1
|
Adugna A, Muche Y, Melkamu A, Jemal M, Belew H, Amare GA. Current updates on the molecular and genetic signals as diagnostic and therapeutic targets for hepatitis B virus-associated hepatic malignancy. Heliyon 2024; 10:e34288. [PMID: 39100497 PMCID: PMC11295980 DOI: 10.1016/j.heliyon.2024.e34288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Liver cancer caused by the hepatitis B virus (HBV) is the third most common cancer-related cause of death worldwide. Early detection of HBV-caused hepatic tumors increases the likelihood of a successful cure. Molecular and genetic signals are becoming more and more recognized as possible indicators of HBV-associated hepatic malignancy and of how well a treatment is working. As a result, we have discussed the current literature on molecular and genetic sensors, including extracellular vesicle microRNAs (EV-miRNAs), long non-coding circulating RNAs (lncRNAs), extracellular vesicles (EVs), and cell free circulating DNA (cfDNA), for the diagnosis and forecasting of HBV-related hepatic cancer. Extracellular vesicle microRNAs such as miR-335-5p, miR-172-5p, miR-1285-5p, miR-497-5p, miR-636, miR-187-5p, miR-223-3p, miR-21, miR-324-3p, miR-210-3p, miR-718, miR-122, miR-522, miR-0308-3p, and miR-375 are essential for the posttranscriptional regulation of oncogenes in hepatic cells as well as the epigenetic modulation of many internal and external signaling pathways in HBV-induced hepatic carcinogenesis. LncRNAs like lnc01977, HULC (highly up-regulated in liver cancer), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), and HOTAIR (hox transcript antisense intergenic RNA) have been demonstrated to control hepatic-tumors cell growth, relocation, encroachment, and cell death resiliency. They are also becoming more and more involved in immune tracking, hepatic shifting, vasculature oversight, and genomic destabilization. EVs are critical mediators involved in multiple aspects of liver-tumors like angiogenesis, immunology, tumor formation, and the dissemination of malignant hepatocytes. Furthermore, cfDNA contributes to signals associated with tumors, including mutations and abnormal epigenetic changes during HBV-related hepatic tumorigenesis.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
2
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
3
|
Kim HR, Seo CW, Kim J. The value of CDC42 effector protein 2 as a novel prognostic biomarker in liver hepatocellular carcinoma: a comprehensive data analysis. Osong Public Health Res Perspect 2023; 14:451-467. [PMID: 38204425 PMCID: PMC10788419 DOI: 10.24171/j.phrp.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The prognostic significance of CDC42 effector protein 2 (CDC42EP2) and its association with tumor-infiltrating immune cells (TIICs) have not been explored in liver hepatocellular carcinoma (LIHC). This study aims to assess the potential prognostic value of CDC42EP2 by conducting a comprehensive analysis of online databases pertaining to LIHC. METHODS We evaluated the potential of CDC42EP2 as a prognostic biomarker by utilizing online databases such as TIMER, GEPIA2, KM, OSlihc, HPA, and LinkedOmics. RESULTS In LIHC, we observed that the mRNA and protein expression of CDC42EP2 were upregulated compared to normal tissues. Upregulated CDC42EP2 expression was associated with a worse prognosis based on the clinicopathological characteristics of patients with LIHC. Furthermore, CDC42EP2 was positively associated with TIICs. In the co-expression and functional enrichment analyses of CDC42EP2, 11,416 genes showed positive associations with CDC42EP2 while 8,008 genes showed negative associations. CDC42EP2-related co-expression genes were involved in protein localization to the endoplasmic reticulum, translational initiation, and RNA catabolic processes in gene set enrichment analysis-Gene Ontology (GSEAGO), and regulated the ribosome, spliceosome, and primary immune deficiency in the GSEAKyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In a survival map, 23 and 17 genes that exhibited positive associations with CDC42EP2 showed a significant hazard ratio (HR) for overall survival and disease-free survival, respectively. CONCLUSION Our findings demonstrated that CDC42EP2 is a novel prognostic biomarker and a potential tumor immune therapeutic target in patients with LIHC.
Collapse
Affiliation(s)
- Hye-Ran Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Choong Won Seo
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| |
Collapse
|
4
|
Salman A, Abdel Mageed SS, Fathi D, Elrebehy MA, Abulsoud AI, Elshaer SS, Khidr EG, Al-Noshokaty TM, Khaled R, Rizk NI, Elballal MS, Sayed GA, Abd-Elmawla MA, El Tabaa MM, Mohammed OA, Ashraf A, El-Husseiny AA, Midan HM, El-Dakroury WA, Abdel-Reheim MA, Doghish AS. Deciphering signaling pathway interplay via miRNAs in malignant pleural mesothelioma. Pathol Res Pract 2023; 252:154947. [PMID: 37977032 DOI: 10.1016/j.prp.2023.154947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly invasive form of lung cancer that adversely affects the pleural and other linings of the lungs. MPM is a very aggressive tumor that often has an advanced stage at diagnosis and a bad prognosis (between 7 and 12 months). When people who have been exposed to asbestos experience pleural effusion and pain that is not explained, MPM should be suspected. After being diagnosed, most MPM patients have a one- to four-year life expectancy. The life expectancy is approximately six months without treatment. Despite the plethora of current molecular investigations, a definitive universal molecular signature has yet to be discovered as the causative factor for the pathogenesis of MPM. MicroRNAs (miRNAs) are known to play a crucial role in the regulation of gene expression at the posttranscriptional level. The association between the expression of these short, non-coding RNAs and several neoplasms, including MPM, has been observed. Although the incidence of MPM is very low, there has been a significant increase in research focused on miRNAs in the past few years. In addition, miRNAs have been found to have a role in various regulatory signaling pathways associated with MPM, such as the Notch signaling network, Wnt/β-catenin, mutation of KRAS, JAK/STAT signaling circuit, protein kinase B (AKT), and Hedgehog signaling pathway. This study provides a comprehensive overview of the existing understanding of the roles of miRNAs in the underlying mechanisms of pathogenic symptoms in MPM, highlighting their potential as viable targets for therapeutic interventions.
Collapse
Affiliation(s)
- Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
5
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
6
|
Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Cell Mol Immunol 2023; 20:318-340. [PMID: 36823234 PMCID: PMC10066239 DOI: 10.1038/s41423-023-00980-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy is a powerful option for cancer treatment. Despite demonstrable progress, most patients fail to respond or achieve durable responses due to primary or acquired ICB resistance. Recently, tumor epithelial-to-mesenchymal plasticity (EMP) was identified as a critical determinant in regulating immune escape and immunotherapy resistance in cancer. In this review, we summarize the emerging role of tumor EMP in ICB resistance and the tumor-intrinsic or extrinsic mechanisms by which tumors exploit EMP to achieve immunosuppression and immune escape. We discuss strategies to modulate tumor EMP to alleviate immune resistance and to enhance the efficiency of ICB therapy. Our discussion provides new prospects to enhance the ICB response for therapeutic gain in cancer patients.
Collapse
|
7
|
Dang X, Huan X, Du X, Chen X, Bi M, Yan C, Jiao Q, Jiang H. Correlation of Ferroptosis and Other Types of Cell Death in Neurodegenerative Diseases. Neurosci Bull 2022; 38:938-952. [PMID: 35482278 PMCID: PMC9352832 DOI: 10.1007/s12264-022-00861-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Ferroptosis is defined as an iron-dependent, non-apoptotic cell death pathway, with specific morphological phenotypes and biochemical changes. There is a growing realization that ferroptosis has significant implications for several neurodegenerative diseases. Even though ferroptosis is different from other forms of programmed death such as apoptosis and autophagic death, they involve a number of common protein molecules. This review focuses on current research on ferroptosis and summarizes the cross-talk among ferroptosis, apoptosis, and autophagy that are implicated in neurodegenerative diseases. We hope that this information provides new ideas for understanding the mechanisms and searching for potential therapeutic approaches and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoting Dang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xuejie Huan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
8
|
Mo C, Wu J, Sui J, Deng Y, Li M, Cao Z, Hu Z, Huang J, Li S. Long non-coding RNA LINC01793 as a potential diagnostic biomarker of hepatitis B virus-related hepatocellular carcinoma. Clin Biochem 2022; 108:56-62. [PMID: 35760369 DOI: 10.1016/j.clinbiochem.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is growing evidence that long non-coding RNAs (lncRNAs) play important roles in the progression of hepatocellular carcinoma (HCC) and may serve as diagnostic markers. This study investigates the diagnostic efficiency of the long intergenic non-protein-coding RNA 1793 (LINC01793) in hepatitis B virus (HBV)-related HCC. METHODS Bioinformatics methods were used to screen the aberrantly expressed lncRNAs in HCC tissues based on The Cancer Genome Atlas (TCGA). Quantitative reverse transcription polymerase chain reaction was performed to assess the expression of the candidate lncRNAs in tissues, cells and whole blood samples of patients with HBV-related HCC, liver cirrhosis (LC), chronic hepatitis (CHB), and healthy controls. Then, the correlations between LINC01793 and clinical characteristics were analyzed. Finally,the diagnostic value of LINC01793 was explored based on the receiver operating characteristic curve. RESULTS LINC01793 was remarkably upregulated in the HCC tissues and cells. It was highly expressed in the whole blood of the HBV-related HCC patients, unlike in that of the healthy controls and of the CHB and LC patients. Subsequent analysis revealed that high LINC01793 was related to the Barcelona Clinic Liver Cancer (P = 0.007), tumor invasion (P = 0.042), the number of tumors (P = 0.031) and serum level of alanine aminotransferase(p = 0.022). The areas under the curve of LINC01793, for distinguishing HCC from healthy controls, CHB and LC patients, were 0.824, 0.767 and 0.756, respectively. In addition, the combination of LINC01793 with alpha fetoprotein (AFP) had a stronger diagnostic value than LINC01793 or AFP alone in AFP-negative HCC patients. CONCLUSION High expression of LINC01793 is correlated with adverse clinical characteristics and can serve as a non-invasive biomarker of HCC.
Collapse
Affiliation(s)
- Cuiju Mo
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Junrong Wu
- Department of Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jingzhe Sui
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yan Deng
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Meng Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zhao Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zuojian Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Junhui Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shan Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
9
|
Knockdown of hsa_circ_0001964 inhibits hepatocellular carcinoma cell proliferation by inactivating PI3K/AKT signaling pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Identification of plasma lncRNA-ATB levels in hepatitis B virus-related cirrhosis and non-cirrhotic chronic hepatitis B patients. Virus Res 2021; 303:198503. [PMID: 34331990 DOI: 10.1016/j.virusres.2021.198503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
Long non-coding RNA-ATB (LncRNA-ATB) which is activated by transforming growth factor-β (TGF-β), is a key regulator of TGF-β signaling pathway. TGF-β plays an important role in various pathogenic processes, from inflammation and fibrosis to cirrhosis and cancer. In this study, we evaluated the plasma levels of lncRNA-ATB in patients with hepatitis B virus (HBV)-related cirrhosis and non-cirrhotic patients with chronic hepatitis B (CHB) and investigated the clinical values. Plasma samples were collected from 44 HBV-related cirrhosis patients, 45 non-cirrhotic CHB and 75 healthy controls. Briefly, after total RNA extraction and cDNA synthesis, quantitative real-time PCR (qPCR) was performed to detect plasma lncRNA-ATB levels. Results show the plasma levels of lncRNA-ATB in HBV-related cirrhosis patients were significantly higher in comparison to healthy controls (Fold change=2.60, p value=0.04). Also, we determined plasma levels of lncRNA-ATB as a specific biomarker of HBV-related cirrhosis (AUC=0.65, p value=0.03, Sensitivity 61.36%; Specificity 70.00%). In addition to, we investigated the plasma levels of lncRNA-ATB in non-cirrhotic CHB patients were significantly lower than healthy controls (Fold change= 0.33, p value=0.01). We also indicated plasma lncRNA-ATB levels were as a sensitive biomarker for diagnosis of non-cirrhotic CHB patients compared with healthy (AUC=0.66, p value=0.00, Sensitivity 71.11%; Specificity 57.78%). According to our results, circulating lncRNA-ATB has good specificity for diagnosing hepatitis B virus (HBV)-related cirrhosis and good sensitivity for diagnosis of non-cirrhotic chronic hepatitis B (CHB) patients.
Collapse
|
11
|
Yang Q, Gao L, Huang X, Weng J, Chen Y, Lin S, Yin Q. Sorafenib prevents the proliferation and induces the apoptosis of liver cancer cells by regulating autophagy and hypoxia-inducible factor-1. Exp Ther Med 2021; 22:980. [PMID: 34345262 PMCID: PMC8311259 DOI: 10.3892/etm.2021.10412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
Sorafenib has been approved as a systemic drug for advanced liver cancer; however, the underlying mechanisms remain unclear. The present study aimed to investigate the effects of sorafenib on the proliferation, autophagy and apoptosis of HepG2 cells under hypoxia. Briefly, reverse transcription-quantitative PCR and western blotting was performed to quantify HIF-1, LC3II/I, mTOR and p70s6K expression levels. Cell proliferation was determined using the Cell Counting Kit-8 assay and the cell apoptosis rate was evaluated using flow cytometry. The results demonstrated that autophagy and apoptosis were induced by hypoxia, and that sorafenib further enhanced hypoxia-induced autophagy and apoptosis in HepG2 cells in a dose-dependent manner. Furthermore, the mechanism of sorafenib-mediated autophagy in liver cancer cell were investigated by using chloroquine (CQ). The results showed that CQ significantly inhibited autophagy by decreasing LC3II/LC3I ratio in HepG2 cells treated with sorafenib and/or hypoxia. By contrast, sorafenib could increase the expression of hypoxia-inducible factor-1 (HIF-1) and of the autophagy marker (LC3II/I) and decrease the expression of mammalian target of rapamycin and p70 ribosomal S6 kinase in HepG2 cells under normoxia and hypoxia conditions, suggesting that sorafenib could induce hypoxia and autophagy in liver cancer cells. In addition, sorafenib was demonstrated to prevent proliferation and induce apoptosis of HepG2 cells under normoxia and hypoxia. Sorafenib could also prevent the malignant behavior of HepG2 by inducing hypoxia and autophagy. In summary, the findings from the present study suggested that sorafenib may inhibit liver cancer progression by activating autophagy and HIF-1 signaling pathway.
Collapse
Affiliation(s)
- Qingzhuang Yang
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Lianghui Gao
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Xiaolong Huang
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Jie Weng
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Youke Chen
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Shibu Lin
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Qiushi Yin
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
12
|
Avşar Abdik E. Differentiated pre-adipocytes promote proliferation, migration and epithelial-mesenchymal transition in breast cancer cells of different p53 status. Mol Biol Rep 2021; 48:5187-5198. [PMID: 34213707 DOI: 10.1007/s11033-021-06521-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer progression and metastasis are associated with stromal cells in the tumor microenvironment. Adipocytes are the most abundant cells surrounding breast stromal tissue, promote tumor progression through the induction of Epithelial-to-Mesenchymal Transition (EMT) which is negatively regulated by tumor suppressor protein p53. In this study aimed to investigate the role of p53 in the progression of breast cancer after mature adipocyte-conditioned medium (CM) application. The proliferative effect of CM obtained from differentiated pre-adipocytes were assessed by MTS assay. 20% CM increased cell proliferation in breast cancer cells, T-47D (mutant p53) and MCF-7 (wild-type p53). The migration and invasion capacity were evaluated by scratch and transwell assays, respectively. CM significantly enhanced migration and invasion capacity in T-47D compared to MCF-7. Gene and protein expressions were detected by qRT-PCR and Western Blot analysis, respectively. CM markedly increased expression levels of Cyclin D1, PI3K, MMP9, Snail and Twist in T-47D compared to MCF-7. However, CM did not change E-Cadherin level in T-47D while downregulated in MCF-7 cells. Also, the protein levels of NFκB p65, p-Akt, Snail, and Vimentin were upregulated in both cells. Overall, the findings highlight how the p53 status affects mature adipocyte-mediated proliferation, migration, and aggressive behavior of breast cancer cell lines. Targeting the tumor microenvironment may represent a promising approach for preventing breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Ezgi Avşar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Ağustos Campus, Kayisdagi, Istanbul, Turkey.
| |
Collapse
|
13
|
Zhang H, Huang Z, Song Y, Yang Z, Shi Q, Wang K, Zhang Z, Liu Z, Cui X, Li F. The TP53-Related Signature Predicts Immune Cell Infiltration, Therapeutic Response, and Prognosis in Patients With Esophageal Carcinoma. Front Genet 2021; 12:607238. [PMID: 34234806 PMCID: PMC8256894 DOI: 10.3389/fgene.2021.607238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
TP53 mutation (TP53MUT) is one of the most common gene mutations and frequently occurs in many cancers, especially esophageal carcinoma (ESCA), and it correlates with clinical prognostic outcomes. Nevertheless, the mechanisms by which TP53MUT regulates the correlation between ESCA and prognosis have not been sufficiently studied. Here, in the current research, we constructed a TP53MUT-related signature to predict the prognosis of patients with esophageal cancer and successfully verified this model in patients in the TP53 mutant group, esophageal squamous cell carcinoma group, and adenocarcinoma group. The risk scores proved to be better independent prognostic factors than clinical features, and prognostic features were combined with other clinical features to establish a convincing nomogram to predict overall survival from 1 to 3 years. In addition, we further predicted the tumor immune cell infiltration, chemical drugs, and immunotherapy responses between the high-risk group and low risk group. Finally, the gene expression of the seven-gene signature (AP002478.1, BHLHA15, FFAR2, IGFBP1, KCTD8, PHYHD1, and SLC26A9) can provide personalized prognosis prediction and insights into new treatments.
Collapse
Affiliation(s)
- Hongpan Zhang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zheng Huang
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Yangguang Song
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhihao Yang
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Qi Shi
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaige Wang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhiyu Zhang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zheng Liu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaobin Cui
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Feng Li
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Department of Pathology, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Zada S, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Kim DR. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188565. [PMID: 33992723 DOI: 10.1016/j.bbcan.2021.188565] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is a highly conserved metabolic process involved in the degradation of intracellular components including proteins and organelles. Consequently, it plays a critical role in recycling metabolic energy for the maintenance of cellular homeostasis in response to various stressors. In cancer, autophagy either suppresses or promotes cancer progression depending on the stage and cancer type. Epithelial-mesenchymal transition (EMT) and cancer metastasis are directly mediated by oncogenic signal proteins including SNAI1, SLUG, ZEB1/2, and NOTCH1, which are functionally correlated with autophagy. In this report, we discuss the crosstalk between oncogenic signaling pathways and autophagy followed by possible strategies for cancer treatment via regulation of autophagy. Although autophagy affects EMT and cancer metastasis, the overall signaling pathways connecting cancer progression and autophagy are still illusive. In general, autophagy plays a critical role in cancer cell survival by providing a minimum level of energy via self-digestion. Thus, cancer cells face nutrient limitations and challenges under stress during EMT and metastasis. Conversely, autophagy acts as a potential cancer suppressor by degrading oncogenic proteins, which are essential for cancer progression, and by removing damaged components such as mitochondria to enhance genomic stability. Therefore, autophagy activators or inhibitors represent possible cancer therapeutics. We further discuss the regulation of autophagy-dependent degradation of oncogenic proteins and its functional correlation with oncogenic signaling pathways, with potential applications in cancer therapy.
Collapse
Affiliation(s)
- Sahib Zada
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea.
| |
Collapse
|
15
|
Yang X, Cao JL, Yang FN, Li XF, Tao LM, Wang F. Decreased expression of CLCA2 and the correlating with immune infiltrates in patients with cervical squamous cell carcinoma: A bioinformatics analysis. Taiwan J Obstet Gynecol 2021; 60:480-486. [PMID: 33966732 DOI: 10.1016/j.tjog.2021.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 12/09/2022] Open
Abstract
OBJECTIVE Calcium-activated chloride channel 2 (CLCA2) is closely related to the invasion, metastasis, and prognosis of some common malignant tumors. The present study aimed to evaluate the role of CLCA2 in cervical squamous cell carcinoma (CESC) using bioinformatics analysis. MATERIALS AND METHODS The mRNA sequencing data and the corresponding clinical data were obtained from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database respectively. Then univariate analysis of variance was used to analyze the differential mRNA expression of CLCA2 between normal, cervical Intraepithelial neoplasia (CIN), and CESC tissues and clinicopathological characteristics. The Gene Expression Profiling Interactive Analysis (GEPIA) was used to assess the association between CLCA2 and Disease-Free Survival (DFS), overall survival (OS). The Gene Set Enrichment Analysis (GSEA) was used to explore the associated signaling pathways. The Tumor Immune Estimation Resource (TIMER) was used to predict the potential biological roles of CLCA2 in tumor-immune of CESC. RESULTS CLCA2 expression was significantly decreased in CESC tissues compared with normal and CIN tissues (P < 0.05). Meanwhile, obese patients had lower levels of CLCA2 expression than normal-weight CESC patients (P < 0.05). However, there was no significant difference in the expression level of CLCA2 in patients with different T stage, lymph node status, metastasis, and FIGO stage in CC(P > 0.05). The survival analysis indicated that for DFS, CESC with high CLCA2 expression was associated with better prognoses compared with those with low expression levels (P < 0.05). But for the OS, there was no difference. GSEA revealed that 4 pathways exhibited significant differential enrichment in the CLCA2 high-expression phenotype, including the P53 signaling pathway, the ERBB signaling pathway, the NOTCH signaling pathway, and the ubiquitin-mediated proteolysis. The TIMER reveals the expression of CLCA2 showed a significant inverse association with the number of B cells, Macrophage cells, and Dendritic Cell infiltration. CONCLUSION The present study indicates that CLCA2 expression may be a potential prognostic marker for patients with CESC.
Collapse
Affiliation(s)
- Xin Yang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Jin-Long Cao
- Lanzhou University Second Hospital, Lanzhou, China
| | - Feng-Na Yang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Xiao-Feng Li
- Lanzhou University Second Hospital, Lanzhou, China
| | - Li-Mei Tao
- Lanzhou University Second Hospital, Lanzhou, China
| | - Fang Wang
- Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
16
|
Shi Y, Norberg E, Vakifahmetoglu-Norberg H. Mutant p53 as a Regulator and Target of Autophagy. Front Oncol 2021; 10:607149. [PMID: 33614491 PMCID: PMC7886977 DOI: 10.3389/fonc.2020.607149] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022] Open
Abstract
One of the most notoriously altered genes in human cancer is the tumor-suppressor TP53, which is mutated with high frequency in more cancers than any other tumor suppressor gene. Beyond the loss of wild-type p53 functions, mutations in the TP53 gene often lead to the expression of full-length proteins with new malignant properties. Among the defined oncogenic functions of mutant p53 is its effect on cell metabolism and autophagy. Due to the importance of autophagy as a stress adaptive response, it is frequently dysfunctional in human cancers. However, the role of p53 is enigmatic in autophagy regulation. While the complex action of the wild-type p53 on autophagy has extensively been described in literature, in this review, we focus on the conceivable role of distinct mutant p53 proteins in regulating different autophagic pathways and further discuss the available evidence suggesting a possible autophagy stimulatory role of mutant p53. Moreover, we describe the involvement of different autophagic pathways in targeting and degrading mutant p53 proteins, exploring the potential strategies of targeting mutant p53 in cancer by autophagy.
Collapse
Affiliation(s)
- Yong Shi
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Norberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
17
|
Huang R, Bai C, Liu X, Zhou Y, Hu S, Li D, Xiang J, Chen J, Zhou P. The p53/RMRP/miR122 signaling loop promotes epithelial-mesenchymal transition during the development of silica-induced lung fibrosis by activating the notch pathway. CHEMOSPHERE 2021; 263:128133. [PMID: 33297121 DOI: 10.1016/j.chemosphere.2020.128133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Understanding the roles of long noncoding RNAs (lncRNAs) in EMT would help with establishing novel avenues for further uncovering the mechanisms of lung fibrosis and identifying preventative and therapeutic targets. This study aimed to identify silica-induced specific lncRNAs and investigate the feedback loop regulation among their upstream and downstream genes. METHODS AND MATERIALS A microarray assay, quantitative real-time polymerase chain reaction and Western blot analysis dual-luciferase reporter gene activity and chromatin immunoprecipitation assays were used. Moreover, a silica-induced lung fibrosis mouse model was used to verify the roles of the lncRNAs. RESULTS Following silica exposure, both RNA component of mitochondrial RNA processing endoribonuclease (RMRP) and p53 were significantly upregulated during the EMT. The upregulation of p53 upon silica exposure activated RMRP expression, which promoted the EMT. When RMRP is overexpressed, additional RMRP acts as a sponge to bind to miR122, thus decreasing miR122 levels. Using microarrays, miR122 was identified as a potential upstream regulator of p53. This relationship was also verified using the dual-luciferase reporter gene. Hence, decreased miR122 levels result in an increase in p53 activity. More importantly, RMRP promotes the transcription of Notch 1, which, in turn, results in Notch pathway activation. We show that the p53/RMRP/miR122 pathway creates a positive feedback loop that promotes EMT progress by activating the Notch signaling pathway. CONCLUSION Our data indicated that p53/RMRP/miR122 feedback loop might contribute to the EMT development by activating Notch pathway, which provides new sight into understanding of the complex network regulating silica-induced lung fibrosis.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| | - Xiaodan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| | - Yao Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Sai Hu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Decheng Li
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Jing Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Jihua Chen
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 410078, Changsha, 63455553, China.
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China; Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
18
|
Magalhaes J, Tresse E, Ejlerskov P, Hu E, Liu Y, Marin A, Montalant A, Satriano L, Rundsten CF, Carlsen EMM, Rydbirk R, Sharifi-Zarchi A, Andersen JB, Aznar S, Brudek T, Khodosevich K, Prinz M, Perrier JFM, Sharma M, Gasser T, Issazadeh-Navikas S. PIAS2-mediated blockade of IFN-β signaling: a basis for sporadic Parkinson disease dementia. Mol Psychiatry 2021; 26:6083-6099. [PMID: 34234281 PMCID: PMC8758491 DOI: 10.1038/s41380-021-01207-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Familial Parkinson disease (PD) is associated with rare genetic mutations, but the etiology in most patients with sporadic (s)PD is largely unknown, and the basis for its progression to dementia (sPDD) is poorly characterized. We have identified that loss of IFNβ or IFNAR1, the receptor for IFNα/β, causes pathological and behavioral changes resembling PDD, prompting us to hypothesize that dysregulated genes in IFNβ-IFNAR signaling pathway predispose one to sPD. By transcriptomic analysis, we found defective neuronal IFNβ-IFNAR signaling, including particularly elevated PIAS2 associated with sPDD. With meta-analysis of GWASs, we identified sequence variants in IFNβ-IFNAR-related genes in sPD patients. Furthermore, sPDD patients expressed higher levels of PIAS2 mRNA and protein in neurons. To determine its function in brain, we overexpressed PIAS2 under a neuronal promoter, alone or with human α-synuclein, in the brains of mice, which caused motor and cognitive impairments and correlated with intraneuronal phosphorylated (p)α-synuclein accumulation and dopaminergic neuron loss. Ectopic expression of neuronal PIAS2 blocked mitophagy, increased the accumulation of senescent mitochondrial and oxidative stress, as evidenced by excessive oxDJ1 and 8OHdG, by inactivating ERK1/2-P53 signaling. Conversely, PIAS2 knockdown rescued the clinicopathological manifestations of PDD in Ifnb-/- mice on restoring mitochondrial homeostasis, oxidative stress, and pERK1/2-pP53 signaling. The regulation of JAK-STAT2-PIAS2 signaling was crucial for neurite outgrowth and neuronal survival and excitability and thus might prevent cognitive impairments. Our findings provide insights into the progression of sPD and dementia and have implications for new therapeutic approaches.
Collapse
Affiliation(s)
- Joana Magalhaes
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Tresse
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Ejlerskov
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Erling Hu
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Yawei Liu
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Marin
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Alexia Montalant
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XNeuronal Signaling Lab, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Letizia Satriano
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Friis Rundsten
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Eva Maria Meier Carlsen
- grid.5254.60000 0001 0674 042XNeuronal Signaling Lab, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Rydbirk
- grid.512917.9Research Laboratory for Stereology and Neuroscience, Center for Translational Research, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Ali Sharifi-Zarchi
- grid.419336.a0000 0004 0612 4397Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Jesper Bøje Andersen
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Susana Aznar
- grid.512917.9Research Laboratory for Stereology and Neuroscience, Center for Translational Research, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Tomasz Brudek
- grid.512917.9Research Laboratory for Stereology and Neuroscience, Center for Translational Research, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Konstantin Khodosevich
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Marco Prinz
- grid.5963.9Institute of Neuropathology, Signalling Research Centres BIOSS and CIBSS, Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jean-François Marie Perrier
- grid.5254.60000 0001 0674 042XNeuronal Signaling Lab, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manu Sharma
- grid.10392.390000 0001 2190 1447Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Thomas Gasser
- grid.10392.390000 0001 2190 1447Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
19
|
Jin B, Jin D, Zhuo Z, Zhang B, Chen K. MiR-1224-5p Activates Autophagy, Cell Invasion and Inhibits Epithelial-to-Mesenchymal Transition in Osteosarcoma Cells by Directly Targeting PLK1 Through PI3K/AKT/mTOR Signaling Pathway. Onco Targets Ther 2020; 13:11807-11818. [PMID: 33235467 PMCID: PMC7680192 DOI: 10.2147/ott.s274451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Osteosarcoma (OS) is one of the most common malignant bone tumors with a poor overall prognosis. MiR-1224-5p plays an important role in cancer, but its function and mechanism in OS have not been studied. Materials and Methods The expression of miR-1224-5p and PLK1 was detected by qRT-PCR in OS cells, adjacent tissues, and cell lines. Dual-luciferase reporter gene assay was used to verify the interaction between miR-1224-5p and PLK1. The expression of miR-1224-5p and PLK1 was intervened by transfection with miR-1224-5p mimic, NC mimic, pc-NC and PLK1, respectively. MTT, colony formation assay, Transwell and flow cytometry were used to observe the cell proliferation, invasion and apoptosis. Western blot was used to detect the expression levels of PLK1, PI3K/AKT/mTOR signaling pathway-related proteins, autophagy-related proteins, and epithelial-mesenchymal transition (EMT)-related proteins in the cells. Results We found that miR-1224-5p was down-regulated and PLK1 expression was up-regulated in OS tissues and cells. On the other hand, it is further confirmed that PLK1 was a target gene of miR-1224-5p. Overexpression of miR-1224-5p inhibited the proliferation, invasion while promoted the apoptosis of OS cells, whereas overexpression of PLK1 promoted the proliferation, invasion and inhibited the apoptosis of OS cells. In the miR-1224-5p group (overexpression of miR-1224-5p), PI3K, AKT, and mTOR protein phosphorylation levels were significantly reduced, while autophagic activity was significantly activated, and the degree of EMT was significantly reduced. But the results in the PLK1 group (overexpression of PLK1) were the opposite. In addition, overexpression of miR-1224-5p reversed the effect of PLK1 upregulation on OS cells. Conclusion MiR-1224-5p targets PLK1 to inhibit PI3K/AKT/mTOR signaling pathway, thus mediating the proliferation, invasion, apoptosis, autophagy and EMT in OS cells.
Collapse
Affiliation(s)
- Bicheng Jin
- Department of Surgery, Guizhou Electric Power Staff Hospital, Guiyang, Guizhou Province, People's Republic of China
| | - Dongfang Jin
- Department of Clinical Laboratory, Jinhua People's Hospital, Jinhua, Zhejiang Province, People's Republic of China
| | - Zhaozhen Zhuo
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, People's Republic of China
| | - Bo Zhang
- Department of Surgery, Guizhou Electric Power Staff Hospital, Guiyang, Guizhou Province, People's Republic of China
| | - Kun Chen
- Guizhou Provincial People's Hospital Scientific Research Center Laboratory, Guiyang, Guizhou Province, People's Republic of China
| |
Collapse
|
20
|
Yang J, Wang B, Xu Q, Yang Y, Hou L, Yin K, Guo Q, Hua Y, Zhang L, Li Y, Zhang J, Li N. TMEM166 inhibits cell proliferation, migration and invasion in hepatocellular carcinoma via upregulating TP53. Mol Cell Biochem 2020; 476:1151-1163. [PMID: 33200377 DOI: 10.1007/s11010-020-03979-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022]
Abstract
Transmembrane protein 166 (TMEM166), an endoplasmic reticulum-associated protein, functions in many diseases via regulating autophagy and/or apoptosis. However, the role of TMEM166 in hepatocellular carcinoma (HCC) remains largely unknown. In this study, we detected the expression of TMEM166 in HCC by real-time fluorescent quantitative PCR (RT-qPCR), immunohistochemistry and western blot. To investigate its biological function and underlying mechanism in HCC, TMEM166 was overexpressed in HCC cell lines and assessed its effects on cell proliferation, migration, invasion, apoptosis and cell cycle by MTT assay, wound healing assay, Transwell assay, Annexin V-FITC/PI assay, JC-1 staining and flow cytometry assay, respectively. Results demonstrated that the expression of TMEM166 was significantly decreased in HCC and was associated with advanced TNM clinical stage and poor clinical outcome of HCC patients. TMEM166 overexpression inhibited HCC cells proliferation, migration and invasion. Furthermore, TMEM166 inhibited cell proliferation by inducing apoptosis and cell cycle arrest via upregulating anti-oncogene TP53 and TP53 knockdown significantly alleviated the anti-tumor effects of TMEM166 on HCC cells. This study provides the first comprehensive analysis the role of TMEM166 in HCC. TMEM166 displays a fine anti-tumor activity on HCC cells involving a mechanism of upregulating TP53. This study suggests TMEM166 is a potential target for the treatment of HCC.
Collapse
Affiliation(s)
- Jiejie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bin Wang
- School of Electronic Information, Qingdao University, Qingdao, 266071, China
| | - Qian Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yuling Yang
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Kan Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qingming Guo
- Biotherapy Center, Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, 266042, China
| | - Yanan Hua
- Department of Neurobiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Li Zhang
- Experimental Center for Undergraduates of Pharmacy, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yixuan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jinyu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
21
|
Gundamaraju R, Lu W, Azimi I, Eri R, Sohal SS. Endogenous Anti-Cancer Candidates in GPCR, ER Stress, and EMT. Biomedicines 2020; 8:biomedicines8100402. [PMID: 33050301 PMCID: PMC7601667 DOI: 10.3390/biomedicines8100402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
The majority of cellular responses to external stimuli are mediated by receptors such as G protein-coupled receptors (GPCRs) and systems including endoplasmic reticulum stress (ER stress). Since GPCR signalling is pivotal in numerous malignancies, they are widely targeted by a number of clinical drugs. Cancer cells often negatively modulate GPCRs in order to survive, proliferate and to disseminate. Similarly, numerous branches of the unfolded protein response (UPR) act as pro-survival mediators and are involved in promoting cancer progression via mechanisms such as epithelial to mesenchymal transition (EMT). However, there are a few proteins among these groups which impede deleterious effects by orchestrating the pro-apoptotic phenomenon and paving a therapeutic pathway. The present review exposes and discusses such critical mechanisms and some of the key processes involved in carcinogenesis.
Collapse
Affiliation(s)
- Rohit Gundamaraju
- ER Stress & Mucosal Immunology Group, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
- Correspondence:
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (S.S.S.)
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Rajaraman Eri
- ER Stress & Mucosal Immunology Group, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (S.S.S.)
| |
Collapse
|
22
|
Patergnani S, Guzzo S, Mangolini A, dell'Atti L, Pinton P, Aguiari G. The induction of AMPK-dependent autophagy leads to P53 degradation and affects cell growth and migration in kidney cancer cells. Exp Cell Res 2020; 395:112190. [PMID: 32717219 DOI: 10.1016/j.yexcr.2020.112190] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
The most common subtype of renal cell carcinoma (RCC) is the clear cell RCC (ccRCC) that accounts for 70-80% of cases. The fate of ccRCC is linked to alterations of genes that regulate TP53. The dysfunction of p53 affects several processes including autophagy, which is increased in different advanced carcinomas and could be associated with cancer progression. We report that different kidney cancer cell lines show higher levels of autophagy than control cells. The increased autophagy is associated with the upregulation of miR501-5p, which stimulates mTOR-independent autophagy by the activation of AMP kinase. AMPK activation occurs through the decrease of ATP generation caused by the downregulation of the mitochondrial calcium uniporter (MCU) that leads to the reduction of mitochondrial calcium uptake. Autophagy induction promotes the degradation of p53 through the autophagolysosomal machinery. Consistently, the inhibition of autophagy reduces both cell proliferation and migration enhancing the expression of p53, p21 and E-Cadherin as well as decreasing Vimentin synthesis. Taken together, these findings indicate that autophagy is involved in the progression of kidney cancer. Therefore, the pharmacological targeting of this process could be considered an interesting option for the treatment of advanced renal carcinoma.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, via Fossato di Mortara 70 c.o. viale Eliporto, 44121, Ferrara, Italy
| | - Sonia Guzzo
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Alessandra Mangolini
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Lucio dell'Atti
- Institute of Urology, University Hospital "Ospedali Riuniti", via Conca 71, 60126, Ancona, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, via Fossato di Mortara 70 c.o. viale Eliporto, 44121, Ferrara, Italy
| | - Gianluca Aguiari
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Fossato di Mortara 74, 44121, Ferrara, Italy.
| |
Collapse
|
23
|
Comprehensive characterization of claudin-low breast tumors reflects the impact of the cell-of-origin on cancer evolution. Nat Commun 2020; 11:3431. [PMID: 32647202 PMCID: PMC7347884 DOI: 10.1038/s41467-020-17249-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Claudin-low breast cancers are aggressive tumors defined by the low expression of key components of cellular junctions, associated with mesenchymal and stemness features. Although they are generally considered as the most primitive breast malignancies, their histogenesis remains elusive. Here we show that this molecular subtype of breast cancers exhibits a significant diversity, comprising three main subgroups that emerge from unique evolutionary processes. Genetic, gene methylation and gene expression analyses reveal that two of the subgroups relate, respectively, to luminal breast cancers and basal-like breast cancers through the activation of an EMT process over the course of tumor progression. The third subgroup is closely related to normal human mammary stem cells. This unique subgroup of breast cancers shows a paucity of genomic aberrations and a low frequency of TP53 mutations, supporting the emerging notion that the intrinsic properties of the cell-of-origin constitute a major determinant of the genetic history of tumorigenesis.
Collapse
|
24
|
Armando F, Gambini M, Corradi A, Becker K, Marek K, Pfankuche VM, Mergani AE, Brogden G, de Buhr N, von Köckritz-Blickwede M, Naim HY, Baumgärtner W, Puff C. Mesenchymal to epithelial transition driven by canine distemper virus infection of canine histiocytic sarcoma cells contributes to a reduced cell motility in vitro. J Cell Mol Med 2020; 24:9332-9348. [PMID: 32627957 PMCID: PMC7417708 DOI: 10.1111/jcmm.15585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcomas especially of histiocytic origin often possess a poor prognosis and response to conventional therapies. Interestingly, tumours undergoing mesenchymal to epithelial transition (MET) are often associated with a favourable clinical outcome. This process is characterized by an increased expression of epithelial markers leading to a decreased invasion and metastatic rate. Based on the failure of conventional therapies, viral oncolysis might represent a promising alternative with canine distemper virus (CDV) as a possible candidate. This study hypothesizes that a CDV infection of canine histiocytic sarcoma cells (DH82 cells) triggers the MET process leading to a decreased cellular motility. Immunofluorescence and immunoblotting were used to investigate the expression of epithelial and mesenchymal markers followed by scratch assay and an invasion assay as functional confirmation. Furthermore, microarray data were analysed for genes associated with the MET process, invasion and angiogenesis. CDV‐infected cells exhibited an increased expression of epithelial markers such as E‐cadherin and cytokeratin 8 compared to controls, indicating a MET process. This was accompanied by a reduced cell motility and invasiveness. Summarized, these results suggest that CDV infection of DH82 cells triggers the MET process by an increased expression of epithelial markers resulting in a decreased cell motility in vitro.
Collapse
Affiliation(s)
- Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Pathology Unit, Department of Veterinary Medicine, University of Parma, Parma, Italy
| | - Matteo Gambini
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Dipartimento di Medicina Veterinaria (DIMEVET), Universitá degli Studi di Milano, Lodi, Italy
| | - Attilio Corradi
- Pathology Unit, Department of Veterinary Medicine, University of Parma, Parma, Italy
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Ahmed Elmonastir Mergani
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Graham Brogden
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Hannover, Germany, Germany
| | - Nicole de Buhr
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
25
|
Xu W, Yu M, Qin J, Luo Y, Zhong M. LACTB Regulates PIK3R3 to Promote Autophagy and Inhibit EMT and Proliferation Through the PI3K/AKT/mTOR Signaling Pathway in Colorectal Cancer. Cancer Manag Res 2020; 12:5181-5200. [PMID: 32636680 PMCID: PMC7335311 DOI: 10.2147/cmar.s250661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common aggressive malignancies. LACTB functions as a tumor suppressor, and previous findings have demonstrated that LACTB can inhibit epithelial-to-mesenchymal transition (EMT) and proliferation of breast cancer and CRC cells. However, few studies have investigated the roles of LACTB in autophagy and proliferation in CRC. The current study aimed to identify the roles of LACTB in EMT and proliferation associated with autophagy in CRC and to elucidate the probable molecular mechanisms through which LACTB are involved in these processes. Materials and Methods Transwell invasion, MTT, transmission electron microscopy, RNA-seq, immunoprecipitation, immunohistochemistry and Western blotting assays were performed to evaluate the migratory, invasive, proliferative and autophagic abilities of CRC cells, and the levels of active molecules involved in PI3K/AKT signaling were examined through Western blotting analysis. In addition, the in vivo function of LACTB was assessed using a tumor xenograft model. Results Weaker LACTB expression was found in CRC tissue samples than in nonmalignant tissue samples, and LACTB inhibited cell invasion, migration, and proliferation by promoting autophagy in vitro. Furthermore, the regulatory effects of LACTB on autophagy and EMT were partially attributed to the PI3K/AKT signaling pathway. The in vivo results also showed that LACTB modulated CRC tumorigenesis. Conclusion LACTB can regulate the activity of PIK3R3 to influence the level of PI3K, and it also promotes autophagy and inhibits EMT and proliferation in part through the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Wei Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, People's Republic of China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, People's Republic of China
| | - Jun Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, People's Republic of China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, People's Republic of China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, People's Republic of China
| |
Collapse
|
26
|
Guo Y, Fan Y, Pei X. Fangjihuangqi Decoction inhibits MDA-MB-231 cell invasion in vitro and decreases tumor growth and metastasis in triple-negative breast cancer xenografts tumor zebrafish model. Cancer Med 2020; 9:2564-2578. [PMID: 32037729 PMCID: PMC7131862 DOI: 10.1002/cam4.2894] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/11/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a basal-like cancer which is considered to be more intrusive, have a poorer prognosis and chemoresistance. TNBC is characterized by the presence of epithelial to mesenchymal transition (EMT) that plays a major role in the progression of the cancer. In the present study, we first use a classic prescription of Chinese medicine Fangjihuangqi Decoction to treat TGFβ1-induced MDA-MB-231 cells in vitro. Our data showed that TGFβ1-induced MDA-MB-231 cell morphology change, promoted MDA-MB 231 invasion, increased Vimentin expression, and decreased E-cadherin expression. Further, Fangjihuangqi Decoction-medicated serum (FHS) treated both MDA-MB 231 cells and TGFβ1-induced MDA-MB-231 cells. Results showed that Fangjihuangqi Decoction could inhibit cell proliferation, reduce cell invasion, increase E-cadherin expression, and decrease EMT markers. Secondly, we established a xenograft tumor zebrafish model to assess Fangjihuangqi Decoction inhibition of cancer cell proliferation and invasion. Our results indicated that Fangjihuangqi Decoction could inhibit tumor growth, restrain the sprouts number of tumor neovascularization, and reduce the length of tumor neoplastic lymphatics by increasing E-cadherin expression and decreasing EMT markers in TNBC xenograft tumor zebrafish model. Overall, our studies provide evidences that Fangjihuangqi Decoction could inhibit TNBC, reverse EMT, and contribute to antimetastasis by increasing E-cadherin expression and decreasing EMT markers, which provide an experimental basis for clinical application of Fangjihuangqi Decoction on TNBC treatment.
Collapse
Affiliation(s)
- Yubo Guo
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingyi Fan
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohua Pei
- Beijing University of Chinese Medicine Fangshan Traditional Medical Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
27
|
Xu Z, Ding W, Deng X. PM 2.5, Fine Particulate Matter: A Novel Player in the Epithelial-Mesenchymal Transition? Front Physiol 2019; 10:1404. [PMID: 31849690 PMCID: PMC6896848 DOI: 10.3389/fphys.2019.01404] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) refers to the conversion of epithelial cells to mesenchymal phenotype, which endows the epithelial cells with enhanced migration, invasion, and extracellular matrix production abilities. These characteristics link EMT with the pathogenesis of organ fibrosis and cancer progression. Recent studies have preliminarily established that fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) is correlated with EMT initiation. In this pathological process, PM2.5 particles, excessive reactive oxygen species (ROS) derived from PM2.5, and certain components in PM2.5, such as ions and polyaromatic hydrocarbons (PAHs), have been implicated as potential EMT mediators that are linked to the activation of transforming growth factor β (TGF-β)/SMADs, NF-κB, growth factor (GF)/extracellular signal-regulated protein kinase (ERK), GF/phosphatidylinositol 3-kinase (PI3K)/Akt, wingless/integrated (Wnt)/β-catenin, Notch, Hedgehog, high mobility group box B1 (HMGB1)-receptor for advanced glycation end-products (RAGE), and aryl hydrocarbon receptor (AHR) signaling cascades and to cytoskeleton rearrangement. These pathways directly and indirectly transduce pro-EMT signals that regulate EMT-related gene expression in epithelial cells, finally inducing the characteristic alterations in morphology and functions of epithelia. In addition, novel associations between autophagy, ATP citrate lyase (ACLY), and exosomes with PM2.5-induced EMT have also been summarized. However, some debates and paradoxes remain to be consolidated. This review discusses the potential molecular mechanisms underlying PM2.5-induced EMT, which might account for the latent role of PM2.5 in cancer progression and fibrogenesis.
Collapse
Affiliation(s)
- Zihan Xu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobei Deng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Zhang H, Xie T, Shui Y, Qi Y. Knockdown of PLCB2 expression reduces melanoma cell viability and promotes melanoma cell apoptosis by altering Ras/Raf/MAPK signals. Mol Med Rep 2019; 21:420-428. [PMID: 31746389 DOI: 10.3892/mmr.2019.10798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/29/2019] [Indexed: 11/05/2022] Open
Abstract
Malignant melanoma has the highest malignancy rate among all skin cancer and is characterized by an insidious onset, high invasion and poor patient prognosis. Yet, the mechanisms involved remain unclear and warrant further investigation. Based on bioinformatic analysis, phospholipase C β2 (PLCB2) has been found to be correlated with melanoma growth. The present study was the first to demonstrate that PLCB2 is a key factor affecting melanoma proliferation and apoptosis. Here, microarray datasets from the publicly available Gene Expression Omnibus (GEO) database were employed, and gene set enrichment analysis (GSEA) was introduced to identify candidate transcription factors. PLCB2 was identified as a crucial gene in the protein‑protein interaction (PPI) network. The expression of PLCB2 mRNA in various cancer lines was analyzed by reverse transcription‑polymerase chain reaction (RT‑PCR). In addition, the proliferation ability and apoptosis rate in human melanoma cells overexpressing or not overexpressing PLCB2 were assessed using colony formation assay, flow cytometry and the Cell Counting Kit‑8 (CCK‑8) assay. Cell viability and apoptosis‑related factors, such as p53, Bcl‑2, Bax and caspase‑3 were significantly regulated. Knockdown of PLCB2 suppressed the activation of the Ras/Raf/MAPK signaling pathway. In conclusion, knockdown of PLCB2 suppressed cell viability and promoted cell apoptosis by activating the Ras/Raf/MAPK pathway. Thus, PLCB2 may utilized as a potential therapeutic target in patients with melanoma.
Collapse
Affiliation(s)
- Huahui Zhang
- Department of Plastic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310007, P.R. China
| | - Tao Xie
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yongjie Shui
- Department of Radiotherapy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yiying Qi
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
29
|
Xu J, Zhu Y, Wang F, Zhou Y, Xia G, Xu W. ICMT contributes to hepatocellular carcinoma growth, survival, migration and chemoresistance via multiple oncogenic pathways. Biochem Biophys Res Commun 2019; 518:584-589. [PMID: 31451223 DOI: 10.1016/j.bbrc.2019.08.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Isoprenylcysteine carboxylmethyltransferase (Icmt) which catalyzes the final step of prenylation of many oncoproteins, such as Ras. Despite studies on Icmt and its regulation in biological activities of various cancers, little is known on the expression, function and mechanisms of the impact of Icmt on hepatocellular carcinoma (HCC). We report here the findings that Icmt is critical for HCC growth, migration, survival and chemoresistance by multiple oncogenic pathways. Expression analysis on primary patient and cell line samples demonstrated that Icmt protein level was significantly higher in the majority (∼70%) of HCC tissues and cells than corresponding normal counterparts. Icmt depletion inhibited growth, survival and migration in HCC cells, and augmented the inhibitory effects of doxorubicin. Consistently, Icmt also inhibited growth, and migration, and induced apoptosis in HCC cells that are resistant to doxorubicin. In contrast, Icmt overexpression promoted growth and migration in normal liver cells. Mechanistically, Icmt inhibition suppressed Ras/Raf/Mek/Erk signaling and epithelial-mesenchymal transition (EMT) in HCC cells. Several different approaches demonstrated that Icmt was critical for HCC biological activities with the predominant role in cell response to chemotherapy. This previously unappreciated function of Icmt can be targeted to enhance chemotherapy in particular those HCC patients with high Icmt expression.
Collapse
Affiliation(s)
- Jianguo Xu
- Department of Liver Disease Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Ying Zhu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Fang Wang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yan Zhou
- Information Management Section, Bethune International Peace Hospital, Shijiazhuang City, Hebei province, China
| | - Guili Xia
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wen Xu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
30
|
Yu Q, Cao S, Tang H, Li J, Guo W, Zhang S. Clinical significance of aberrant DEUP1 promoter methylation in hepatocellular carcinoma. Oncol Lett 2019; 18:1356-1364. [PMID: 31423198 PMCID: PMC6607367 DOI: 10.3892/ol.2019.10421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/07/2019] [Indexed: 01/23/2023] Open
Abstract
Accumulating studies have shown that methylation of tumor suppressor genes plays an important role in tumorigenesis. Deuterosome assembly protein 1 (DEUP1) has been implicated as a suppressor gene in some tumors and promoter methylation led to silencing of its expression. However, the roles of DEUP1 promoter methylation and expression in hepatocellular carcinoma (HCC) are not clear. In the present study, the expression and methylation of the DEUP1 promoter in HCC was investigated and the correlations with HCC occurrence and development were explored. A total of 60 HCC tumor and adjacent non-tumor tissues were included in this study. Reverse transcription-polymerase chain reaction, bisulfite PCR sequencing, immunohistochemistry and western blotting were applied to detect the methylation status of the DEUP1 promoter and its expression, and to analyze their associations with clinicopathological data. The results showed that the mRNA and protein expression of DEUP1 in adjacent non-tumor tissues was significantly increased compared with in the HCC tissues. DEUP1 promoter methylation was detected in 46/60 (76.7%) tumor tissues and there was a negative correlation between promoter methylation and DEUP1 protein expression (P<0.05). Analysis of the clinicopathological data revealed that the mRNA and protein expression of DEUP1, and its promoter methylation status, was associated with tumor node metastasis stage and tumor differentiation. Taken together, the results of the present study suggested that methylation of the DEUP1 promoter maybe an important mechanism for gene inactivation and has a critical role in the occurrence and development of liver cancer.
Collapse
Affiliation(s)
- Qiwen Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shengli Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongwei Tang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
31
|
Chen HT, Liu H, Mao MJ, Tan Y, Mo XQ, Meng XJ, Cao MT, Zhong CY, Liu Y, Shan H, Jiang GM. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer 2019; 18:101. [PMID: 31126310 PMCID: PMC6533683 DOI: 10.1186/s12943-019-1030-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/15/2019] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a highly conserved catabolic process that mediates degradation of pernicious or dysfunctional cellular components, such as invasive pathogens, senescent proteins, and organelles. It can promote or suppress tumor development, so it is a “double-edged sword” in tumors that depends on the cell and tissue types and the stages of tumor. The epithelial-mesenchymal transition (EMT) is a complex biological trans-differentiation process that allows epithelial cells to transiently obtain mesenchymal features, including motility and metastatic potential. EMT is considered as an important contributor to the invasion and metastasis of cancers. Thus, clarifying the crosstalk between autophagy and EMT will provide novel targets for cancer therapy. It was reported that EMT-related signal pathways have an impact on autophagy; conversely, autophagy activation can suppress or strengthen EMT by regulating various signaling pathways. On one hand, autophagy activation provides energy and basic nutrients for EMT during metastatic spreading, which assists cells to survive in stressful environmental and intracellular conditions. On the other hand, autophagy, acting as a cancer-suppressive function, is inclined to hinder metastasis by selectively down-regulating critical transcription factors of EMT in the early phases. Therefore, the inhibition of EMT by autophagy inhibitors or activators might be a novel strategy that provides thought and enlightenment for the treatment of cancer. In this article, we discuss in detail the role of autophagy and EMT in the development of cancers, the regulatory mechanisms between autophagy and EMT, the effects of autophagy inhibition or activation on EMT, and the potential applications in anticancer therapy.
Collapse
Affiliation(s)
- Hong-Tao Chen
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China
| | - Hao Liu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min-Jie Mao
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuan Tan
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China.,Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiang-Qiong Mo
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiao-Jun Meng
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Meng-Ting Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Chu-Yu Zhong
- Department of Geriatrics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yan Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China.
| |
Collapse
|
32
|
Effects of annexin A7 inhibitor-ABO on the expression and distribution of long noncoding RNA-CERNA1 in vascular endothelial cells apoptosis. Apoptosis 2019; 24:552-561. [DOI: 10.1007/s10495-019-01537-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Shi Y, Lin H, Cao J, Cui C. Botulinum toxin type A induces protective autophagy in human dermal microvascular endothelial cells exposed to an in vitro model of ischemia/reperfusion injury. Exp Ther Med 2018; 16:4379-4386. [PMID: 30542387 PMCID: PMC6257827 DOI: 10.3892/etm.2018.6741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/29/2018] [Indexed: 11/10/2022] Open
Abstract
Botulinum toxin type A (BTXA) has been reported to increase the survival of ischemic skin flaps; however, the exact mechanism underlying this effect remains unclear and needs to be further established. The present study aimed to elucidate whether autophagy caused by BTXA functions as a protection mechanism and to identify the mechanisms of its regulation by BTXA in human dermal microvascular endothelial cells (HDMECs) subjected to hypoxia/reoxygenation (H/R)-induced injury. HDMECs were harvested from the upper eyelid tissues of female blepharoplasty patients. HDMECs were exposed to BTXA treatment for 12 h and then subjected to hypoxia for 8 h, followed by reoxygenation for 24 h. Chloroquine diphosphate salt (CQ) was used as an autophagy inhibitor. H/R led to extreme injury to the HDMECs as indicated by the rise in the apoptosis rate, which was significantly attenuated by BTXA pretreatment. The outcomes demonstrated that H/R caused autophagy, as evidenced by a higher type II/type I ratio of light chain 3 (LC3), increased expression of Beclin-1 and increased autophagosome formation. BTXA enhanced autophagy and attenuated apoptosis in a dose-dependent manner, whereas CQ attenuated the BTXA antiapoptotic effects and inhibited the formation of autophagolysosomes, which caused clustering of the LC3-II in cells. In conclusion, autophagy promoted by BTXA serves as a potential protective effect on ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yanyu Shi
- Department of Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Huang Lin
- Department of Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Jiankun Cao
- Department of Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Chao Cui
- Department of Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| |
Collapse
|
34
|
Chirumbolo S, Bjørklund G, Lysiuk R, Vella A, Lenchyk L, Upyr T. Targeting Cancer with Phytochemicals via Their Fine Tuning of the Cell Survival Signaling Pathways. Int J Mol Sci 2018; 19:ijms19113568. [PMID: 30424557 PMCID: PMC6274856 DOI: 10.3390/ijms19113568] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
The role of phytochemicals as potential prodrugs or therapeutic substances against tumors has come in the spotlight in the very recent years, thanks to the huge mass of encouraging and promising results of the in vitro activity of many phenolic compounds from plant raw extracts against many cancer cell lines. Little but important evidence can be retrieved from the clinical and nutritional scientific literature, where flavonoids are investigated as major pro-apoptotic and anti-metastatic compounds. However, the actual role of these compounds in cancer is still far to be fully elucidated. Many of these phytochemicals act in a pleiotropic and poorly specific manner, but, more importantly, they are able to tune the reactive oxygen species (ROS) signaling to activate a survival or a pro-autophagic and pro-apoptosis mechanism, depending on the oxidative stress-responsive endowment of the targeted cell. This review will try to focus on this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy.
- Scientific Secretary-Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, DanyloHalytskyLviv National Medical University, 79007 Lviv, Ukraine.
| | - Antonio Vella
- AOUI Verona, University Hospital, Section of Immunology, 37134 Verona, Italy.
| | - Larysa Lenchyk
- Department of Chemistry of Natural Compounds, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| | - Taras Upyr
- Department of Pharmacognosy, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| |
Collapse
|
35
|
Desantis V, Saltarella I, Lamanuzzi A, Mariggiò MA, Racanelli V, Vacca A, Frassanito MA. Autophagy: A New Mechanism of Prosurvival and Drug Resistance in Multiple Myeloma. Transl Oncol 2018; 11:1350-1357. [PMID: 30196237 PMCID: PMC6132177 DOI: 10.1016/j.tranon.2018.08.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
Autophagy is an intracellular self-degradative process that balances cell energy source and regulates tissue homeostasis. In physiological condition, autophagy funnels cytoplasmic constituents to autophagolysosomes for degradation and is an alternative way for cell-death behavior. Here, we inspected autophagy as a prosurvival mechanism essential for drug resistance in multiple myeloma (MM). Accordingly, autophagy inhibitors used in association to conventional anti-MM drugs might enforce the effect against resistant MM plasma cells and render autophagy a new therapeutic target.
Collapse
Affiliation(s)
- V Desantis
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - I Saltarella
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - A Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - M A Mariggiò
- Department of Biomedical Sciences and Human Oncology, Unit of General Pathology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - V Racanelli
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy.
| | - M A Frassanito
- Department of Biomedical Sciences and Human Oncology, Unit of General Pathology, University of Bari Aldo Moro Medical School, Bari, Italy
| |
Collapse
|
36
|
Kannappan R, Mattapally S, Wagle PA, Zhang J. Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells. Am J Physiol Heart Circ Physiol 2018; 315:H512-H521. [PMID: 29775409 PMCID: PMC6172637 DOI: 10.1152/ajpheart.00160.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human induced pluripotent stem cells (hiPSCs) has never been studied. p53-TAD was knocked out in iPSCs using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD knockout (KO) cells were characterized by accelerated proliferation, decreased population doubling time, and unaltered Bcl-2, Bcl-2-binding component 3, insulin-like growth factor 1 receptor, and Bax and altered Mdm2, p21, and p53-induced death domain transcript expression. In p53-TAD KO cells, the p53-regulated DNA repair proteins xeroderma pigmentosum group A, DNA polymerase H, and DNA-binding protein 2 expression were found to be reduced compared with p53 wild-type cells. Exposure to a low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) as measured by RAD50 and MRE11 expression, checkpoint kinase 2 activation, and γH2A.X recruitment at DNA strand breaks in both cell groups, indicating that silence of p53-TAD does not affect the DDR mechanism upstream of p53. After removal of Doxo, p53 wild-type hiPSCs underwent DNA repair, corrected their damaged DNA, and restored DNA integrity. Conversely, p53-TAD KO hiPSCs did not undergo complete DNA repair and failed to restore DNA integrity. More importantly, continuous culture of p53-TAD KO hiPSCs underwent G2/M cell cycle arrest and expressed the cellular senescent marker p16INK4a. Our data clearly show that silence of the TAD of p53 did not affect DDR but affected the DNA repair process, implying the crucial role of p53-TAD in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent cellular senescence.
Collapse
Affiliation(s)
- Ramaswamy Kannappan
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Saidulu Mattapally
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Pooja A Wagle
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
37
|
Zhao S, Li D, Bei XY, Zhu YP, Sun WL, Shen C, Wood K, Han BM, Jiang JT. Maternal exposure to di-n-butyl phthalate (DBP) promotes epithelial-mesenchymal transition via regulation of autophagy in uroepithelial cell. Toxicology 2018; 406-407:114-122. [PMID: 30053495 DOI: 10.1016/j.tox.2018.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/07/2018] [Accepted: 07/23/2018] [Indexed: 01/09/2023]
Abstract
Maternal exposure to di-n-butyl phthalate (DBP) induces hypospadias, but the underlying mechanisms remain elusive. Here we hypothesize that aberrant activation of autophagy and epithelial-mesenchymal transition (EMT) are the leading cause of DBP-related hypospadias. Pregnant rats received DBP orally at a dose of 750 mg/kg/day during gestational days 14-18. In DBP-induced hypospadiac male offspring, immunohistochemistry (IHC) staining and Western blot showed increased expression of autophagy and EMT markers in genital tubercle (GT) tissue compared to the control. In addition, lower testosterone levels and androgen receptor (AR) expression in GT tissue were detected. In vitro studies revealed that impaired AR signaling was involved in DBP-induced autophagy and autophagy activation furthermore promoted EMT in urethral epithelial cells. DBP combined with chloroquine, an autophagy inhibitor, reduced the expression of EMT markers compared with DBP treatment alone, while DBP combined with the autophagy inducer rapamycin elevated the expression of EMT markers. The autophagy-lysosomal pathway inhibitor CQ but not proteasome inhibitor MG-132 rescued the decrease of E-cadherin after DBP treatment, which indicated autophagy-induced E-cadherin degradation contributes to DBP-related EMT. Taken together, our findings show that prenatal exposure to DBP induces abnormal autophagy and EMT that may play important roles in hypospadias development.
Collapse
Affiliation(s)
- Sheng Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiao-Yu Bei
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yi-Ping Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wen-Lan Sun
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Cheng Shen
- The First Affiliated Yijishan Hospital of Wannan Medical College, China
| | - Kristofer Wood
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, United States
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jun-Tao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
38
|
Epithelial Mesenchymal Transition in Embryonic Development, Tissue Repair and Cancer: A Comprehensive Overview. J Clin Med 2017; 7:jcm7010001. [PMID: 29271928 PMCID: PMC5791009 DOI: 10.3390/jcm7010001] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022] Open
Abstract
The epithelial mesenchymal transition (EMT) plays a central role in both normal physiological events (e.g., embryonic development) and abnormal pathological events (e.g., tumor formation and metastasis). The processes that occur in embryonic development are often reactivated under pathological conditions such as oncogenesis. Therefore, defining the regulatory networks (both gene and protein levels) involved in the EMT during embryonic development will be fundamental in understanding the regulatory networks involved in tumor development, as well as metastasis. There are many molecules, factors, mediators and signaling pathways that are involved in the EMT process. Although the EMT is a very old topic with numerous publications, recent new technologies and discoveries give this research area some new perspective and direction. It is now clear that these important processes are controlled by a network of transcriptional and translational regulators in addition to post-transcriptional and post-translational modifications that amplify the initial signals. In this review article, we will discuss some key concepts, historical findings, as well as some recent progresses in the EMT research field.
Collapse
|