1
|
Afsar S, Syed RU, Khojali WMA, Masood N, Osman ME, Jyothi JS, Hadi MA, Khalifa AAS, Aboshouk NAM, Alsaikhan HA, Alafnan AS, Alrashidi BA. Non-coding RNAs in BRAF-mutant melanoma: targets, indicators, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03366-3. [PMID: 39167168 DOI: 10.1007/s00210-024-03366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Melanoma, a highly aggressive skin cancer, is often driven by BRAF mutations, such as the V600E mutation, which promotes cancer growth through the MAPK pathway and contributes to treatment resistance. Understanding the role of non-coding RNAs (ncRNAs) in these processes is crucial for developing new therapeutic strategies. This review aims to elucidate the relationship between ncRNAs and BRAF mutations in melanoma, focusing on their regulatory roles and impact on treatment resistance. We comprehensively reviewed current literature to synthesize evidence on ncRNA-mediated regulation of BRAF-mutant melanoma and their influence on therapeutic responses. Key ncRNAs, including microRNAs and long ncRNAs, were identified as significant regulators of melanoma development and therapy resistance. MicroRNAs such as miR-15/16 and miR-200 families modulate critical pathways like Wnt signaling and melanogenesis. Long ncRNAs like ANRIL and SAMMSON play roles in cell growth, invasion, and drug susceptibility. Specific ncRNAs, such as BANCR and RMEL3, intersect with the MAPK pathway, highlighting their potential as therapeutic targets or biomarkers in BRAF-mutant melanoma. Additionally, ncRNAs involved in drug resistance, such as miR-579-3p and miR-1246, target processes like autophagy and immune checkpoint regulation. This review highlights the pivotal roles of ncRNAs in regulating BRAF-mutant melanoma and their contribution to drug resistance. These findings underscore the potential of ncRNAs as biomarkers and therapeutic targets, paving the way for innovative treatments to improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh, 517502, India.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, 81442, Hail, Saudi Arabia.
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, 14415, Sudan
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, 81451, Ha'il,, Saudi Arabia
| | - Mhdia Elhadi Osman
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - J Siva Jyothi
- Department of Pharmaceutics, Hindu College of Pharmacy, Andhra Pradesh, India
| | - Mohd Abdul Hadi
- Department of Pharmaceutics, Bhaskar Pharmacy College, Moinabad, R.R.District, Hyderabad, 500075, Telangana, India
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | | | | | | |
Collapse
|
2
|
Masrour M, Khanmohammadi S, Fallahtafti P, Hashemi SM, Rezaei N. Long non-coding RNA as a potential diagnostic and prognostic biomarker in melanoma: A systematic review and meta-analysis. J Cell Mol Med 2024; 28:e18109. [PMID: 38193829 PMCID: PMC10844705 DOI: 10.1111/jcmm.18109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have been applied as biomarkers for melanoma patients. In this systematic review and meta-analysis, we investigated the diagnostic and prognostic value of lncRNAs. We used the keywords 'lncRNA' and 'melanoma' to search databases for studies published before June 14th, 2023. The specificity, sensitivity and AUC were utilized to assess diagnostic accuracy and the prognostic value was assessed using overall survival, progression-free survival and disease-free survival hazard ratios. After screening 1191 articles, we included seven studies in the diagnostic evaluation section and 17 studies in the prognosis evaluation section. The Reitsma bivariate model estimated a cumulative sensitivity of 0.724 (95% CI: 0.659-0.781, p < 0.001) and specificity of 0.812 (95% CI: 0.752-0.859, p < 0.001). The pooled AUC was 0.780 (95% CI: 0.749-0.811, p < 0.0001). The HR for overall survival was 2.723 (95% CI: 2.259-3.283, p < 0.0001). Two studies reported an HR for overall survival less than one, with an HR of 0.348 (95% CI: 0.200-0.607, p < 0.0002). The HR for progression-free survival was 2.913 (95% CI: 2.050-4.138, p < 0.0001). Four studies reported an HR less than one, with an HR of 0.457 (95% CI: 0.256-0.817). The HR for disease-free survival was 2.760 (95% CI: 2.009-3.792, p < 0.0001). In conclusion, the expression of lncRNAs in melanoma patients affects survival and prognosis. LncRNAs can also be employed as diagnostic biomarkers.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Shaghayegh Khanmohammadi
- School of MedicineTehran University of Medical SciencesTehranIran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Parisa Fallahtafti
- School of MedicineTehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Seyedeh Melika Hashemi
- School of MedicineTehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Stojanović S, Šelemetjev S, Đorić I, Janković Miljuš J, Tatić S, Živaljević V, Išić Denčić T. BRAFV600E, BANCR, miR-203a-3p and miR-204-3p in Risk Stratification of PTC Patients. Biomedicines 2023; 11:3338. [PMID: 38137560 PMCID: PMC10742276 DOI: 10.3390/biomedicines11123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
In order to enhance the risk stratification of papillary thyroid carcinoma (PTC) patients, we assessed the presence of the most common mutation in PTC (BRAFV600E) with the expression profiles of long non-coding RNA activated by BRAFV600E (BANCR) and microRNAs, which share complementarity with BANCR (miR-203a-3p and miR-204-3p), and thereafter correlated it with several clinicopathological features of PTC. BRAFV600E was detected by mutant allele-specific PCR amplification. BANCR and miRs levels were determined by quantitative RT-PCR. Bioinformatic analysis was applied to determine the miRs' targets. The expression profile of miR-203a-3p/204-3p in PTC was not affected by BRAFV600E. In the BRAFV600E-positive PTC, high expression of miR-203a-3p correlated with extrathyroidal invasion (Ei), but the patients with both high miR-203a-3p and upregulated BANCR were not at risk of Ei. In the BRAFV600E-negative PTC, low expression of miR-204-3p correlated with Ei, intraglandular dissemination and pT status (p < 0.05), and the mutual presence of low miR-204-3p and upregulated BANCR increased the occurrence of Ei. Bioinformatic analysis predicted complementary binding between miR-203a-3p/204-3p and BANCR. The co-occurrence of tested factors might influence the spreading of PTC. These findings partially describe the complicated network of interactions that may occur during the development of PTC aggressiveness, potentially providing a new approach for high-risk PTC patient selection.
Collapse
Affiliation(s)
- Stefana Stojanović
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (S.S.); (S.Š.); (I.Đ.); (J.J.M.)
| | - Sonja Šelemetjev
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (S.S.); (S.Š.); (I.Đ.); (J.J.M.)
| | - Ilona Đorić
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (S.S.); (S.Š.); (I.Đ.); (J.J.M.)
| | - Jelena Janković Miljuš
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (S.S.); (S.Š.); (I.Đ.); (J.J.M.)
| | - Svetislav Tatić
- Institute for Pathology, Faculty of Medicine, University of Belgrade, Doctor Subotic Street 1, 11000 Belgrade, Serbia;
| | - Vladan Živaljević
- Clinic for Endocrine Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| | - Tijana Išić Denčić
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (S.S.); (S.Š.); (I.Đ.); (J.J.M.)
| |
Collapse
|
4
|
Li W, Xu X, Ma Z, Shen P, Cheng B, Xia J, Li Y. LncRNA BANCR promotes oral squamous cell carcinoma progression via regulating Rab1A signaling. J Oral Pathol Med 2023; 52:727-737. [PMID: 37433101 DOI: 10.1111/jop.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Accepted: 05/12/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Long non-coding RNA BRAF-activated non-protein coding RNA plays bidirectional roles in human cancers. However, function and molecular mechanism of BRAF-activated non-protein coding RNA in oral squamous cell carcinoma still need to clarify further. METHODS Long non-coding RNA microarray assay, in situ hybridization staining, clinicopathological data analysis were performed to investigate expression pattern of BRAF-activated non-protein coding RNA in oral squamous cell carcinoma tissue samples. Constructing ectopically expressed BRAF-activated non-protein coding RNA in oral squamous cell carcinoma cells via plasmids or siRNAs, then changeable abilities of proliferation and motility of these cells were observed in vitro and in vivo. RNA-protein pulldown, RNA immunoprecipitation, and bioinformatics analyses were performed to explore potential pathways involved in BRAF-activated non-protein coding RNA-based regulation of malignant progression in oral squamous cell carcinoma. RESULTS BRAF-activated non-protein coding RNA was identified upregulated in oral squamous cell carcinoma tissue and correlated with nodal metastasis and clinical severity of patients. Overexpressed BRAF-activated non-protein coding RNA increased percentage of 5-ethynyl-2'-deoxyuridine-positive cells, viability, migration, and invasion rates of oral squamous cell carcinoma cells, while silenced BRAF-activated non-protein coding RNA could observe weakened effects in vitro. Xenograft tumor formed by BRAF-activated non-protein coding RNA-overexpressed cells had bigger volume, faster growth rates, higher weight, and more Ki67+ cells. Pulmonary metastasis induced by BRAF-activated non-protein coding RNA-silenced cells had fewer colony nodes, Ki67+ cells, and CD31+ blood vessels. Furthermore, BRAF-activated non-protein coding RNA was mainly localized in nucleus of oral squamous cell carcinoma cells and bound Ras-associated binding 1A. Silencing Ras-associated binding 1A could damage mobile ability and phosphorylation levels of nuclear factor-κB in oral squamous cell carcinoma cells induced by overexpressing BRAF-activated non-protein coding RNA. Opposite trend was also observed. CONCLUSION Acting as a promoter in oral squamous cell carcinoma metastasis, BRAF-activated non-protein coding RNA promotes oral squamous cell carcinoma cells proliferation and motility by regulating the BRAF-activated non-protein coding RNA/Ras-associated binding 1A complex, which activates nuclear factor-κB signaling pathway.
Collapse
Affiliation(s)
- Weiyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoqing Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zeyi Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Peiqi Shen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaoyin Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
5
|
Natarelli N, Boby A, Aflatooni S, Tran JT, Diaz MJ, Taneja K, Forouzandeh M. Regulatory miRNAs and lncRNAs in Skin Cancer: A Narrative Review. Life (Basel) 2023; 13:1696. [PMID: 37629553 PMCID: PMC10455148 DOI: 10.3390/life13081696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have a significant regulatory role in the pathogenesis of skin cancer, despite the fact that protein-coding genes have generally been the focus of research efforts in the field. We comment on the actions of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the current review with an eye toward potential therapeutic treatments. LncRNAs are remarkably adaptable, acting as scaffolding, guides, or decoys to modify key signaling pathways (i.e., the Wnt/β-catenin pathway) and gene expression. As post-transcriptional gatekeepers, miRNAs control gene expression by attaching to messenger RNAs and causing their degradation or suppression during translation. Cell cycle regulation, cellular differentiation, and immunological responses are all affected by the dysregulation of miRNAs observed in skin cancer. NcRNAs also show promise as diagnostic biomarkers and prognostic indicators. Unraveling the complexity of the regulatory networks governed by ncRNAs in skin cancer offers unprecedented opportunities for groundbreaking targeted therapies, revolutionizing the landscape of dermatologic care.
Collapse
Affiliation(s)
- Nicole Natarelli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Aleena Boby
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Shaliz Aflatooni
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Jasmine Thuy Tran
- School of Medicine, University of Indiana, Indianapolis, IN 46202, USA;
| | | | - Kamil Taneja
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mahtab Forouzandeh
- Department of Dermatology, University of Florida, Gainesville, FL 32606, USA
| |
Collapse
|
6
|
Nikanfar R, Dabbaghi R, Rajabi A, Hashemzadeh S, Baradaran B, Teimourian S, Safaralizadeh R. Study of LncRNA BANCR Expression in Tumor Tissues and Adjacent Normal Tissues in Gastric Cancer Patients. Adv Biomed Res 2023; 12:186. [PMID: 37694252 PMCID: PMC10492603 DOI: 10.4103/abr.abr_260_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 05/24/2023] [Accepted: 03/27/2023] [Indexed: 09/12/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various biological processes, including cancer development and progression. This study aimed to investigate the expression differences of the BRAF-activated non-coding RNA (BANCR) gene in GC tissues compared to adjacent normal tissues. The potential diagnostic significance of BANCR in GC was explored, with the aim of improving diagnostic and therapeutic approaches for this global health burden. Materials and Methods Tissue samples from 100 gastric cancer (GC) patients were collected, and BANCR expression was analyzed using quantitative real-time PCR. Correlations between BANCR expression and clinicopathological features were assessed, and its biomarker potential was evaluated. Results In individuals diagnosed with GC, the expression of BANCR was notably elevated in tumor tissues compared to adjacent normal tissues (P < 0.0001). However, the analysis of gene expression data did not demonstrate any statistically significant correlation between elevated BANCR expression and clinicopathological features. According to the ROC analysis, BANCR demonstrated an AUC of 0.6733 (P < 0.0001), with a sensitivity of 73% and a specificity of 45%. However, further evaluation is required to determine its potential as a biomarker (CI 95% = 0.5992 to 0.7473). Conclusions The observed upregulation of BANCR in GC tissues implies its potential involvement as an oncogenic lncRNA in GC patients. Furthermore, BANCR may serve as a promising biomarker for identification and treatment of GC.
Collapse
Affiliation(s)
- Raha Nikanfar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Rozhin Dabbaghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shahriar Hashemzadeh
- Department of General and Thoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
Wozniak M, Czyz M. lncRNAs-EZH2 interaction as promising therapeutic target in cutaneous melanoma. Front Mol Biosci 2023; 10:1170026. [PMID: 37325482 PMCID: PMC10265524 DOI: 10.3389/fmolb.2023.1170026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Melanoma is the most lethal skin cancer with increasing incidence worldwide. Despite a great improvement of diagnostics and treatment of melanoma patients, this disease is still a serious clinical problem. Therefore, novel druggable targets are in focus of research. EZH2 is a component of the PRC2 protein complex that mediates epigenetic silencing of target genes. Several mutations activating EZH2 have been identified in melanoma, which contributes to aberrant gene silencing during tumor progression. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are molecular "address codes" for EZH2 silencing specificity, and targeting lncRNAs-EZH2 interaction may slow down the progression of many solid cancers, including melanoma. This review summarizes current knowledge regarding the involvement of lncRNAs in EZH2-mediated gene silencing in melanoma. The possibility of blocking lncRNAs-EZH2 interaction in melanoma as a novel therapeutic option and plausible controversies and drawbacks of this approach are also briefly discussed.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Zhou W, Xu X, Cen Y, Chen J. The role of lncRNAs in the tumor microenvironment and immunotherapy of melanoma. Front Immunol 2022; 13:1085766. [PMID: 36601121 PMCID: PMC9806239 DOI: 10.3389/fimmu.2022.1085766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Melanoma is one of the most lethal tumors with highly aggressive and metastatic properties. Although immunotherapy and targeted therapy have certain therapeutic effects in melanoma, a significant proportion of patients still have drug resistance after treatment. Recent studies have shown that long noncoding RNAs (lncRNAs) are widely recognized as regulatory factors in cancer. They can regulate numerous cellular processes, including cell proliferation, metastasis, epithelial-mesenchymal transition (EMT) progression and the immune microenvironment. The role of lncRNAs in malignant tumors has received much attention, whereas the relationship between lncRNAs and melanoma requires further investigation. Our review summarizes tumor suppressive and oncogenic lncRNAs closely related to the occurrence and development of melanoma. We summarize the role of lncRNAs in the immune microenvironment, immunotherapy and targeted therapy to provide new targets and therapeutic methods for clinical treatment.
Collapse
|
9
|
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22:316. [PMID: 36229883 PMCID: PMC9558410 DOI: 10.1186/s12935-022-02736-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent digestive cancers, ranking the 2nd cause of cancer-related fatality worldwide. The worldwide burden of CRC is predicted to rise by 60% by 2030. Environmental factors drive, first, inflammation and hence, cancer incidence increase. Main The Notch-signaling system is an evolutionarily conserved cascade, has role in the biological normal developmental processes as well as malignancies. Long non-coding RNAs (LncRNAs) have become major contributors in the advancement of cancer by serving as signal pathways regulators. They can control gene expression through post-translational changes, interactions with micro-RNAs or down-stream effector proteins. Recent emerging evidence has emphasized the role of lncRNAs in controlling Notch-signaling activity, regulating development of several cancers including CRC. Conclusion Notch-associated lncRNAs might be useful prognostic biomarkers or promising potential therapeutic targets for CRC treatment. Therefore, here-in we will focus on the role of “Notch-associated lncRNAs in CRC” highlighting “the impact of Notch-associated lncRNAs as player for cancer induction and/or progression.” Graphical Abstract ![]()
Collapse
Affiliation(s)
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
10
|
Karami Fath M, Azargoonjahromi A, Soofi A, Almasi F, Hosseinzadeh S, Khalili S, Sheikhi K, Ferdousmakan S, Owrangi S, Fahimi M, Zalpoor H, Nabi Afjadi M, Payandeh Z, Pourzardosht N. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int 2022; 22:313. [PMID: 36224606 PMCID: PMC9555085 DOI: 10.1186/s12935-022-02738-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer resulting from genetic mutations in melanocytes. Several factors have been considered to be involved in melanoma progression, including genetic alteration, processes of damaged DNA repair, and changes in mechanisms of cell growth and proliferation. Epigenetics is the other factor with a crucial role in melanoma development. Epigenetic changes have become novel targets for treating patients suffering from melanoma. These changes can alter the expression of microRNAs and their interaction with target genes, which involves cell growth, differentiation, or even death. Given these circumstances, we conducted the present review to discuss the melanoma risk factors and represent the current knowledge about the factors related to its etiopathogenesis. Moreover, various epigenetic pathways, which are involved in melanoma progression, treatment, and chemo-resistance, as well as employed epigenetic factors as a solution to the problems, will be discussed in detail.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kamran Sheikhi
- School of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085 India
| | - Soroor Owrangi
- Student Research Committe, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
11
|
Yang F, Bian Z, Xu P, Sun S, Huang Z. MicroRNA-204-5p: A pivotal tumor suppressor. Cancer Med 2022; 12:3185-3200. [PMID: 35908280 PMCID: PMC9939231 DOI: 10.1002/cam4.5077] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules with a length of approximately 18-25 nt nucleotides that regulate gene expression post-transcriptionally. MiR-204-5p originates from the sixth intron of the transient receptor potential cation channel subfamily M member 3 (TRPM3) gene. MiR-204-5p is frequently downregulated in various cancer types and is related to the clinicopathological characteristics and prognosis of cancer patients. So far, many studies have determined that miR-204-5p functions as a tumor suppressor for its extensive and powerful capacity to inhibit tumor proliferation, metastasis, autophagy, and chemoresistance in multiple cancer types. MiR-204-5p appears to be a promising prognostic biomarker and a therapeutic target for human cancers. This review summarized the latest advances on the role of miR-204-5p in human cancers.
Collapse
Affiliation(s)
- Fan Yang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Peiwen Xu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Shengbai Sun
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
12
|
Wang B, Wang M, Jia S, Li T, Yang M, Ge F. Systematic Survey of the Regulatory Networks of the Long Noncoding RNA BANCR in Cervical Cancer Cells. J Proteome Res 2022; 21:1137-1152. [DOI: 10.1021/acs.jproteome.2c00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shuzhao Jia
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Melixetian M, Pelicci PG, Lanfrancone L. Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells 2022; 11:577. [PMID: 35159386 PMCID: PMC8834033 DOI: 10.3390/cells11030577] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of numerous intracellular processes leading to tumorigenesis. They are frequently deregulated in cancer, functioning as oncogenes or tumor suppressors. As they act through multiple mechanisms, it is not surprising that they may exert dual functions in the same tumor. In melanoma, a highly invasive and metastatic tumor with the propensity to rapidly develop drug resistance, lncRNAs play different roles in: (i) guiding the phenotype switch and leading to metastasis formation; (ii) predicting the response of melanoma patients to immunotherapy; (iii) triggering adaptive responses to therapy and acquisition of drug resistance phenotypes. In this review we summarize the most recent findings on the lncRNAs involved in melanoma growth and spreading to distant sites, focusing on their role as biomarkers for disease diagnosis and patient prognosis, or targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| |
Collapse
|
14
|
Montico B, Giurato G, Pecoraro G, Salvati A, Covre A, Colizzi F, Steffan A, Weisz A, Maio M, Sigalotti L, Fratta E. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol Oncol 2022; 16:565-593. [PMID: 34080276 PMCID: PMC8807361 DOI: 10.1002/1878-0261.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is a very aggressive disease, often characterized by unresponsiveness to conventional therapies and high mortality rates worldwide. The identification of the activating BRAFV600 mutations in approximately 50% of CM patients has recently fueled the development of novel small-molecule inhibitors that specifically target BRAFV600 -mutant CM. In addition, a major progress in CM treatment has been made by monoclonal antibodies that regulate the immune checkpoint inhibitors. However, although target-based therapies and immunotherapeutic strategies have yielded promising results, CM treatment remains a major challenge. In the last decade, accumulating evidence points to the aberrant expression of different types of noncoding RNAs (ncRNAs) in CM. While studies on microRNAs have grown exponentially leading to significant insights on CM biology, the role of circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) in this tumor is less understood, and much remains to be discovered. Here, we summarize and critically review the available evidence on the molecular functions of circRNAs and lncRNAs in BRAFV600 -mutant CM and CM immunogenicity, providing recent updates on their functional role in targeted therapy and immunotherapy resistance. In addition, we also include an evaluation of several algorithms and databases for prediction and validation of circRNA and lncRNA functional interactions.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
| | - Alessia Covre
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
| | - Francesca Colizzi
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Michele Maio
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
- NIBIT Foundation OnlusSienaItaly
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Elisabetta Fratta
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
15
|
Liang X, Chen S, Wang X, Zhou L, Chen L. miR-204-5p promotes preeclampsia serum-induced injury in human umbilical vein endothelial cells through regulation of the PTPRJ/Notch axis. Pregnancy Hypertens 2022; 28:100-108. [DOI: 10.1016/j.preghy.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
|
16
|
Perri P, Ponzoni M, Corrias MV, Ceccherini I, Candiani S, Bachetti T. A Focus on Regulatory Networks Linking MicroRNAs, Transcription Factors and Target Genes in Neuroblastoma. Cancers (Basel) 2021; 13:5528. [PMID: 34771690 PMCID: PMC8582685 DOI: 10.3390/cancers13215528] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is a tumor of the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. NB originates from neural crest cells (NCCs) undergoing a defective sympathetic neuronal differentiation and although the starting events leading to the development of NB remain to be fully elucidated, the master role of genetic alterations in key oncogenes has been ascertained: (1) amplification and/or over-expression of MYCN, which is strongly associated with tumor progression and invasion; (2) activating mutations, amplification and/or over-expression of ALK, which is involved in tumor initiation, angiogenesis and invasion; (3) amplification and/or over-expression of LIN28B, promoting proliferation and suppression of neuroblast differentiation; (4) mutations and/or over-expression of PHOX2B, which is involved in the regulation of NB differentiation, stemness maintenance, migration and metastasis. Moreover, altered microRNA (miRNA) expression takes part in generating pathogenetic networks, in which the regulatory loops among transcription factors, miRNAs and target genes lead to complex and aberrant oncogene expression that underlies the development of a tumor. In this review, we have focused on the circuitry linking the oncogenic transcription factors MYCN and PHOX2B with their transcriptional targets ALK and LIN28B and the tumor suppressor microRNAs let-7, miR-34 and miR-204, which should act as down-regulators of their expression. We have also looked at the physiologic role of these genetic and epigenetic determinants in NC development, as well as in terminal differentiation, with their pathogenic dysregulation leading to NB oncogenesis.
Collapse
Affiliation(s)
- Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Bachetti
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
17
|
Wozniak M, Czyz M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers (Basel) 2021; 13:cancers13194848. [PMID: 34638331 PMCID: PMC8508152 DOI: 10.3390/cancers13194848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most lethal skin cancer, with increasing incidence worldwide. The molecular events that drive melanoma development and progression have been extensively studied, resulting in significant improvements in diagnostics and therapeutic approaches. However, a high drug resistance to targeted therapies and adverse effects of immunotherapies are still a major challenge in melanoma treatment. Therefore, the elucidation of molecular mechanisms of melanomagenesis and cancer response to treatment is of great importance. Recently, many studies have revealed the close association of long noncoding RNAs (lncRNAs) with the development of many cancers, including melanoma. These RNA molecules are able to regulate a plethora of crucial cellular processes including proliferation, differentiation, migration, invasion and apoptosis through diverse mechanisms, and even slight dysregulation of their expression may lead to tumorigenesis. lncRNAs are able to bind to protein complexes, DNA and RNAs, affecting their stability, activity, and localization. They can also regulate gene expression in the nucleus. Several functions of lncRNAs are context-dependent. This review summarizes current knowledge regarding the involvement of lncRNAs in melanoma. Their possible role as prognostic markers of melanoma response to treatment and in resistance to therapy is also discussed.
Collapse
|
18
|
Xiao Y, Xia Y, Wang Y, Xue C. Pathogenic roles of long noncoding RNAs in melanoma: Implications in diagnosis and therapies. Genes Dis 2021; 10:113-125. [PMID: 37013035 PMCID: PMC10066279 DOI: 10.1016/j.gendis.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is one of the most dangerous types of cutaneous neoplasms, which are pigment-producing cells of neuroectodermal origin found all over the body. A great deal of research is focused on the mechanisms of melanoma to promote better diagnostic and treatment options for melanoma in its advanced stages. The progression of melanoma involves alteration in different levels of gene expression. With the successful implementation of next-generation sequencing technology, an increasing number of long noncoding RNAs (lncRNAs) sequences have been discovered, and a significant number of them have phenotypic effects in both in vitro and in vivo studies, implying that they play an important role in the occurrence and progression of human cancers, particularly melanoma. A number of evidence indicated that lncRNAs are important regulators in tumor cell proliferation, invasion, apoptosis, immune escape, energy metabolism, drug resistance, epigenetic regulation. To better understand the role of lncRNAs in melanoma tumorigenesis, we categorize melanoma-associated lncRNAs according to their cellular functions and associations with gene expression and signaling pathways in this review. Based on the mechanisms of lncRNA, we discuss the possibility of lncRNA-target treatments, and the application of liquid biopsies to detect lncRNAs in melanoma diagnosis and prognosis.
Collapse
|
19
|
Hussen BM, Azimi T, Abak A, Hidayat HJ, Taheri M, Ghafouri-Fard S. Role of lncRNA BANCR in Human Cancers: An Updated Review. Front Cell Dev Biol 2021; 9:689992. [PMID: 34409032 PMCID: PMC8367322 DOI: 10.3389/fcell.2021.689992] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023] Open
Abstract
Being located in a gene desert region on 9q21.11-q21.12, BRAF-activated non-protein coding RNA (BANCR) is an lncRNA with 693 bp length. It has been discovered in 2012 in a research aimed at assessment of gene expression in the melanocytes in association with BRAF mutation. Increasing numbers of studies have determined its importance in the tumorigenesis through affecting cell proliferation, migration, invasion, apoptosis, and epithelial to mesenchymal transition. BANCR exerts its effects via modulating some tumor-related signaling pathways particularly MAPK and other regulatory mechanisms such as sponging miRNAs. BANCR has been up-regulated in endometrial, gastric, breast, melanoma, and retinoblastoma. Conversely, it has been down-regulated in some other cancers such as those originated from lung, bladder, and renal tissues. In some cancer types such as colorectal cancer, hepatocellular carcinoma and papillary thyroid carcinoma, there is no agreement about BANCR expression, necessitating the importance of additional functional studies in these tissues. In the present manuscript, we review the investigations related to BANCR expression changes in cancerous cell lines, clinical samples, and animal models of cancer. We also discuss the outcome of its deregulation in cancer progression, prognosis, and the underlying mechanisms of these observations.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Tahereh Azimi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahadddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Zhao H, De Souza C, Kumar VE, Nambiar R, Hao D, Zhu X, Luo Y, Liu S, Zhang L, Zhu J. Long non-coding RNA signatures as predictors of prognosis in thyroid cancer: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:359. [PMID: 33708986 PMCID: PMC7944284 DOI: 10.21037/atm-20-8191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/26/2021] [Indexed: 02/05/2023]
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, with high incidence rates in recent decades. Most TC cases have good prognoses, but a high risk of recurrence and metastases poses challenges, especially for patients with high-risk factors. Currently used prognostic markers for TC involve a combination of genetic factors and overexpressed proteins. Long non-coding RNAs (lncRNAs) regulate several integral biologic processes by playing key roles in the transcription of several downstream targets maintaining cellular behavior. Prior studies have revealed that lncRNAs promote tumor cell proliferation, invasion, metastasis, and angiogenesis, making them important targets for therapeutic intervention in cancer. While the exact molecular mechanisms underlying the role of lncRNAs in modulating TC progression and recurrence is still unclear, it is important to note that some lncRNAs are upregulated in certain cancers, while others are downregulated. In the present study, we review several key lncRNAs, their association with cancer progression, and the important roles they may play as tumor suppressors or tumor promoters in tumorigenesis. We discuss the potential mechanisms of lncRNA-mediated pathogenesis that can be targeted for the treatment of TC, the existing and potential benefits of using lncRNAs as diagnostic and prognostic measures for cancer detection, and tumor burden in patients.
Collapse
Affiliation(s)
- Hongyuan Zhao
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, CA, USA
- Institute for Regenerative Medicine and Stem Cell Research, Stanford University, Stanford, CA, USA
| | - Vigneshwari Easwar Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, CA, USA
| | - Roshni Nambiar
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, CA, USA
| | - Dake Hao
- Department of Surgery, School of Medicine, University of California, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Xiaofeng Zhu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Luo
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shengshan Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lingyun Zhang
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
De Falco V, Napolitano S, Esposito D, Guerrera LP, Ciardiello D, Formisano L, Troiani T. Comprehensive Review on the Clinical Relevance of Long Non-Coding RNAs in Cutaneous Melanoma. Int J Mol Sci 2021; 22:1166. [PMID: 33503876 PMCID: PMC7865742 DOI: 10.3390/ijms22031166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is considered a rare tumor, although it is one of the most common cancers in young adults and its incidence has risen in the last decades. Targeted therapy, with BRAF and MEK inhibitors, and immunotherapy revolutionized the treatment of metastatic melanoma but there is still a considerable percentage of patients with primary or acquired resistance to these therapies. Recently, oncology researchers directed their attention at the role of long non-coding RNAs (lncRNAs) in different types of cancers, including melanoma. lncRNAs are RNA transcripts, initially considered "junk sequences", that have been proven to have a crucial role in the fine regulation of physiological and pathological processes of different tissues. Furthermore, they are more expressed in tumors than protein-coding genes, constituting perfect candidates either as biomarkers (diagnostic, prognostic, predictive) or as therapeutic targets. In this work, we reviewed all the literature available for lncRNA in melanoma, elucidating all the potential roles in this tumor.
Collapse
Affiliation(s)
- Vincenzo De Falco
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Stefania Napolitano
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Luigi Pio Guerrera
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Davide Ciardiello
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Teresa Troiani
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| |
Collapse
|
22
|
Safa A, Gholipour M, Dinger ME, Taheri M, Ghafouri-Fard S. The critical roles of lncRNAs in the pathogenesis of melanoma. Exp Mol Pathol 2020; 117:104558. [PMID: 33096077 DOI: 10.1016/j.yexmp.2020.104558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) embrace a huge fraction of human transcripts and participate in the pathogenesis of human disorders especially malignant conditions. Malignant melanoma, as the most fatal type of cutaneous malignnacies, is associated with dysregulation of several lncRNAs including PVT1, H19, MALAT1, and CCAT1. Moreover, a portion of lncRNAs are exclusively expressed in melanoma cell lines. Expression levels of several lncRNAs are associated with TNM stage, tumor size and progression of melanoma. Thus, these lncRNAs are regarded as biomarkers for this malignancy. Peripheral transcript levels of a number of lncRNAs, such as PVT1, SNHG5 and SPRY4-IT1, could distinguish melanoma patients from unaffected persons with appropriate sensitivity and specificity values. Moreover, expression levels of numerous lncRNAs in tissue biopsies could differentiate malignant samples from benign samples. Based on the results of both cell line and in vivo studies, lncRNAs regulate critical pathways in the carcinogenesis of melanoma, such as the PI3K/Akt and NF-κB signaling pathways, and are involved in the modulation of response to chemotherapeutic agents. Here we review the existing information on the role of lncRNAs in malignant melanoma.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Sangiuliano LDC, de Oliveira Filho RS, de Oliveira DA, Gomes HC, Ferreira LM. Identification and quantification of notch receptors in human cutaneous melanoma using molecular biology techniques: literature review. SURGICAL AND EXPERIMENTAL PATHOLOGY 2020. [DOI: 10.1186/s42047-020-00069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The Notch signaling pathway and its modulators are directly related to growth, verticalization and metastasis in melanoma, being a possible therapeutic target for the treatment of this type of cancer. There are several methods of molecular biology to identify and quantify Notch receptors and it is essential to study them for understanding the different results, advantages and disadvantages of each.
Main body
The present study brings a bibliographic review on the molecular biology methods used in the identification and quantification of these molecules, aiming to facilitate research involving Notch receptors in human melanoma. We identified as main methods of molecular biology Western Blotting, Quantitative real-time polymerase chain reaction and DNA microarrays. A brief description of these methodologies is made and the advantages and disadvantages of each are discussed. Results concerning the function of this pathway are also discussed.
Short conclusion
It is known that the activation of Notch receptors is tumorigenic in most cases, however, depending on the microenvironment, it can provide tumor suppression. The adequate choice and use of the methodology for identification and quantification of Notch receptors is essential for the progress of knowledge of this important signaling pathway, which, certainly, will allow advances in the treatment of cutaneous melanoma.
Collapse
|
24
|
Zhao J, Zhang Y, Liu B. MicroRNA‑204‑5p inhibits the osteogenic differentiation of ankylosing spondylitis fibroblasts by regulating the Notch2 signaling pathway. Mol Med Rep 2020; 22:2537-2544. [PMID: 32705191 PMCID: PMC7411397 DOI: 10.3892/mmr.2020.11303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory systemic disease and is difficult to detect in the early stages. The present study aimed to investigate the role of microRNA (miR)-204-5p in osteogenic differentiation of AS fibroblasts. Bone morphogenetic protein 2 (BMP-2) was used to induce osteogenic differentiation. Cells were divided into the following groups: AS group, AS + BMP-2 group, AS + BMP-2 + miR-negative control group, AS + BMP-2 + miR-204-5p mimics group and AS + BMP-2 + miR-204-5p mimics + pcDNA-Notch2 group. The expression levels of miR-204-5p, Notch2, runt-related transcription factor 2 (RUNX2) and osteocalcin were detected via reverse transcription-quantitative PCR analysis. The binding site between Notch2 and miR-204-5p was predicted using TargetScan software and verified via the dual-luciferase reporter assay. Alkaline phosphatase (ALP) activity was assessed via the ALP assay, while the mineralized nodules area was determined via the Alizarin Red S staining assay. The results demonstrated that Notch2 is a target gene of miR-204-5p. Furthermore, treatment with BMP-2 significantly decreased miR-204-5p expression, and significantly increased ALP activity, the mineralized nodules area and the expression levels of Notch2, RUNX2 and osteocalcin in ligament fibroblasts (all P<0.05). Conversely, transfection with miR-204-5p mimics significantly increased miR-204-5p expression, and significantly decreased ALP activity, the mineralized nodules area and the expression levels of Notch2, RUNX2 and osteocalcin in ligament fibroblasts (all P<0.05). Notably, transfection with pcDNA-Notch2 significantly reversed the inhibitory effects induced by miR-204-5p mimics on the osteogenic differentiation of ligament fibroblasts (all P<0.05). Furthermore, miR-204-5p inhibited the osteogenic differentiation of ligament fibroblasts in patients with AS by targeting Notch2. Thus, miR-204-5p may negatively regulate Notch2 expression and may be a potential therapeutic target for AS. Collectively, the results of the present study provide a theoretical basis for the effective treatment of patients with AS.
Collapse
Affiliation(s)
- Jianjun Zhao
- Department of Joint Surgery and Traumatic Orthopedics, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Yanyan Zhang
- Department of General Surgery, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Bo Liu
- Department of Trauma Orthopedics, The No. 4 Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
25
|
Shen J, Xiong J, Shao X, Cheng H, Fang X, Sun Y, Di G, Mao J, Jiang X. Knockdown of the long noncoding RNA XIST suppresses glioma progression by upregulating miR-204-5p. J Cancer 2020; 11:4550-4559. [PMID: 32489472 PMCID: PMC7255366 DOI: 10.7150/jca.45676] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Gliomas are the most prevalent primary malignant tumors of the central nervous system. Our previous study showed that miR-204-5p is a tumor suppressor gene in glioma. Bioinformatic analyses suggest that long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is a potential target gene of miR-204-5p. Methods: We analyzed the expression of XIST and miR-204-5p in glioma tissues and the correlation with glioma grade. A series of in vitro experiments were carried out to elucidate the role of XIST in glioma progression. A mouse xenograft model was established to detect whether knockdown of XIST can inhibit glioma growth. A luciferase assay was performed to determine whether XIST can bind to miR-204-5p and the binding specificity. Cells stably expressing shXIST or shNC were transfected with anti-miR-204-5p or anti-miR-204-5p-NC to evaluate whether XIST mediates the tumor-suppressive effects of miR-204-5p. Results: XIST was upregulated in glioma tissues compared with normal brain tissues (NBTs), while miR-204-5p expression was significantly decreased in glioma tissues compared with NBTs. Both XIST and miR-204-5p expression levels were clearly related to glioma grade, and the expression of XIST was obviously negatively correlated with miR-204-5p expression. Knockdown of XIST inhibited glioma cell proliferation, migration, and invasion, promoted apoptosis of glioma cells, inhibited tumor growth and increased the survival time in nude mice. miR-204-5p could directly bind to XIST and negatively regulate XIST expression. XIST mediated glioma progression by targeting miR-204-5p in glioma cells. XIST crosstalk with miR-204-5p regulated Bcl-2 expression to promote apoptosis. Conclusion: Our results provide evidence that XIST, miR-204-5p and Bcl-2 form a regulatory axis that controls glioma progression and can serve as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Jun Shen
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Jianhua Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Xuefei Shao
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Hao Cheng
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Xinyun Fang
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Yongkang Sun
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Guangfu Di
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Jie Mao
- Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, P.R. China
| | - Xiaochun Jiang
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| |
Collapse
|
26
|
Wang M, Liao Q, Zou P. PRKCZ-AS1 promotes the tumorigenesis of lung adenocarcinoma via sponging miR-766-5p to modulate MAPK1. Cancer Biol Ther 2020; 21:364-371. [PMID: 31939714 DOI: 10.1080/15384047.2019.1702402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent histological subclass of non-small cell lung cancer. Long non-coding RNAs (lncRNAs) have been recognized as the crucial regulatory factors in tumor development and progression. Nevertheless, limited research has been carried on the function of PRKCZ-AS1 in LUAD. In this study, the expression of PRKCZ-AS1 in LUAD tissues and cell lines was notably upregulated. Moreover, knockdown of PRKCZ-AS1 inhibited the proliferation and migration, but promoted apoptosis in LUAD cells. Furthermore, miR-766-5p could bind with PRKCZ-AS1. Besides, the expression miR-766-5p was negatively regulated by PRKCZ-AS1 expression in LUAD cells. Furtherly, PRKCZ-AS1 expression positively regulated the expression of MAPK1. Similarly, the expression of MAPK1 was negatively regulated by miR-766-5p expression. Moreover, the binding ability between miR-766-5p and MAPK1 was confirmed. Furthermore, knockdown of MAPK1 partly rescued the miR-766-5p inhibition-mediated promoting effect on proliferation and migration in LUAD cells transfected with PRKCZ-AS1#1. Overall, above results suggested that PRKCZ-AS1 promotes the occurrence of LUAD by sponging miR-766-5p to upregulate MAPK1 expression, which may provide new insights into LUAD treatment.
Collapse
Affiliation(s)
- Ming Wang
- Department of Thoracic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang Province, China
| | - Qin Liao
- Department of Oncology, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang Province, China
| | - Pengfei Zou
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
27
|
Zhu FX, Wang XT, Ye ZZ, Gan ZP, Lai YR. Construction of a prognosis‑associated long noncoding RNA‑mRNA network for multiple myeloma based on microarray and bioinformatics analysis. Mol Med Rep 2020; 21:999-1010. [PMID: 32016443 PMCID: PMC7003030 DOI: 10.3892/mmr.2020.10930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
At present, the association between prognosis-associated long noncoding RNAs (lncRNAs) and mRNAs is yet to be reported in multiple myeloma (MM). The aim of the present study was to construct prognostic models with lncRNAs and mRNAs, and to map the interactions between these lncRNAs and mRNAs in MM. LncRNA and mRNA data from 559 patients with MM were acquired from the Genome Expression Omnibus (dataset GSE24080), and their prognostic values were calculated using the survival package in R. Multivariate Cox analysis was used on the top 20 most significant prognosis-associated mRNAs and lncRNAs to develop prognostic signatures. The performances of these prognostic signatures were tested using the survivalROC package in R, which allows for time-dependent receiver operator characteristic (ROC) curve estimation. Weighted correlation network analysis (WGCNA) was conducted to investigate the associations between lncRNAs and mRNAs, and a lncRNA-mRNA network was constructed using Cytoscape software. Univariate Cox regression analysis identified 39 lncRNAs and 1,445 mRNAs that were significantly associated with event-free survival of MM patients. The top 20 most significant survival-associated lncRNAs and mRNAs were selected as candidates for analyzing independent MM prognostic factors. Both signatures could be used to separate patients into two groups with distinct outcomes. The areas under the ROC curves were 0.739 for the lncRNA signature and 0.732 for the mRNA signature. In the lncRNA-mRNA network, a total of 143 mRNAs were positively or negatively associated with 23 prognosis-associated lncRNAs. NCRNA00201, LOC115110 and RP5-968J1.1 were the most dominant drivers. The present study constructed a model that predicted prognosis in MM and formed a network with the corresponding prognosis-associated mRNAs, providing a novel perspective for the clinical diagnosis and treatment of MM, and suggesting novel directions for interpreting the mechanisms underlying the development of MM.
Collapse
Affiliation(s)
- Fang-Xiao Zhu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xiao-Tao Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Zhi-Zhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| | - Zhao-Ping Gan
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yong-Rong Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
28
|
Zhan S, Qin C, Li D, Zhao W, Nie L, Cao J, Guo J, Zhong T, Wang L, Li L, Zhang H. A Novel Long Noncoding RNA, lncR-125b, Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Sponging miR-125b. Front Genet 2019; 10:1171. [PMID: 31803241 PMCID: PMC6872680 DOI: 10.3389/fgene.2019.01171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as essential regulators of skeletal myogenesis, but few myogenesis-associated lncRNAs have been identified and our understanding of their regulatory mechanisms remains limited, particularly in goat. Here, we identified a novel lncRNA, TCONS_00006810 (named lncR-125b), from our previous lncRNA sequencing data on fetal (45, 60, and 105 days of gestation, three biological replicates for each point) and postnatal (3 days after birth, n = 3) goat skeletal muscle, and found that it is highly expressed in skeletal muscle and gradually upregulated during skeletal muscle satellite cell (SMSC) differentiation in goat. Notably, overexpression of lncR-125b accelerated the expression of myogenic differentiation 1 (MyoD 1) and myogenin (MyoG), and the formation of myotubes, and knockdown of lncR-125b showed opposite effects in SMSCs. Results of dual-luciferase assay and quantitative real-time polymerase chain reaction revealed that lncR-125b acts as a molecular sponge for miR-125b and that insulin-like growth factor 2 (IGF2), a critical regulator of skeletal myogenesis, is a direct target gene of miR-125b. Further analyses showed that lncR-125b negatively regulates miR-125b expression and positively regulates IGF2 expression in SMSCs. Mechanistically, lncR-125b promotes SMSC differentiation by functioning as a competing endogenous RNA (ceRNA) for miR-125b to control IGF2 expression. These findings identify lncR-125b as a novel noncoding regulator of muscle cell differentiation and skeletal muscle development in goat.
Collapse
Affiliation(s)
- Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chenyu Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - DanDan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lu Nie
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
29
|
Choudhari R, Sedano MJ, Harrison AL, Subramani R, Lin KY, Ramos EI, Lakshmanaswamy R, Gadad SS. Long noncoding RNAs in cancer: From discovery to therapeutic targets. Adv Clin Chem 2019; 95:105-147. [PMID: 32122521 DOI: 10.1016/bs.acc.2019.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have recently gained considerable attention as key players in biological regulation; however, the mechanisms by which lncRNAs govern various disease processes remain mysterious and are just beginning to be understood. The ease of next-generation sequencing technologies has led to an explosion of genomic information, especially for the lncRNA class of noncoding RNAs. LncRNAs exhibit the characteristics of mRNAs, such as polyadenylation, 5' methyl capping, RNA polymerase II-dependent transcription, and splicing. These transcripts comprise more than 200 nucleotides (nt) and are not translated into proteins. Directed interrogation of annotated lncRNAs from RNA-Seq datasets has revealed dramatic differences in their expression, largely driven by alterations in transcription, the cell cycle, and RNA metabolism. The fact that lncRNAs are expressed cell- and tissue-specifically makes them excellent biomarkers for ongoing biological events. Notably, lncRNAs are differentially expressed in several cancers and show a distinct association with clinical outcomes. Novel methods and strategies are being developed to study lncRNA function and will provide researchers with the tools and opportunities to develop lncRNA-based therapeutics for cancer.
Collapse
Affiliation(s)
- Ramesh Choudhari
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Melina J Sedano
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Alana L Harrison
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Ramadevi Subramani
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Ken Y Lin
- The Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Enrique I Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
30
|
Guo J, Li P, Liu X, Li Y. NOTCH signaling pathway and non-coding RNAs in cancer. Pathol Res Pract 2019; 215:152620. [PMID: 31564572 DOI: 10.1016/j.prp.2019.152620] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/20/2019] [Accepted: 09/01/2019] [Indexed: 02/08/2023]
Abstract
Malignant tumors, known as cancer, seriously threaten human life and health. Cancer has the characteristics of abnormal cell differentiation, proliferation, invasion and metastasis. As a result, cancer often accompanied by poor prognosis and a lower survival rate. Notch signaling pathway is a highly conserved system in many multicellular organisms, and which has been proved to play a biological role in many cancers. In recent years, increasing evidence has shown that non-coding RNA can not only activate or inhibit NOTCH pathway, but also regulate the occurrence and development of cancer through NOTCH pathway. Therefore, we focus on the cancer-NOTCH-non-coding RNA axis in this review, and provide new ideas for cancer therapy.
Collapse
Affiliation(s)
- Jing Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ping Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaomin Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
31
|
Sadeghpour S, Ghorbian S. Evaluation of the potential clinical prognostic value of lncRNA-BANCR gene in esophageal squamous cell carcinoma. Mol Biol Rep 2018; 46:991-995. [PMID: 30552615 DOI: 10.1007/s11033-018-4556-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/04/2018] [Indexed: 01/28/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the seventh most common cause of cancer death in worldwide. LncRNA-BANCR is a long non-coding RNA (lncRNA), which has made new windows in cancer investigations. The aim of this survey was to determine the lncRNA-BANCR gene expression changes in patients with ESCC. In case-control investigation was performed on 150 formalin fixed-paraffin embedded tissues (75 cancerous and 75 non-cancerous tissues) of ESCC patients. The lncRNA-BANCR gene expression alteration was assessed by Real-Time PCR technique. Our findings revealed that lncRNA-BANCR gene expression was increased significantly in tumor tissues compared with the non-cancerous tissues (p = 0.0025). In addition, lncRNA-BANCR gene expression changes was positively associated with the lymph node metastasis (p = 0.013), tumor differentiation (p = 0.019) and tumor stage (p = 0.017). Our results suggest a possible role of lncRNA-BANCR in proliferation of esophageal tissues and may be considered as a potential prognostic value for ESCC metastasis.
Collapse
Affiliation(s)
- Shiva Sadeghpour
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
| |
Collapse
|
32
|
Fattore L, Mancini R, Ascierto PA, Ciliberto G. The potential of BRAF-associated non-coding RNA as a therapeutic target in melanoma. Expert Opin Ther Targets 2018; 23:53-68. [PMID: 30507327 DOI: 10.1080/14728222.2019.1554057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The advent of targeted therapies and immune checkpoints inhibitors has enhanced the treatment of metastatic melanomas. Despite striking improvements of patients' survival, drug resistance continues to limit the efficacy of such treatments. Genetic and nongenetic/adaptive mechanisms of resistance could be involved; in the latter mechanism, noncoding RNAs (ncRNAs) are emerging as key players. Areas covered: This article outlines the current knowledge of ncRNA involvement in BRAF-mutant melanomas and the development of resistance to targeted/immunotherapies. We also discuss how ncRNAs can be exploited for the development of therapeutic and diagnostic approaches. Expert opinion: ncRNAs can be envisaged as powerful diagnostics and therapeutics. Despite progress in our knowledge about their deregulation in cancer, it is still difficult to derive universal and robust ncRNAs unique signatures of malignancy for diagnostic purposes, which need validation in large cohort of patients. Also, ncRNA specific targeting to melanoma cells in vivo requires the development of improved systemic delivery tools. In this regard, the development of stable nanodelivery particles seems to offer renewed hope for success in the clinic.
Collapse
Affiliation(s)
- Luigi Fattore
- a IRCCS , Regina Elena National Cancer Institute , Rome , Italy
| | - Rita Mancini
- b Department of Molecular and Clinical Medicine , University of Roma "Sapienza" , Rome , Italy
| | | | | |
Collapse
|
33
|
Yang L, Sun K, Chu J, Qu Y, Zhao X, Yin H, Ming L, Wan J, He F. Long non-coding RNA FTH1P3 regulated metastasis and invasion of esophageal squamous cell carcinoma through SP1/NF-kB pathway. Biomed Pharmacother 2018; 106:1570-1577. [PMID: 30119232 DOI: 10.1016/j.biopha.2018.07.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 01/28/2023] Open
Abstract
AIMS:: Recent research showed that Long non-protein coding RNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) plays a crucial role in the course of tumor formation. The present study was aimed to explore its role in esophageal squamous cell carcinoma (ESCC). MAIN METHODS Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to examine the expression levels of FTH1P3, mRNA SP1 and NF-kB in ESCC samples and cell lines. The impact of FTH1P3 knockdown was evaluated by WST-1 assays, colony formation assays, scratch wound assays, migration and invasion assays. KEY FINDINGS FTH1P3 was significantly upregulated in ESCC tissues and cells (P < 0.001). Knockdown of FTH1P3 notably decreased the proliferation, migration, and invasion capacity of ESCC cells. Silencing of FTH1P3 decreased the expression of specificity protein 1 (Sp1) and NF-kB (p65) in EC9706 and EC1. SIGNIFICANCE FTH1P3 plays a crucial role in ESCC tumorigenesis, and can be used as a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Kaiyan Sun
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Jie Chu
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Yunhui Qu
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Xue Zhao
- Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Huiqing Yin
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Liang Ming
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Junhu Wan
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
34
|
Liu XF, Hao JL, Xie T, Pant OP, Lu CB, Lu CW, Zhou DD. The BRAF activated non-coding RNA: A pivotal long non-coding RNA in human malignancies. Cell Prolif 2018; 51:e12449. [PMID: 29484737 DOI: 10.1111/cpr.12449] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/13/2018] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) participate in the complex network of cancer and play an important role in tumourigenesis and progression. BRAF activated non-coding RNA (BANCR), a 4-exon transcript of 693-bp, was first discovered as an oncogenic long non-coding RNA in BRAFV600E melanomas cells in 2012 and was related to melanoma cell migration. Besides melanoma, increasing evidence has explored the potential role of BANCR in the development and progression of multiple other human malignancies, such as retinoblastoma, lung cancer, gastric cancer etc. since its discovery. The expression pattern of BANCR varies in different types of cancers, either as a tumour suppressor or as an accelerator. Functional BANCR may serve as a promising biomarker for cancer diagnosis as well as prognosis evaluation. BANCR-targeted intervention may also become a valuable novel therapeutic tool against human malignancies. This review summarized the advanced research progresses concerning the expression and role of BANCR in different human malignancies.
Collapse
Affiliation(s)
- Xiu-Fen Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Ji-Long Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Tian Xie
- Department of. Neurosurgery, The People's Hospital of Jilin Province, Jilin, China
| | - Om Prakash Pant
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Bo Lu
- Department of Cardiology, The First Hospital of Jiamusi University, Heilongjiang, China
| | - Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|