishes with DMEM/F12 containing FBS (Petri dish-FBS), 3) in cell culture dishes with DMEM/F12 containing N2 and B27 supplements (CC dish-N2B27), and 4) in petri dishes with DMEM/F12 containing N2 and B27 (Petri dish-N2B27). In addition to observing the cell morphology and behavior, RPE specific markers, as well as EMT-related genes and proteins, were examined by immunostaining, quantitative real-time PCR and Western blotting. The results showed that dedifferentiated pRPE cells maintained EMT in CC dish-FBS, Petri dish-FBS and CC dish-N2B27 groups, whereas MET was induced when the dedifferentiated pRPE cells were cultured in Petri dish-N2B27. Such induced pRPE cells showed polygonal morphology with increased expression of RPE-specific markers and decreased EMT-associated markers. Similar results were observed in induced pluripotent stem cell-derived RPE cells. Furthermore, during the re-differentiation of those dedifferentiated pRPE cells, Petri dish-N2B27 reduced the activity of RhoA and induced F-actin rearrangement, which promoted the nuclear exclusion of transcriptional co-activator with PDZ-binding motif (TAZ) and TAZ target molecule zinc finger E-box binding protein (ZEB1), both of which are EMT inducing factors. This study provides a simple and reliable method to reverse dedifferentiated phenotype of pRPE cells into epithelialized phenotype, which is more appropriate for studying AMD in vitro, and suggests that MET of other cell types might be induced by a similar approach.
Collapse
Affiliation(s)
- Haibin Tian
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Yu Tian
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Yaqi Cao
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Chunpin Lian
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Binxin Wu
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China; Department of Physiology and Pharmacology, TUSM, China
| | - Weiye Li
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, USA.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China; Department of Physiology and Pharmacology, TUSM, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| |
Collapse
|
29
|
Zheng CH, Chen XM, Zhang FB, Zhao C, Tu SS. Inhibition of CXCR4 regulates epithelial mesenchymal transition of NSCLC via the Hippo-YAP signaling pathway. Cell Biol Int 2018; 42:1386-1394. [PMID: 29972256 DOI: 10.1002/cbin.11024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Chun-Hui Zheng
- Department of Cardiothoracic Surgery, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| | - Xiao-Mei Chen
- Operating Room, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| | - Fang-Biao Zhang
- Department of Cardiothoracic Surgery, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| | - Chun Zhao
- Department of Cardiothoracic Surgery, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| | - Shao-Song Tu
- Department of Cardiothoracic Surgery, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| |
Collapse
|
30
|
Ou C, Sun Z, Li S, Li G, Li X, Ma J. Dual roles of yes-associated protein (YAP) in colorectal cancer. Oncotarget 2017; 8:75727-75741. [PMID: 29088905 PMCID: PMC5650460 DOI: 10.18632/oncotarget.20155] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Yes-associated protein (YAP) is a downstream effector molecule of a newly emerging tumour suppressor pathway called the Hippo pathway. YAP is a transcriptional co-activator and mis-expressed in various cancers, including colorectal cancer (CRC). Accumulating studies show that the high expression of nuclear YAP is linked with tumour progression and decreased survival. Nuclear YAP can interact with other transcription factors to promote cancer cell proliferation, apoptosis, metastasis and maintenance of stemness. Therefore, YAP has the potential to be a tumour biomarker or therapeutic target for CRC. However, recently, a number of studies have supported a contradictory role for YAP as a tumour suppressor, demonstrating inhibition of the tumorigenesis of CRC, involvement in promoting cell apoptosis, and inhibiting the maintenance of intestinal stem cells and inflammatory activity. In these studies, high expression of YAP was highly correlated with worse survival in CRC. In this review, we will comprehensively summarize and analyse these paradoxical reports, and discuss both the oncogenic and tumour suppressor functions of YAP in the differential status of CRC progression. Further investigation into the mechanisms responsible for the dual function of YAP will be of great value in the prevention, early diagnosis, and therapy of CRC.
Collapse
Affiliation(s)
- Chunlin Ou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhenqiang Sun
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Department of Gastrointestinal Surgery, Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Shen Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Guiyuan Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|