1
|
Yamashita T, Momose S, Imada H, Takayanagi N, Murakami C, Nagata M, Sawada K, Yamazaki M, Shimizu T, Kikuchi Y, Yamamoto W, Higashi M. The significance of T-BET-positive CD8 T-cells with diminished CD5 expression in Kikuchi-Fujimoto disease. J Clin Exp Hematop 2024; 64:183-190. [PMID: 39085130 PMCID: PMC11528254 DOI: 10.3960/jslrt.24019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 08/02/2024] Open
Abstract
Kikuchi-Fujimoto disease (KFD), also known as histiocytic necrotizing lymphadenitis, is a rare condition characterized by benign localized lymphadenopathy and clinical symptoms such as fever, sore throat, odynophagia, and leukopenia. Though the etiology of KFD is unknown, this condition is similar to viral infection, including increased infiltration of activated plasmacytoid dendritic cells. KFD exhibits three histological phases that reflect its progression status: proliferative, necrotic, and xanthomatous lesions. The expression loss of pan T-cell markers, such as CD2, CD5, and CD7, of infiltrating T-cells is observed in KFD cases, complicating the distinction from T-cell lymphoma. However, reports on the loss of their expression in KFD have been limited. Furthermore, the precise population of the T-cell subset in KFD is still unclear. Here, we focused on surface markers and transcription factors for T-cell differentiation and analyzed them immunohistochemically in 46 KFD cases. We observed diminished CD5 expression of CD8-positive (CD5dim CD8+) T-cells in the proliferative lesion of KFD cases. Furthermore, these CD5dim CD8+ T-cells expressed T-BET, a master regulator of type 1 helper T-cells. The upregulation of T-BET and downregulation of CD5 in CD8+ T-cells causes dysregulated activation and proliferation of CD8+ T-cells, potentially contributing to the unique histopathological features of KFD. Recognizing the frequent infiltration of T-BET-positive CD5dim CD8+ T-cells in KFD is important for distinguishing it from mature T-cell lymphoma. Our findings suggest that the immune response in KFD shares similarities with viral infections and highlight the importance of characterizing T-BET-positive CD5dim CD8+ T-cell populations for understanding KFD pathogenesis.
Collapse
Affiliation(s)
- Takahisa Yamashita
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hiroki Imada
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Natsuko Takayanagi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Chiaki Murakami
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Marino Nagata
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Keisuke Sawada
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Mami Yamazaki
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tomomi Shimizu
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yukina Kikuchi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Wataru Yamamoto
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Morihiro Higashi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
2
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
3
|
Yamashita T, Higashi M, Sugiyama H, Morozumi M, Momose S, Tamaru JI. Cancer Antigen 125 Expression Enhances the Gemcitabine/Cisplatin-Resistant Tumor Microenvironment in Bladder Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:350-361. [PMID: 36586479 DOI: 10.1016/j.ajpath.2022.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
Cancer antigen 125 (CA125) is one of the mucin family proteins and is a serum tumor marker for various tumors, such as ovarian cancer, endometrial cancer, pancreatic cancer, and bladder cancer. CA125 is used to distinguish between benign and malignant tumors, monitor the response to chemotherapy, and detect relapse after initial treatment. Recently, CA125 was reported to be involved in chemoresistance through the physical characteristics of mucin or by modifying the immune tumor-microenvironment. However, the relationship between CA125 expression and chemoresistance in bladder cancer is still unclear. In this study, the clinicopathologic features of bladder cancer with CA125 expression and the status of the tumor-microenvironment related to gemcitabine/cisplatin resistance were investigated using publicly available data sets (Cancer Genome Atlas Expression, GSE169455 data set) from the cBioPortal website, the National Center for Biotechnology Information website, and an in-house case collection of bladder cancer. The cases with CA125 expression had poorer disease-free and overall survival rates than those without CA125 expression. A mucinous area surrounding cancer cells was frequently detected in cases with CA125 expression (81%; 13/16 cases). CA125 expression was also related to the immunosuppressive tumor-microenvironment through the infiltration of immunosuppressive immune cells, such as regulatory T cells and M2 macrophages. These results suggest that the status of tumor-microenvironment associated with CA125 is involved in gemcitabine/cisplatin resistance in bladder cancer.
Collapse
Affiliation(s)
- Takahisa Yamashita
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Morihiro Higashi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan.
| | - Hironori Sugiyama
- Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Makoto Morozumi
- Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
4
|
Zhang L, Zhang Y, Zhang S, Qiu L, Zhang Y, Zhou Y, Han J, Xie J. Translational Regulation by eIFs and RNA Modifications in Cancer. Genes (Basel) 2022; 13:2050. [PMID: 36360287 PMCID: PMC9690228 DOI: 10.3390/genes13112050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/04/2023] Open
Abstract
Translation is a fundamental process in all living organisms that involves the decoding of genetic information in mRNA by ribosomes and translation factors. The dysregulation of mRNA translation is a common feature of tumorigenesis. Protein expression reflects the total outcome of multiple regulatory mechanisms that change the metabolism of mRNA pathways from synthesis to degradation. Accumulated evidence has clarified the role of an increasing amount of mRNA modifications at each phase of the pathway, resulting in translational output. Translation machinery is directly affected by mRNA modifications, influencing translation initiation, elongation, and termination or altering mRNA abundance and subcellular localization. In this review, we focus on the translation initiation factors associated with cancer as well as several important RNA modifications, for which we describe their association with cancer.
Collapse
Affiliation(s)
- Linzhu Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu 610014, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhou
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu 610014, China
| |
Collapse
|
5
|
Zhang Q, Sun X, Sun J, Lu J, Gao X, Shen K, Qin X. RNA m 5C regulator-mediated modification patterns and the cross-talk between tumor microenvironment infiltration in gastric cancer. Front Immunol 2022; 13:905057. [PMID: 36389669 PMCID: PMC9646743 DOI: 10.3389/fimmu.2022.905057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/11/2022] [Indexed: 02/22/2024] Open
Abstract
The effect of immunotherapy strategy has been affirmed in the treatment of various tumors. Nevertheless, the latent role of RNA 5-methylcytosine (m5C) modification in gastric cancer (GC) tumor microenvironment (TME) cell infiltration is still unclear. We systematically explore the m5C modification patterns of 2,122 GC patients from GEO and TCGA databases by 16 m5C regulators and related these patterns to TME characteristics. LASSO Cox regression was employed to construct the m5Cscore based on the expression of regulators and DEGs, which was used to evaluate the prognosis. All the GC patients were divided into three m5C modification clusters with distinct gene expression characteristics and TME patterns. GSVA, ssGSEA, and TME cell infiltration analysis showed that m5C clusters A, B, and C were classified as immune-desert, immune-inflamed, and immune-excluded phenotype, respectively. The m5Cscore system based on the expression of eight genes could effectively predict the prognosis of individual GC patients, with AUC 0.766. Patients with a lower m5Cscore were characterized by the activation of immunity and experienced significantly longer PFS and OS. Our study demonstrated the non-negligible role of m5C modification in the development of TME complexity and inhomogeneity. Assessing the m5C modification pattern for individual GC patients will help recognize the infiltration characterization and guide more effective immunotherapy treatment.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Gastrointestinal Surgery, the Second People’s Hospital of Lianyungang Affiliated to Kangda College, Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Xiangfei Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianyi Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiangshen Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kuntang Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Gouda MB, Hassan NM, Kandil EI, Haroun RAH. Pathogenetic Significance of YBX1 Expression in Acute Myeloid Leukemia Relapse. Curr Res Transl Med 2022; 70:103336. [DOI: 10.1016/j.retram.2022.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
|
7
|
Wang K, Zhong W, Long Z, Guo Y, Zhong C, Yang T, Wang S, Lai H, Lu J, Zheng P, Mao X. 5-Methylcytosine RNA Methyltransferases-Related Long Non-coding RNA to Develop and Validate Biochemical Recurrence Signature in Prostate Cancer. Front Mol Biosci 2021; 8:775304. [PMID: 34926580 PMCID: PMC8672116 DOI: 10.3389/fmolb.2021.775304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
The effects of 5-methylcytosine in RNA (m5C) in various human cancers have been increasingly studied recently; however, the m5C regulator signature in prostate cancer (PCa) has not been well established yet. In this study, we identified and characterized a series of m5C-related long non-coding RNAs (lncRNAs) in PCa. Univariate Cox regression analysis and least absolute shrinkage and selector operation (LASSO) regression analysis were implemented to construct a m5C-related lncRNA prognostic signature. Consequently, a prognostic m5C-lnc model was established, including 17 lncRNAs: MAFG-AS1, AC012510.1, AC012065.3, AL117332.1, AC132192.2, AP001160.2, AC129510.1, AC084018.2, UBXN10-AS1, AC138956.2, ZNF32-AS2, AC017100.1, AC004943.2, SP2-AS1, Z93930.2, AP001486.2, and LINC01135. The high m5C-lnc score calculated by the model significantly relates to poor biochemical recurrence (BCR)-free survival (p < 0.0001). Receiver operating characteristic (ROC) curves and a decision curve analysis (DCA) further validated the accuracy of the prognostic model. Subsequently, a predictive nomogram combining the prognostic model with clinical features was created, and it exhibited promising predictive efficacy for BCR risk stratification. Next, the competing endogenous RNA (ceRNA) network and lncRNA–protein interaction network were established to explore the potential functions of these 17 lncRNAs mechanically. In addition, functional enrichment analysis revealed that these lncRNAs are involved in many cellular metabolic pathways. Lastly, MAFG-AS1 was selected for experimental validation; it was upregulated in PCa and probably promoted PCa proliferation and invasion in vitro. These results offer some insights into the m5C's effects on PCa and reveal a predictive model with the potential clinical value to improve the prognosis of patients with PCa.
Collapse
Affiliation(s)
- Ke Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, The Hospital of Trade-Business in Hunan Province, Changsha, China
| | - Weibo Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zining Long
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufei Guo
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanfan Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuo Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Houhua Lai
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianming Lu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Pengxiang Zheng
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Fuqing City Hospital Affiliated with Fujian Medical University, Fuzhou, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Xu Y, Zhang M, Zhang Q, Yu X, Sun Z, He Y, Guo W. Role of Main RNA Methylation in Hepatocellular Carcinoma: N6-Methyladenosine, 5-Methylcytosine, and N1-Methyladenosine. Front Cell Dev Biol 2021; 9:767668. [PMID: 34917614 PMCID: PMC8671007 DOI: 10.3389/fcell.2021.767668] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
RNA methylation is considered a significant epigenetic modification, a process that does not alter gene sequence but may play a necessary role in multiple biological processes, such as gene expression, genome editing, and cellular differentiation. With advances in RNA detection, various forms of RNA methylation can be found, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 5-methylcytosine (m5C). Emerging reports confirm that dysregulation of RNA methylation gives rise to a variety of human diseases, particularly hepatocellular carcinoma. We will summarize essential regulators of RNA methylation and biological functions of these modifications in coding and noncoding RNAs. In conclusion, we highlight complex molecular mechanisms of m6A, m5C, and m1A associated with hepatocellular carcinoma and hope this review might provide therapeutic potent of RNA methylation to clinical research.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
9
|
Liu D, Ke J, Liu Y, Rao H, Tang Z, Liu Y, Zhang Z, You L, Luo X, Sun Z, He Z, Li F, Qiu Z, Hu J, Mbadhi MN, Tang J, Wu F, Li S. The interaction between PDCD4 and YB1 is critical for cervical cancer stemness and cisplatin resistance. Mol Carcinog 2021; 60:813-825. [PMID: 34499772 DOI: 10.1002/mc.23345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/17/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022]
Abstract
Cancer multidrug resistance (MDR) is existence in stem cell-like cancer cells characterized by stemness including high-proliferation and self-renewal. Programmed cell death 4 (PDCD4), as a proapoptotic gene, whether it engaged in cancer stemness and cisplatin resistance is still unknown. Here we showed that PDCD4 expressions in Hela/DDP (cisplatin resistance) cells were lower than in parental Hela cells. Moreover, the levels of drug resistance genes and typical stemness markers were markedly elevated in Hela/DDP cells. In vivo, xenograft tumor assay confirmed that knockdown of PDCD4 accelerated the grafted tumor growth. In vitro, colony formation and MTT assay demonstrated that PDCD4 overexpression inhibited cells proliferation in conditions with or without cisplatin. By contrast, PDCD4 deficiency provoked cell proliferation and cisplatin resistance. On mechanism, PDCD4 decreased the protein levels of pAKT and pYB1, accompanied by reduced MDR1 expression. Correspondingly, luciferase reporter assay showed PDCD4 regulated MDR1 promoter activity entirely relied on YB1. Furthermore, Ch-IP, GST-pulldown, and Co-IP assays provided novel evidence that PDCD4 could directly bind with YB1 by the nucleolar localization signal (NOLS) segment, causing the reduced YB1 binding into the MDR1 promoter region through blocking YB1 nucleus translocation, triggering the decreased MDR1 transcription. Taken together, PDCD4-pAKT-pYB1 forms the integrated molecular network to regulate MDR1 transcription during the process of stemness-associated cisplatin resistance.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China.,Department of Clinical Laboratory, Central hospital of Xiaogan, Xiaogan, P. R. China
| | - Jing Ke
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Yang Liu
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Huiling Rao
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Zhiming Tang
- Department of Integrated Medicine, Dongfeng Hospital of Guoyao, Hubei University of Medicine, Shiyan, P. R. China
| | - Ying Liu
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Zhaoyang Zhang
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Lei You
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, P. R. China
| | - Xiangyin Luo
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Zequn Sun
- Department of Digestive Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Zhijun He
- Department of Digestive Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Fei Li
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Zhengpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | | | - Junming Tang
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, P. R. China
| | - Fuyun Wu
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China
| | - Shan Li
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, P. R. China.,Department of Integrated Medicine, Dongfeng Hospital of Guoyao, Hubei University of Medicine, Shiyan, P. R. China.,Department of Digestive Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, P. R. China
| |
Collapse
|
10
|
Yang JW, Sun C, Jin QY, Qiao XH, Guo XL. Potential therapeutic strategies for targeting Y-box-binding protein 1 in cancers. Curr Cancer Drug Targets 2021; 21:897-906. [PMID: 34465278 DOI: 10.2174/1568009621666210831125001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
As one of the most conservative proteins in evolution, Y-box-binding protein 1 (YB-1) has long been considered as a potential cancer target. YB-1 is usually poorly expressed in normal cells and exerts cellular physiological functions such as DNA repair, pre-mRNA splicing and mRNA stabilizing. In cancer cells, the expression of YB-1 is up-regulated and undergoes nuclear translocation and contributes to tumorigenesis, angiogenesis, tumor proliferation, invasion, migration and chemotherapy drug resistance. During the past decades, a variety of pharmacological tools such as siRNA, shRNA, microRNA, circular RNA, lncRNA and various compounds have been developed to target YB-1 for cancer therapy. In this review, we describe the physiological characteristics of YB-1 in detail, highlight the role of YB-1 in tumors and summarize the current therapeutic methods for targeting YB-1 in cancer.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Chao Sun
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Qiu-Yang Jin
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Xing-Hui Qiao
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| |
Collapse
|
11
|
Y-Box Binding Protein 1 Regulates Angiogenesis in Bladder Cancer via miR-29b-3p-VEGFA Pathway. JOURNAL OF ONCOLOGY 2021; 2021:9913015. [PMID: 34306080 PMCID: PMC8270724 DOI: 10.1155/2021/9913015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
Angiogenesis plays a vital role in the development of bladder cancer (BC). The Y-box-binding protein 1 (YB-1) is a well-known oncoprotein which is closely related to angiogenesis of tumors, but the relationship and mechanism of YB-1 and angiogenesis in BC remain unclear. Based on 56 clinical BC specimens, this study found that high expression of YB-1 samples demonstrated a higher expression of vascular endothelial growth factor A (VEGFA) than those of YB-1 low expression. Subsequently, the expression of YB-1 and miR-29b-3p was regulated in the BC cell lines where we noted that YB-1 promoted VEGFA expression by downregulating the expression of miR- 29b-3p. The ability of BC cells to induce angiogenesis decreased after YB-1 was knocked down. Moreover, the in vivo study further confirmed that YB-1 promotes angiogenesis in BC. Our findings enhance the understanding of how YB-1 promotes angiogenesis in BC and provide evidence for YB-1 as a therapeutic target of BC. Moreover, this may provide new inspiration for miRNAs replacement therapies.
Collapse
|
12
|
Lettau K, Khozooei S, Kosnopfel C, Zips D, Schittek B, Toulany M. Targeting the Y-box Binding Protein-1 Axis to Overcome Radiochemotherapy Resistance in Solid Tumors. Int J Radiat Oncol Biol Phys 2021; 111:1072-1087. [PMID: 34166770 DOI: 10.1016/j.ijrobp.2021.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Multifunctional Y-box binding protein-1 (YB-1) is highly expressed in different human solid tumors and is involved in various cellular processes. DNA damage is the major mechanism by which radiochemotherapy (RCT) induces cell death. On induction of DNA damage, a multicomponent signal transduction network, known as the DNA damage response, is activated to induce cell cycle arrest and initiate DNA repair, which protects cells against damage. YB-1 regulates nearly all cancer hallmarks described to date by participating in DNA damage response, gene transcription, mRNA splicing, translation, and tumor stemness. YB-1 lacks kinase activity, and p90 ribosomal S6 kinase and AKT are the key kinases within the RAS/mitogen-activated protein kinase and phosphoinositide 3-kinase pathways that directly activate YB-1. Thus, the molecular targeting of ribosomal S6 kinase and AKT is thought to be the most effective strategy for blocking the cellular function of YB-1 in human solid tumors. In this review, after describing the prosurvival effect of YB-1 with a focus on DNA damage repair and cancer cell stemness, clinical evidence will be provided indicating an inverse correlation between YB-1 expression and the treatment outcome of solid tumors after RCT. In the interest of being concise, YB-1 signaling cascades will be briefly discussed and the current literature on YB-1 posttranslational modifications will be summarized. Finally, the current status of targeting the YB-1 axis, especially in combination with RCT, will be highlighted.
Collapse
Affiliation(s)
- Konstanze Lettau
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Daniel Zips
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-Universität, Tübingen, Tübingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany.
| |
Collapse
|
13
|
Zhou L, Zhang C, Yang X, Liu L, Hu J, Hou Y, Tao H, Sugimura H, Chen Z, Wang L, Chen K. Melatonin inhibits lipid accumulation to repress prostate cancer progression by mediating the epigenetic modification of CES1. Clin Transl Med 2021; 11:e449. [PMID: 34185414 PMCID: PMC8181204 DOI: 10.1002/ctm2.449] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is the main clinical treatment for patients with advanced prostate cancer (PCa). However, PCa eventually progresses to castration-resistant prostate cancer (CRPC), largely because of androgen receptor variation and increased intratumoral androgen synthesis. Several studies have reported that one abnormal lipid accumulation is significantly related to the development of PCa. Melatonin (MLT) is a functionally pleiotropic indoleamine molecule and a key regulator of energy metabolism. The aim of our study is finding the links between CRPC and MLT and providing the basis for MLT treatment for CRPC. METHODS We used animal CRPC models with a circadian rhythm disorder, and PCa cell lines to assess the role of melatonin in PCa. RESULTS We demonstrated that MLT treatment inhibited tumor growth and reversed enzalutamide resistance in animal CRPC models with a circadian rhythm disorder. A systematic review and meta-analysis demonstrated that MLT is positively associated with an increased risk of developing advanced PCa. Restoration of carboxylesterase 1 (CES1) expression by MLT treatment significantly reduced lipid droplet (LD) accumulation, thereby inducing apoptosis by increasing endoplasmic reticulum stress, reducing de novo intratumoral androgen synthesis, repressing CRPC progression and reversing the resistance to new endocrine therapy. Mechanistic investigations demonstrated that MLT regulates the epigenetic modification of CES1. Ces1-knockout (Ces-/- ) mice verified the important role of endogenous Ces1 in PCa. CONCLUSIONS Our findings provide novel preclinical and clinical information about the role of melatonin in advanced PCa and characterize the importance of enzalutamide combined with MLT administration as a therapy for advanced PCa.
Collapse
MESH Headings
- Acetylation
- Androgen Antagonists/pharmacology
- Animals
- Antioxidants/pharmacology
- Apoptosis
- Benzamides/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carboxylic Ester Hydrolases/genetics
- Carboxylic Ester Hydrolases/metabolism
- Cell Proliferation
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Drug Resistance, Neoplasm
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Lipids/analysis
- Male
- Melatonin/pharmacology
- Mice
- Mice, Inbred C57BL
- Nitriles/pharmacology
- Phenylthiohydantoin/pharmacology
- Prognosis
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/prevention & control
- Receptors, Androgen/chemistry
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lijie Zhou
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| | - Cai Zhang
- Department of Clinical Laboratorythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| | - Junyi Hu
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| | - Yaxin Hou
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| | - Hong Tao
- Department of Tumor PathologyHamamatsu University School of MedicineHamamatsuShizuokaJapan
| | - Haruhiko Sugimura
- Department of Tumor PathologyHamamatsu University School of MedicineHamamatsuShizuokaJapan
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liang Wang
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| |
Collapse
|
14
|
Tong L, Yang H, Xiong W, Tang G, Zu X, Qi L. circ_100984-miR-432-3p axis regulated c-Jun/YBX-1/β-catenin feedback loop promotes bladder cancer progression. Cancer Sci 2021; 112:1429-1442. [PMID: 33314480 PMCID: PMC8019231 DOI: 10.1111/cas.14774] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Bladder cancer (BC) is one of the most commonly diagnosed cancers globally. Recently, circular RNAs (circRNAs) have been revealed to participate in BC progression with diverse mechanisms. However, mechanisms of circ_100984 in BC have not been determined. Here, we found that circ_100984 and YBX‐1 were high presented, while miR‐432‐3p was low presented in BC. Silencing of circ_100984 and YBX‐1 repressed BC tumor growth, migration, and invasion in vitro and in vivo. Mechanistically, we revealed that circ_100984 served as a competing endogenous RNA that sponged miR‐432‐3p to indirectly regulate YBX‐1 and epithelial‐mesenchymal transition (EMT)‐related molecules. Moreover, we confirmed that YBX‐1 or c‐Jun acted as a transcription regulatory factor for β‐catenin or YBX‐1, respectively, in BC cells. Knockdown of YBX‐1 inhibited the expression of β‐catenin and c‐Jun, whereas downregulated c‐Jun inversely repressed the expression of YBX‐1 and β‐catenin. Our results suggested that circ_100984‐miR‐432‐3p axis regulated c‐Jun/YBX‐1/β‐catenin feedback loop promotes BC progression, providing a potential therapeutic axis for BC progression.
Collapse
Affiliation(s)
- Liang Tong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Huihui Yang
- Department of Nephrology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wei Xiong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Guyu Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Nombela P, Miguel-López B, Blanco S. The role of m 6A, m 5C and Ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol Cancer 2021; 20:18. [PMID: 33461542 PMCID: PMC7812662 DOI: 10.1186/s12943-020-01263-w] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
RNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programmes. Significant advances have been made in understanding the functional role of RNA modifications in regulating coding and non-coding RNA processing and function, which in turn thoroughly shape distinct gene expression programmes. They affect diverse biological processes, and the correct deposition of many of these modifications is required for normal development. Alterations of their deposition are implicated in several diseases, including cancer. In this Review, we focus on the occurrence of N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) in coding and non-coding RNAs and describe their physiopathological role in cancer. We will highlight the latest insights into the mechanisms of how these posttranscriptional modifications influence tumour development, maintenance, and progression. Finally, we will summarize the latest advances on the development of small molecule inhibitors that target specific writers or erasers to rewind the epitranscriptome of a cancer cell and their therapeutic potential.
Collapse
Affiliation(s)
- Paz Nombela
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain
| | - Borja Miguel-López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
16
|
Mechanisms of tRNA-derived fragments and tRNA halves in cancer treatment resistance. Biomark Res 2020; 8:52. [PMID: 33072328 PMCID: PMC7559774 DOI: 10.1186/s40364-020-00233-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
The tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) are newly discovered noncoding RNAs in recent years. They are derived from specific cleavage of mature and pre-tRNAs and expressed in various cancers. They enhance cell proliferation and metastasis or inhibit cancer progression. Many studies have investigated their roles in the diagnosis, progression, metastasis, and prognosis of various cancers, but the mechanisms through which they are involved in resistance to cancer treatment are unclear. This review outlines the classification of tRFs and tiRNAs and their mechanisms in cancer drug resistance, thus providing new ideas for cancer treatment.
Collapse
|
17
|
Enhanced YB1/EphA2 axis signaling promotes acquired resistance to sunitinib and metastatic potential in renal cell carcinoma. Oncogene 2020; 39:6113-6128. [PMID: 32814829 PMCID: PMC7498371 DOI: 10.1038/s41388-020-01409-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 11/09/2022]
Abstract
VHL mutations are the most common tumorigenic lesions in clear cell renal cell carcinoma (ccRCC) and result in continued activation of the HIF/VEGF pathway and uncontrolled cancer progression. Receptor tyrosine kinase (RTK) inhibitors such as sunitinib have been demonstrated to target tumorigenic signaling pathways, delay tumor progression, and improve patient prognosis in metastatic renal cell carcinoma (mRCC). Although several mechanisms of sunitinib resistance have been reported, the solutions to overcome this resistance remain unclear. In our study, we found that increased expression of Y-box binding protein 1 (YB1, a multidrug resistance associated protein) and EphA2 (a member of the erythropoietin-producing hepatocellular (Eph) receptor family, belonging to the RTK family) mediated sunitinib resistance and mRCC exhibited a large phenotypic dependence on YB1 and EphA2. In addition, our findings confirm that YB1 promotes the invasion, metastasis and sunitinib resistance of ccRCC by regulating the EphA2 signaling pathway. Furthermore, pharmacological inhibition of EphA2 through the small molecule inhibitor ALW-II-41-27 reduced the proliferation of sunitinib-resistant tumor cells, suppressed tumor growth in vivo, and restored the sensitivity of sunitinib-resistant tumor cells to sunitinib in vitro and in vivo. Mechanistically, YB1 increases the protein levels of EphA2 by maintaining the protein stability of EphA2 through inhibition of the proteasomal degradation pathway. Collectively, our findings provide the theoretical rationale that ccRCC metastasis and RTK-directed therapeutic resistance could be prospectively and purposefully targeted.
Collapse
|
18
|
Decreased MYC-associated factor X (MAX) expression is a new potential biomarker for adverse prognosis in anaplastic large cell lymphoma. Sci Rep 2020; 10:10391. [PMID: 32587329 PMCID: PMC7316730 DOI: 10.1038/s41598-020-67500-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
MYC-associated factor X (MAX) is a protein in the basic helix-loop-helix leucine zipper family, which is ubiquitously and constitutively expressed in various normal tissues and tumors. MAX protein mediates various cellular functions such as proliferation, differentiation, and apoptosis through the MYC-MAX protein complex. Recently, it has been reported that MYC regulates the proliferation of anaplastic large cell lymphoma. However, the expression and function of MAX in anaplastic large cell lymphoma remain to be elucidated. We herein investigated MAX expression in anaplastic large cell lymphoma (ALCL) and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) and found 11 of 37 patients (30%) with ALCL lacked MAX expression, whereas 15 of 15 patients (100%) with PTCL-NOS expressed MAX protein. ALCL patients lacking MAX expression had a significantly inferior prognosis compared with patients having MAX expression. Moreover, patients without MAX expression significantly had histological non-common variants, which were mainly detected in aggressive ALCL cases. Immunohistochemical analysis showed that MAX expression was related to the expression of MYC and cytotoxic molecules. These findings demonstrate that lack of MAX expression is a potential poor prognostic biomarker in ALCL and a candidate marker for differential diagnosis of ALCL and PTCL-NOS.
Collapse
|
19
|
Abstract
Specific chemical modifications of biological molecules are an efficient way of regulating molecular function, and a plethora of downstream signalling pathways are influenced by the modification of DNA and proteins. Many of the enzymes responsible for regulating protein and DNA modifications are targets of current cancer therapies. RNA epitranscriptomics, the study of RNA modifications, is the new frontier of this arena. Despite being known since the 1970s, eukaryotic RNA modifications were mostly identified on transfer RNA and ribosomal RNA until the last decade, when they have been identified and characterized on mRNA and various non-coding RNAs. Increasing evidence suggests that RNA modification pathways are also misregulated in human cancers and may be ideal targets of cancer therapy. In this Review we highlight the RNA epitranscriptomic pathways implicated in cancer, describing their biological functions and their connections to the disease.
Collapse
Affiliation(s)
- Isaia Barbieri
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
- Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Tao Z, Ruan H, Sun L, Kuang D, Song Y, Wang Q, Wang T, Hao Y, Chen K. Targeting the YB-1/PD-L1 Axis to Enhance Chemotherapy and Antitumor Immunity. Cancer Immunol Res 2019; 7:1135-1147. [PMID: 31113805 DOI: 10.1158/2326-6066.cir-18-0648] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/07/2019] [Accepted: 05/15/2019] [Indexed: 11/16/2022]
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- Biomarkers, Tumor/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/immunology
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Prognosis
- Signal Transduction
- Survival Rate
- Tumor Cells, Cultured
- Tumor Escape/drug effects
- Tumor Escape/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Xenograft Model Antitumor Assays
- Y-Box-Binding Protein 1/antagonists & inhibitors
- Y-Box-Binding Protein 1/immunology
Collapse
Affiliation(s)
- Zhen Tao
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongchun Song
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Qi Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Zhang C, Yin T, Tao R, Xiao B, Chen J, Li Z, Miao X, Peng Q, Sun L, Zhang W, Ren J, Zhang Z, Zhang Y, Li X, Zhang W. Elevated nuclear YBX1 expression and the clinicopathological characteristics of patients with solid tumors: a meta-analysis. Cancer Manag Res 2019; 11:4391-4402. [PMID: 31191002 PMCID: PMC6526190 DOI: 10.2147/cmar.s195243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/24/2019] [Indexed: 01/11/2023] Open
Abstract
Purpose: Y-box binding protein 1 (YBX1) is a multifunctional protein linked to tumor progression and its elevated expression is an indicator of poor prognosis in various cancers. This meta-analysis aimed to investigate the prognostic value and clinical significance of YBX1 in malignant cancer. Methods: Relevant articles published through September 12, 2018 were identified from a comprehensive electronic and manual search in PubMed, Web of Science and Embase databases. The combined odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (95% CIs) were used to estimate the relationship among clinicopathological characteristics, overall survival and disease-free-survival of patients with solid tumor and YBX1 expression. Results: The study included 27 studies and 5,996 patients. Our analysis revealed significant association between increased YBX1 expression and tumor differentiation status, tumor size and lymph node metastasis; moreover, the pooled HR values demonstrated that high nuclear YBX1 expression was significantly associated with worse overall survival (HR=2.14; 95% CI: 1.72–2.67, P<0.001). Conclusion: The evidence supports YBX1 as a tumor biomarker to guide clinical management and indicate prognosis.
Collapse
Affiliation(s)
- Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Tingting Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ran Tao
- Department of Histology and Embryology, School of Basic Medical Sciences, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Bo Xiao
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jing Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Zixuan Li
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xueyuan Miao
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Qing Peng
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Liu Sun
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Weihua Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Junxu Ren
- Department of Histology and Embryology, School of Basic Medical Sciences, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Ying Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, People's Republic of China
| | - Wei Zhang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
23
|
Dual Targeting of Y-Box Binding Protein-1 and Akt Inhibits Proliferation and Enhances the Chemosensitivity of Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11040562. [PMID: 31010234 PMCID: PMC6521066 DOI: 10.3390/cancers11040562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
KRAS-mutated colorectal cancers (CRCs) are resistant to cetuximab treatment. The multifunctional Y-box binding protein 1 (YB-1) is overexpressed in CRC and is associated with chemoresistance. In this study, the effects of oncogenic mutated KRAS(G12V) and KRAS(G13D) on YB-1 phosphorylation were investigated in CRC cells. The effects of the inhibition of p90 ribosomal S6 kinase (RSK) on YB-1 phosphorylation, cell proliferation and survival were tested with and without treatment with 5-fluorouracil using pharmacological inhibitors and siRNA. YB-1 phosphorylation status and subcellular distribution in CRC patient tissues were determined by immunofluorescence staining and confocal microscopy. Endogenous expression of mutated KRAS(G13D) and conditional expression of KRAS(G12V) significantly stimulated YB-1 phosphorylation via RSK and were associated with cetuximab resistance. Inhibition of YB-1 by targeting RSK stimulated the Akt signaling pathway, and this stimulation occurred independently of KRAS mutational status. Akt activation interfered with the antiproliferative effect of the RSK inhibitor. Consequently, dual targeting of RSK and Akt efficiently inhibited cell proliferation in KRAS(G13D)-mutated HCT116 and KRAS wild-type SW48 cells. Treatment with 5-fluorouracil (5-FU) significantly enhanced YB-1 phosphorylation in KRAS(G13D)-mutated HCT116 cells but not in KRAS wild-type SW48 cells. Dual targeting of Akt and RSK sensitized HCT116 cells to 5-FU by stimulating 5-FU-induced apoptosis and inhibiting repair of 5-FU-induced DNA damage. YB-1 was highly phosphorylated in CRC patient tumor tissues and was mainly localized in the nucleus. Together, dual targeting of RSK and Akt may be an alternative molecular targeting approach to cetuximab for treating CRC in which YB-1 is highly phosphorylated.
Collapse
|
24
|
Tong H, Zhao K, Zhang J, Zhu J, Xiao J. YB-1 modulates the drug resistance of glioma cells by activation of MDM2/p53 pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:317-326. [PMID: 30679904 PMCID: PMC6338113 DOI: 10.2147/dddt.s185514] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Y-box-binding protein-1 (YB-1) is aberrantly expressed in a variety of cancers. However, the biological functional role of YB-1 in glioma is not yet clear. Methods The expression of MDM2 and YB-1 was analyzed by real time PCR. Overexpression and knockdown of YB-1 in glioma cells were created by transfection of pcDNA-YB-1 and siRNA against YB-1, respectively. Cell viability was performed by CCK8 assay. Results Our findings showed that glioma tissues had higher expressions of YB-1 than that in cancer-free tissues in 54 glioma patients, which were also positively correlated with Murine MDM2 expression. Overexpression of YB-1 or MDM2 renders a drug resistance feature in glioma cell exposed to temozolomide (TMZ), by directly targeting p53. Genetic or chemical inhibition of MDM2 significantly blocked YB-1-modulated response of glioma cells to TMZ. Moreover, inhibition of YB-1 or MDM2 reduced glioma cells metastasis and mortality in mice. Conclusion YB-1 facilitates the resistance of glioma cells to TMZ by direct activation of MDM2/p53 signaling and represents a promising molecular target for glioma treatment.
Collapse
Affiliation(s)
- Hui Tong
- Department of Neurosurgery, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| | - Kai Zhao
- Department of Neurosurgery, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang 161005, People's Republic of China,
| | - Jingyu Zhang
- Department of Internal Medicine, Jiangpu District Health Center of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| | - Jinxin Zhu
- Department of Neurosurgery, Lianshui County People's Hospital, Huai'an, Jiangsu 223400, People's Republic of China,
| | - Jianqi Xiao
- Department of Neurosurgery, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang 161005, People's Republic of China,
| |
Collapse
|
25
|
Tiwari A, Rebholz S, Maier E, Dehghan Harati M, Zips D, Sers C, Rodemann HP, Toulany M. Stress-Induced Phosphorylation of Nuclear YB-1 Depends on Nuclear Trafficking of p90 Ribosomal S6 Kinase. Int J Mol Sci 2018; 19:ijms19082441. [PMID: 30126195 PMCID: PMC6121600 DOI: 10.3390/ijms19082441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/24/2022] Open
Abstract
Ionizing radiation (IR) and epidermal growth factor (EGF) stimulate Y-box binding protein-1 (YB-1) phosphorylation at Ser-102 in KRAS wild-type (KRASwt) cells, whereas in KRAS mutated (KRASmut) cells, YB-1 is constitutively phosphorylated, independent of IR or EGF. YB-1 activity stimulates the repair of IR-induced DNA double-strand breaks (DSBs) in the nucleus. Thus far, the YB-1 nuclear translocation pattern after cell exposure to various cellular stressors is not clear. In the present study, we investigated the pattern of YB-1 phosphorylation and its possible translocation to the nucleus in KRASwt cells after exposure to IR, EGF treatment, and conditional expression of mutated KRAS(G12V). IR, EGF, and conditional KRAS(G12V) expression induced YB-1 phosphorylation in both the cytoplasmic and nuclear fractions of KRASwt cells. None of the stimuli induced YB-1 nuclear translocation, while p90 ribosomal s6 kinase (RSK) translocation was enhanced in KRASwt cells after any of the stimuli. EGF-induced RSK translocation to the nucleus and nuclear YB-1 phosphorylation were completely blocked by the EGF receptor kinase inhibitor erlotinib. Likewise, RSK inhibition blocked RSK nuclear translocation and nuclear YB-1 phosphorylation after irradiation and KRAS(G12V) overexpression. In summary, acute stimulation of YB-1 phosphorylation does not lead to YB-1 translocation from the cytoplasm to the nucleus. Rather, irradiation, EGF treatment, or KRAS(G12V) overexpression induces RSK activation, leading to its translocation to the nucleus, where it activates already-existing nuclear YB-1. Our novel finding illuminates the signaling pathways involved in nuclear YB-1 phosphorylation and provides a rationale for designing appropriate targeting strategies to block YB-1 in oncology as well as in radiation oncology.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Simone Rebholz
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Eva Maier
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mozhgan Dehghan Harati
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Daniel Zips
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Christine Sers
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - H Peter Rodemann
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mahmoud Toulany
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
26
|
Xu T, Li D, He Y, Zhang F, Qiao M, Chen Y. The expression level of CSDAP1 in lung cancer and its clinical significance. Oncol Lett 2018; 16:4361-4366. [PMID: 30214570 PMCID: PMC6126166 DOI: 10.3892/ol.2018.9195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 07/11/2018] [Indexed: 12/02/2022] Open
Abstract
Expression level of messenger RNA (mRNA) of cold shock domain protein A intronless pseudogene (CSDAP1) in lung cancer tissues was studied. Fresh pathological specimens collected from 317 patients with primary lung cancer through surgical resection from January 2007 to January 2012 were selected. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were used to detect the transcription and translation of CSDAP1 in lung cancer tissues and cancer-adjacent normal tissues, and the results were analyzed in combination with clinicopathological features and prognosis of lung cancer. Among 317 lung cancer specimens, 105 cases (33.1%) had high expression of CSDAP1. Among 138 cases of pulmonary adenocarcinoma, 59 cases had high expression of CSDAP1, and the high expression rate was 42.8%. Among 170 cases of lung squamous cell carcinoma, 46 cases had high expression of CSDAP1, and the high expression rate was 27.5% (P<0.05). Three cases of large cell carcinoma and 9 cases of small cell carcinoma had extremely low expression or had no expression of CSDAP1. Among the 127 lung cancer patients with regional lymph node metastasis, 53 cases (41.7%) had high expression of CSDAP1, while among the 190 lung cancer patients without regional lymph node metastasis, 52 cases (27.4%) had high expression of CSDAP1 (P<0.05). The results also revealed that the expression of CSDAP1 was also related to tumor-node-metastasis (TNM) staging of lung cancer. One-year, three-year and five-year survival rates of lung cancer patients who had no expression of CSDAP1 were relatively high (P<0.05). The results suggested that CSDAP1 may play an important role in the occurrence, development and judgement of prognosis of lung cancer.
Collapse
Affiliation(s)
- Tongbai Xu
- Department of Respiratory Medicine, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Dongsheng Li
- Department of Respiratory Medicine, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Yuan He
- Department of Respiratory Medicine, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Fuliang Zhang
- Department of Respiratory Medicine, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Man Qiao
- Department of Respiratory Medicine, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Yanhua Chen
- Department of Respiratory Medicine, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|