1
|
Gao L, Zhang R, Zhang W, Lan Y, Li X, Cai Q, Liu J. Integrated bioinformatics analysis and experimental validation on malignant progression and immune cell infiltration of LTBP2 in gliomas. BMC Cancer 2024; 24:1252. [PMID: 39390437 PMCID: PMC11466037 DOI: 10.1186/s12885-024-12976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Gliomas are the highly aggressive brain tumor and also the most devastating human tumors. The latent TGF binding proteins (LTBP) had been found to be involved in malignant biological process and could be used as potent biomarkers in several solid tumors. While the role of LTBP family in human glioma remain to be elucidated. METHODS Normalized gene expression and corresponding clinical data of 2407 gliomas samples in public datasets were downloaded from Gliovis. Kaplan-Meier methods and Cox regression analysis was used for survival analyses.Western blot (WB) and Immunohistochemical (IHC) testing were employed to test LTBPs protein level in 154 gliomas samples. Correlation between LTBP2 expression and immune infiltration was evaluated by immunofluorescence (IF) and IHC in glioma tissues. CCK8 and flow cytometric analysis were used to detect the effect of LTBP2 on glioma cells. Orthotopic glioma- mouse models were utilized to evaluate effects in vivo. RESULTS LTBP2 mRNA level was dramatically higher in glioma samples compared with non-tumor brain tissues in XENA-TCGA_GTEx, Gill and Gravendeel datasets (all P < 0.01), and its expression positively correlated with glioma WHO grade, IDH1/2 wildtype and mesenchymal subtypes. These results were confirmed by In-house cohort which was detected by WB and IHC. We found that gliomas patients with high LTBP2 level had shorter OS than those with low LTBP2 level. LTBP2 expression significantly associated with glioma immune score (Spearman r = 0.68, P < 0.01)) and strongly correlated with infiltration degreee of macrophages both in lower grade gliomas (LGG) and GBM. Knocking down LTBP2 obviously reduced proliferation and enhanced sensitivity to temozolomide in U87 and U251 cells. Nude mice with lower expression of LTBP2 had slower tumor growth, and accompanied by less tumor-associated macrophages (TAMs) infiltration detected by IHC staining in vivo. Finally, low LTBP2 expression glioma patients who received chemotherapy survived longer than patients with high LTBP2 expression. CONCLUSION LTBP2 could be used as a prognostic marker, and high LTBP2 expression related to abundant TAMs infiltration and with a worse response to chemotherapy.
Collapse
Affiliation(s)
- Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenbin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanfang Lan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Ma L, Yang H, Wu S, Wang C, Mei J. DPP7 as a Potential Therapeutic Marker for Colorectal Cancer. J Cancer 2024; 15:5425-5439. [PMID: 39247602 PMCID: PMC11375546 DOI: 10.7150/jca.93112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/09/2024] [Indexed: 09/10/2024] Open
Abstract
Background: Dipeptidyl peptidase 7 (DPP7) is overexpressed in various tumors, but its role in colorectal cancer (CRC) remains unclear. Study the Impact of DPP7 on malignant progression and tumor immunity in CRC. Methods: We utilized Tumor Immune Estimation Resource 2.0 (TIMER2.0) and The Cancer Genome Atlas (TCGA) analyses to assess the expression of DPP7 in tumors and validated it through immunohistochemistry and immunoblotting. Additionally, we investigated the relationship between DPP7 and immune cell infiltration using single-sample Gene Set Enrichment Analysis (ssGSEA) analysis. Finally, the impact of DPP7 on cell proliferation, invasion, migration, and immune cell function in the tumor microenvironment was confirmed through cell experiments and animal studies. Results: DPP7 is highly expressed in CRC, and high expression of DPP7 is associated with poor prognosis. Cell experiments demonstrate that overexpression of DPP7 enhances the proliferation, migration, and invasion capabilities of colorectal cancer cells both in vitro and in vivo. Immune infiltration analysis and co-culture results indicate that overexpression of DPP7 suppresses the immune cell's cytotoxic function against tumors in the tumor microenvironment. Conclusions: DPP7 promotes the malignant potential of colorectal cancer cells and inhibits tumor immune function, thereby promoting the progression of colorectal cancer.
Collapse
Affiliation(s)
- Li Ma
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Nanchang University, Nanchang, China
| | - Hailang Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuwei Wu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinhong Mei
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Bodmer NK, Knutsen RH, Roth RA, Castile RM, Brodt MD, Gierasch CM, Broekelmann TJ, Gibson MA, Haspel JA, Lake SP, Brody SL, Silva MJ, Mecham RP, Ornitz DM. Multi-organ phenotypes in mice lacking latent TGFβ binding protein 2 (LTBP2). Dev Dyn 2024; 253:233-254. [PMID: 37688792 PMCID: PMC10842386 DOI: 10.1002/dvdy.651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Latent TGFβ binding protein-2 (LTBP2) is a fibrillin 1 binding component of the microfibril. LTBP2 is the only LTBP protein that does not bind any isoforms of TGFβ, although it may interfere with the function of other LTBPs or interact with other signaling pathways. RESULTS Here, we investigate mice lacking Ltbp2 (Ltbp2-/- ) and identify multiple phenotypes that impact bodyweight and fat mass, and affect bone and skin development. The alterations in skin and bone development are particularly noteworthy since the strength of these tissues is differentially affected by loss of Ltbp2. Interestingly, some tissues that express high levels of Ltbp2, such as the aorta and lung, do not have a developmental or homeostatic phenotype. CONCLUSIONS Analysis of these mice show that LTBP2 has complex effects on development through direct effects on the extracellular matrix (ECM) or on signaling pathways that are known to regulate the ECM.
Collapse
Affiliation(s)
- Nicholas K. Bodmer
- Department of Developmental Biology, Washington University School of Medicine
- Department of Cell Biology and Physiology, Washington University School of Medicine
| | - Russell H. Knutsen
- Department of Cell Biology and Physiology, Washington University School of Medicine
| | - Robyn A. Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine
| | - Ryan M. Castile
- Department of Mechanical Engineering and Materials Science, Washington University School of Engineering
| | - Michael D. Brodt
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Carrie M. Gierasch
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University School of Medicine
| | | | - Mark A. Gibson
- Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jeffrey A. Haspel
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University School of Medicine
| | - Spencer P. Lake
- Department of Mechanical Engineering and Materials Science, Washington University School of Engineering
| | - Steven L. Brody
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University School of Medicine
| | - Matthew J. Silva
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine
| |
Collapse
|
4
|
A novel metabolism-related prognostic gene development and validation in gastric cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:447-459. [PMID: 36168087 DOI: 10.1007/s12094-022-02958-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/15/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The importance of metabolism-related alterations in the development of gastric cancer (GC) is increasingly recognized. The present study aimed to identify metabolism-related genes to facilitate prognosis of GC patients. METHODS Gene expression datasets and clinical information of GC patients were downloaded from TCGA and GEO databases. We scored the enrichment of human metabolism-related pathways (n = 86) in GC samples by GSV, constructed prognostic risk models using LASSO algorithm and multivariate Cox regression analysis, combined with clinical information to construct a nomogram, and finally cis score algorithm to analyze the abundance of immune-related cells in different subtypes. We used Weka software to screen for prognosis-related marker genes and finally validated the expression of the selected genes in clinical cancer patient tissues. RESULTS We identified that two GC metabolism-related signatures were strongly associated with OS and the levels of immune cell infiltration. Moreover, a survival prediction model for GC was established based on six GC metabolism-related genes. Time-dependent ROC analysis showed good stability of the risk prediction scoring model. The model was successfully validated in an independent ACRG cohort, and the expression trends of key genes were also verified in the GC tissues of patients. DLX1, LTBP2, FGFR1 and MMP2 were highly expressed in the cluster with poorer prognosis while SLC13A2 and SLCO1B3 were highly expressed in the cluster with better prognosis. CONCLUSIONS We identified a risk predictive score model based on six metabolism-related genes related to survival, which may serve as prognostic indicators and potential therapeutic targets for GC.
Collapse
|
5
|
Li Y, Zhang L, Yu H, Xin X, He J, Yao Y, Liu B, Li R, Xie L. Case Report: Small intestinal metastatic breast cancer: A case report and literature review. Front Oncol 2022; 12:900832. [PMID: 36505863 PMCID: PMC9732937 DOI: 10.3389/fonc.2022.900832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer is considered a malignant tumor with the highest incidence among women and is prone to develop distant metastasis. Small intestinal metastasis of breast cancer, however, is relatively rare. This case report describes a 49-year-old Chinese female patient who presented with small intestinal obstruction and was diagnosed with lobular breast cancer with small intestinal and contralateral breast metastasis. Clinical manifestations, clinicopathological features and potential mechanisms of metastasis, along with diagnosis and treatment, are discussed with a review of the relevant literature. Although small intestinal metastasis is rare in breast cancer, we should keep high alert on the possibility of gastrointestinal metastasis when treating lobular breast cancer patients.
Collapse
Affiliation(s)
- Yishan Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lianru Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huiping Yu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian He
- Departments of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yongzhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rutian Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China,*Correspondence: Li Xie, ; Rutian Li,
| | - Li Xie
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China,*Correspondence: Li Xie, ; Rutian Li,
| |
Collapse
|
6
|
Zhang X, Tian C, Tian C, Cheng J, Mao W, Li M, Chen M. LTBP2 inhibits prostate cancer progression and metastasis via the PI3K/AKT signaling pathway. Exp Ther Med 2022; 24:563. [PMID: 36034756 PMCID: PMC9400130 DOI: 10.3892/etm.2022.11500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Biochemical recurrence (BCR) is a cause of concern in advanced prostate cancer (PCa). Thus, novel diagnostic biomarkers are required to improve clinical care. However, research on PCa immunotherapy is also scarce. Hence, the present study aimed to explore promising BCR-related diagnostic biomarkers, and their expression pattern, prognostic value, immune response effects, biological functions, and possible molecular mechanisms were evaluated. GEO datasets (GSE46602, GSE70768, and GSE116918) were downloaded and merged as the training cohort, and differential expression analysis was performed. Lasso regression and SVM-RFE algorithm, as well as PPI analysis and MCODE algorithm, were then applied to filter BCR-related biomarker genes. The CIBERSORT and estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) methods were used to calculate the fractions of tumor-infiltrating immune cells. GO/DO enrichment analyses were used to identify the biological functions. The expression of latent transforming growth factor β-binding protein 2 (LTBP2) was determined by RT-qPCR and western blotting. The role of LTBP2 in PCa was determined by CCK-8, Transwell, and the potential mechanism was investigated by KEGG and GSEA and confirmed by western blotting. In total, 44 BCR-related differentially expressed genes (DEGs) in the training cohort were screened. LTBP2 was found to be a diagnostic biomarker of BCR in PCa and was associated with CD4+ T-cell infiltration and response to anti-PD-1/PD-L1 immunotherapy. Subsequently, using the ESTIMATE algorithm, it was identified that LTBP2 was associated with the tumor microenvironment and could be a predictor of the clinical benefit of immune checkpoint blockade. Finally, the expression and biological function of LTBP2 were evaluated via cellular experiments. The results showed that LTBP2 was downregulated in PCa cells and inhibited PCa proliferation and metastasis via the PI3K/AKT signaling pathway in vitro. In conclusion, LTBP2 was a promising diagnostic biomarker of BCR of PCa and had an important role in CD4+ T-cell recruitment. Moreover, it was associated with immunotherapy in patients with PCa who developed BCR, and it inhibited PCa proliferation and metastasis via the PI3K/AKT signaling pathway in vitro.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Department of Urology, Affiliated Zhongda Hospital of South‑East University, Nanjing, Jiangsu 210009, P.R. China
| | - Chuanjie Tian
- Department of Urology, Langxi County People's Hospital, Xuancheng, Anhui 242100, P.R. China
| | - Chuanjie Tian
- Department of Urology, Langxi County People's Hospital, Xuancheng, Anhui 242100, P.R. China
| | - Jianbin Cheng
- Department of Urology Surgery, Heqiao Hospital, Yixing, Jiangsu 214200, P.R. China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of South‑East University, Nanjing, Jiangsu 210009, P.R. China
| | - Menglan Li
- NHC Contraceptives Adverse Reaction Surveillance Center, Jiangsu Health Development Research Center, Nanjing, Jiangsu 210036, P.R. China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of South‑East University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
7
|
Li Y, Meng F, Sui C, Wang Y, Cheng D. CircWHSC1 expedites cervical cancer progression via miR-532-3p/LTBP2 axis. Mol Cell Biochem 2022; 477:1669-1679. [PMID: 35235125 DOI: 10.1007/s11010-022-04395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022]
Abstract
Dysregulated circRNAs have potential roles in the progression of various cancer types, including cervical cancer (CaCx). The carcinogenic roles of circRNA Wolf-Hirschhorn syndrome candidate gene-1 (circWHSC1) are described in the development of diverse cancers. The objective of this study was to investigate the expression and the underlying role of circWHSC1 in CaCx. The expression of circWHSC1 was detected by real-time PCR. After the suppression of circWHSC1 expression, the changes in the proliferation, migration, invasion, and apoptosis capacities were detected by CCK-8 assay, colony formation assay, Transwell assays, flow cytometry, and the determination of apoptosis-related proteins. The interplay among circWHSC1, miR-532-3p, and latent transforming growth factor-β binding protein 2 (LTBP2) was confirmed by luciferase reporter and biotinylated RNA pull-down assays. A nude mice xenograft tumor model was established to evaluate the anti-tumorigenic role of circWHSC1 silencing in vivo. CircWHSC1 was overexpressed in CaCx tissues and cell lines and its high expression was inversely associated with the survival rate of patients with CaCx. CircWHSC1 silencing was capable of suppressing the proliferation, metastasis, and invasion of tumor cells and inducing apoptosis. Investigation to its molecular mechanism revealed that circWHSC1 functioned as a competitive endogenous RNA (ceRNA), mediating LTBP2 expression by targeting miR-532-3p. The in vivo experiments further confirmed the inhibition of tumor growth and metastasis by circWHSC1 knockdown. The circWHSC1-mediated miR-532-3p/LTBP2 signaling axis might be a novel therapeutic target for CaCx.
Collapse
Affiliation(s)
- Yan Li
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Fandong Meng
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Chengguang Sui
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yang Wang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Dali Cheng
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
8
|
Zou M, Zou J, Hu X, Zheng W, Zhang M, Cheng Z. Latent Transforming Growth Factor-β Binding Protein-2 Regulates Lung Fibroblast-to-Myofibroblast Differentiation in Pulmonary Fibrosis via NF-κB Signaling. Front Pharmacol 2022; 12:788714. [PMID: 35002722 PMCID: PMC8740300 DOI: 10.3389/fphar.2021.788714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Despite past extensive studies, the mechanisms underlying pulmonary fibrosis (PF) still remain poorly understood. The aberrantly activated lung myofibroblasts, predominantly emerging through fibroblast-to-myofibroblast differentiation, are considered to be the key cells in PF, resulting in excessive accumulation of extracellular matrix (ECM). Latent transforming growth factor-β (TGFβ) binding protein-2 (LTBP2) has been suggested as playing a critical role in modulating the structural integrity of the ECM. However, its function in PF remains unclear. Here, we demonstrated that lungs originating from different types of patients with PF, including idiopathic PF and rheumatoid arthritis-associated interstitial lung disease, and from mice following bleomycin (BLM)-induced PF were characterized by increased LTBP2 expression in activated lung fibroblasts/myofibroblasts. Moreover, serum LTBP2 was also elevated in patients with COVID-19-related PF. LTBP2 silencing by lentiviral shRNA transfection protected against BLM-induced PF and suppressed fibroblast-to-myofibroblast differentiation in vivo and in vitro. More importantly, LTBP2 overexpression was able to induce differentiation of lung fibroblasts to myofibroblasts in vitro, even in the absence of TGFβ1. By further mechanistic analysis, we demonstrated that LTBP2 silencing prevented fibroblast-to-myofibroblast differentiation and subsequent PF by suppressing the phosphorylation and nuclear translocation of NF-κB signaling. LTBP2 overexpression-induced fibroblast-to-myofibroblast differentiation depended on the activation of NF-κB signaling in vitro. Therefore, our data indicate that intervention to silence LTBP2 may represent a promising therapy for PF.
Collapse
Affiliation(s)
- Menglin Zou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingfeng Zou
- Department of Respiratory and Critical Care Medicine, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Xingxing Hu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weishuai Zheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingyang Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Zhao L, Niu P, Zhao D, Chen Y. Regional and racial disparity in proximal gastric cancer survival outcomes 1996-2016: Results from SEER and China National Cancer Center database. Cancer Med 2021; 10:4923-4938. [PMID: 34105890 PMCID: PMC8290239 DOI: 10.1002/cam4.4033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Given the growing incidence and aggressive biological behavior of proximal gastric cancer (PGC) as reported, it is important to understand which regional or racial populations are at poor prognosis so that interventions can be treated appropriately. We sought to explore regional treatment differences as well as racial genes influence survival outcomes in China and the US patients with PGC. METHODS PGC patients defined as tumors with the epicenter located in cardia (C16.0) or fundus (C16.1) from 1996 to 2016 were identified from the Surveillance Epidemiology and End Results (SEER) in the United States as well as data from a high-volume National Cancer Center Database in China. Overall survival (OS) curves were plotted for different regional or racial groups, respectively, using the Kaplan-Meier method and compared statistically using the log-rank test. Differentially expressed genes (DEGs) analysis was performed using TCGA database. RESULTS Finally, the cohort consistent of 40973 PGC patients who enrolled in SEER database (n = 36305) or China National Cancer Center (n = 4668), and divided into 4 racial groups: Chinese (n = 5179), Black (n = 2429), White (n = 31185), and Others (n = 2096). After controlling for confounding variables, racial factors were independently associated with poor survival included Black ethnicity (HR = 1.376, 95% CI: 1.066-1.7760, p = 0.014) and White ethnicity (HR = 1.262, 95% CI: 1.005-1.583, p = 0.045) when compared to Chinese ethnicity in total PGC patients. Even in the same region for only US group, Chinese PGC patients also showed better prognosis. CONCLUSIONS In conclusion, we demonstrated the different survival outcomes of PGC patients in different regions or races from two high-volume database SEER and China National Cancer Center database. These survival differences are likely influenced by a number of factors (e.g., access to screening, quality of gastrectomy, neo/adjuvant therapy, and biological genes itself). More importantly, a better understanding of these disparities could lead to interventions that may help to abolish these disparities.
Collapse
Affiliation(s)
- Lulu Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Penghui Niu
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongbing Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingtai Chen
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Li H, Zhao C, Li Z, Yao K, Zhang J, Si W, Liu X, Jiang Y, Zhu M. Identification of Potential Pathogenic Super-Enhancers-Driven Genes in Pulmonary Fibrosis. Front Genet 2021; 12:644143. [PMID: 34054916 PMCID: PMC8153712 DOI: 10.3389/fgene.2021.644143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Abnormal fibroblast differentiation into myofibroblast is a crucial pathological mechanism of pulmonary fibrosis (PF). Super-enhancers, a newly discovered cluster of regulatory elements, are regarded as the regulators of cell identity. We speculate that abnormal activation of super-enhancers must be involved in the pathological process of PF. This study aims to identify potential pathogenic super-enhancer-driven genes in PF. Differentially expressed genes (DEGs) in PF mouse lungs were identified from a GEO dataset (GDS1492). We collected super-enhancers and their associated genes in human lung fibroblasts and mouse embryonic fibroblasts from SEA version 3.0, a network database that provides comprehensive information on super-enhancers. We crosslinked upregulated DEGs and super-enhancer-associated genes in fibroblasts to predict potential super-enhancer-driven pathogenic genes in PF. A total of 25 genes formed an overlap, and the protein-protein interaction network of these genes was constructed by the STRING database. An interaction network of transcription factors (TFs), super-enhancers, and associated genes was constructed using the Cytoscape software. Gene enrichment analyses, including KEGG pathway and GO analysis, were performed for these genes. Latent transforming growth factor beta (TGF-β) binding protein 2 (LTBP2), one of the predicted super-enhancer-driven pathogenic genes, was used to verify the predicted network’s accuracy. LTBP2 was upregulated in the lungs of the bleomycin-induced PF mouse model and TGF-β1-stimulated mouse and human fibroblasts. Myc is one of the TFs binding to the LTBP2 super-enhancer. Knockout of super-enhancer sequences with a CRISPR/Cas9 plasmid or inhibition of Myc all decreased TGF-β1-induced LTBP2 expression in NIH/3 T3 cells. Identifying and interfering super-enhancers might be a new way to explore possible therapeutic methods for PF.
Collapse
Affiliation(s)
- Hang Li
- Central Lab, Shenzhen Bao'an Traditional Chinese Medicine Hospital (Group), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Caiping Zhao
- Central Lab, Shenzhen Bao'an Traditional Chinese Medicine Hospital (Group), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zeli Li
- Department of Respiratory, Shenzhen Bao'an Traditional Chinese Medicine Hospital (Group), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Kainan Yao
- Department of Respiratory, Shenzhen Bao'an Traditional Chinese Medicine Hospital (Group), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jingjing Zhang
- Department of Pathology, Shenzhen Bao'an Traditional Chinese Medicine Hospital (Group), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenwen Si
- Central Lab, Shenzhen Bao'an Traditional Chinese Medicine Hospital (Group), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaohong Liu
- Department of Respiratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Department of Respiratory, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| |
Collapse
|
11
|
Behera A, Ashraf R, Srivastava AK, Kumar S. Bioinformatics analysis and verification of molecular targets in ovarian cancer stem-like cells. Heliyon 2020; 6:e04820. [PMID: 32984578 PMCID: PMC7492822 DOI: 10.1016/j.heliyon.2020.e04820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a lethal and aggressive gynecological malignancy. Despite recent advances, existing therapies are challenged by a high relapse rate, eventually resulting in disease recurrence and chemoresistance. Emerging evidence indicates that a subpopulation of cells known as cancer stem-like cells (CSLCs) exists with non-tumorigenic cancer cells (non-CSCs) within a bulk tumor and is thought to be responsible for tumor recurrence and drug-resistance. Therefore, identifying the molecular drivers for cancer stem cells (CSCs) is critical for the development of novel therapeutic strategies for the treatment of EOC. METHODS Two gene datasets were downloaded from the Gene Expression Omnibus (GEO) database based on our search criteria. Differentially expressed genes (DEGs) in both datasets were obtained by the GEO2R web tool. Based on log2 (fold change) >2, the top thirteen up-regulated genes and log2 (fold change) < -1.5 top thirteen down-regulated genes were selected, and the association between their expressions and overall survival was analyzed by OncoLnc web tool. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathways analysis, and protein-protein interaction (PPI) networks were performed for all the common DEGs found in both datasets. SK-OV-3 cells were cultured in an adherent culture medium and spheroids were generated in suspension culture with CSCs specific medium. RNA from both cell population was extracted to validate the selected DEGs expression by q-PCR. Growth inhibition assay was performed in SK-OV-3 cells after carboplatin treatment. RESULTS A total of 200 DEGs, 117 up-regulated and 83 down-regulated genes were commonly identified in both datasets. Analysis of pathways and enrichment tests indicated that the extracellular matrix part, cell proliferation, tissue development, and molecular function regulation were enriched in CSCs. Biological pathways such as interferon-alpha/beta signaling, molecules associated with elastic fibers, and synthesis of bile acids and bile salts were significantly enriched in CSCs. Among the top 13 up-regulated and down-regulated genes, MMP1 and PPFIBP1 expression were associated with overall survival. Higher expression of ADM, CXCR4, LGR5, and PTGS2 in carboplatin treated SK-OV-3 cells indicate a potential role in drug resistance. CONCLUSIONS The molecular signature and signaling pathways enriched in ovarian CSCs were identified by bioinformatics analysis. This analysis could provide further research ideas to find the new mechanism and novel potential therapeutic targets for ovarian CSCs.
Collapse
Affiliation(s)
- Abhijeet Behera
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Rahail Ashraf
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| |
Collapse
|
12
|
Identification of an Immune Gene Expression Signature for Predicting Lung Squamous Cell Carcinoma Prognosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5024942. [PMID: 32802850 PMCID: PMC7338973 DOI: 10.1155/2020/5024942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Growing evidence indicates that immune-related biomarkers play an important role in tumor processes. This study investigates immune-related gene expression and its prognostic value in lung squamous cell carcinoma (LUSC). A cohort of 493 samples of patients with LUSC was collected and analyzed from data generated by the TCGA Research Network and ImmPort database. The R coxph package was employed to mine significant immune-related genes using univariate analysis. Lasso and stepwise regression analyses were used to construct the LUSC prognosis prediction model, and clusterProfiler was used for gene functional annotation and enrichment analysis. The Kaplan-Meier analysis and ROC were used to evaluate the model efficiency in predicting and classifying LUSC case prognoses. We identified 14 immune-related genes to incorporate into our prognosis model. The patients were divided into two subgroups (Risk-H and Risk-L) according to their risk score values. Compared to Risk-L patients, Risk-H patients showed significantly improved overall survival (OS) in both training and testing sets. Functional annotation indicated that the 14 identified genes were mainly enriched in several immune-related pathways. Our results also revealed that a risk score value was correlated with various signaling pathways, such as the JAK-STA signaling pathway. Establishment of a nomogram for clinical application demonstrated that our immune-related model exhibited good predictive prognostic performance. Our predictive prognosis model based on immune signatures has potential clinical implications for assessing the overall survival and precise treatment for patients with LUSC.
Collapse
|
13
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
Affiliation(s)
| | - Majid Mojarrad
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Cai R, Wang P, Zhao X, Lu X, Deng R, Wang X, Su Z, Hong C, Lin J. LTBP1 promotes esophageal squamous cell carcinoma progression through epithelial-mesenchymal transition and cancer-associated fibroblasts transformation. J Transl Med 2020; 18:139. [PMID: 32216815 PMCID: PMC7098101 DOI: 10.1186/s12967-020-02310-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent cancers worldwide. Due to its high morbidity and mortality rates, it is urgent to find a molecular target that contributes to esophageal carcinogenesis and progression. In this research, we aimed to investigate the functions of Latent transforming growth factor β binding protein 1(LTBP1) in ESCC progression and elucidate the underlying mechanisms. METHODS The tandem mass tag-based quantitative proteomic approach was applied to screen the differentially expressed proteins (DEPs) between 3 cases of ESCC tumor samples and paired normal tissues. Then the DEPs were validated in human ESCC tissues using western blot assays and GEPIA database respectively. The expression level of LTBP1 was detected in 152 cases of ESCC tissues and paired normal tissues. Loss-of-function assays were performed to detect the function of LTBP1 in vivo and in vitro. Immunofluorescence and Western blot assays were used to detect the expression of apoptosis, epithelial-mesenchymal transition (EMT) and cancer-associated fibroblasts (CAFs) markers. RESULTS A total of 39 proteins were screened to be up-regulated (ratio > 2.0) in all three ESCC tissues. The results of immunohistochemistry assays indicated that the expression level of LTBP1 was higher in ESCC tissues than that in paired normal tissues (p < 0.001). Overexpression of LTBP1 was positively associated with lymphatic metastasis in ESCC (p = 0.002). Down-regulation of LTBP1 inhibited the invasion and migration as well as metastatic abilities in vitro and in vivo. It was also observed the down-regulation of LTBP1 not only decreased the mesenchymal phenotypes but also inhibited TGFβ-induced EMT in ESCC cells. We further found that down-regulation of LTBP1 enhanced ESCC cells' sensitivity to 5-FU treatment. Inhibition of LTBP1 expression could also attenuate induction of CAFs transformation and restrain fibroblast express fibronectin (FN1) in ESCC cells. CONCLUSION Overexpression of LTBP1 was associated with lymph node metastasis in ESCC. Our results indicated that LTBP1 not only increased the malignant behaviors of ESCC cells but also induced EMT and CAFs transformation. Our studies suggested an oncogenic role of LTBP1 in ESCC progression and it may serve as a potential therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Rui Cai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Ping Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Xin Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Xiansheng Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Ruxia Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Xiaoyu Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Zhaoji Su
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Chang Hong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong province, People's Republic of China.
| |
Collapse
|
15
|
Koskimäki J, Zhang D, Li Y, Saadat L, Moore T, Lightle R, Polster SP, Carrión-Penagos J, Lyne SB, Zeineddine HA, Shi C, Shenkar R, Romanos S, Avner K, Srinath A, Shen L, Detter MR, Snellings D, Cao Y, Lopez-Ramirez MA, Fonseca G, Tang AT, Faber P, Andrade J, Ginsberg M, Kahn ML, Marchuk DA, Girard R, Awad IA. Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations. Acta Neuropathol Commun 2019; 7:132. [PMID: 31426861 PMCID: PMC6699077 DOI: 10.1186/s40478-019-0789-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are dilated capillaries causing epilepsy and stroke. Inheritance of a heterozygous mutation in CCM3/PDCD10 is responsible for the most aggressive familial form of the disease. Here we studied the differences and commonalities between the transcriptomes of microdissected lesional neurovascular units (NVUs) from acute and chronic in vivo Ccm3/Pdcd10ECKO mice, and cultured brain microvascular endothelial cells (BMECs) Ccm3/Pdcd10ECKO.We identified 2409 differentially expressed genes (DEGs) in acute and 2962 in chronic in vivo NVUs compared to microdissected brain capillaries, as well as 121 in in vitro BMECs with and without Ccm3/Pdcd10 loss (fold change ≥ |2.0|; p < 0.05, false discovery rate corrected). A functional clustered dendrogram generated using the Euclidean distance showed that the DEGs identified only in acute in vivo NVUs were clustered in cellular proliferation gene ontology functions. The DEGs only identified in chronic in vivo NVUs were clustered in inflammation and immune response, permeability, and adhesion functions. In addition, 1225 DEGs were only identified in the in vivo NVUs but not in vitro BMECs, and these clustered within neuronal and glial functions. One miRNA mmu-miR-3472a was differentially expressed (FC = - 5.98; p = 0.07, FDR corrected) in the serum of Ccm3/Pdcd10+/- when compared to wild type mice, and this was functionally related as a putative target to Cand2 (cullin associated and neddylation dissociated 2), a DEG in acute and chronic lesional NVUs and in vitro BMECs. Our results suggest that the acute model is characterized by cell proliferation, while the chronic model showed inflammatory, adhesion and permeability processes. In addition, we highlight the importance of extra-endothelial structures in CCM disease, and potential role of circulating miRNAs as biomarkers of disease, interacting with DEGs. The extensive DEGs library of each model will serve as a validation tool for potential mechanistic, biomarker, and therapeutic targets.
Collapse
Affiliation(s)
- Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Dongdong Zhang
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Yan Li
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Laleh Saadat
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Sean P Polster
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Julián Carrión-Penagos
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Seán B Lyne
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Hussein A Zeineddine
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Changbin Shi
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Kenneth Avner
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Abhinav Srinath
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Le Shen
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Matthew R Detter
- The Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Daniel Snellings
- The Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | | | - Gregory Fonseca
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Pieter Faber
- University of Chicago Genomics Facility, The University of Chicago, Chicago, IL, USA
| | - Jorge Andrade
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Mark Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas A Marchuk
- The Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA.
| |
Collapse
|