1
|
An HJ, Cho SH, Ryu CS, Ko EJ, Park HW, Kim YR, Ahn EH, Shin JE, Joo SS, Kim JH, Kim NK. Genetic associations of miRNA variants (miR-10a, miR-30c, miR-181a, miR-499b) with primary ovarian insufficiency in Korean women. Maturitas 2025; 191:108153. [PMID: 39536656 DOI: 10.1016/j.maturitas.2024.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES MicroRNAs (miRNAs) are pivotal in post-transcriptionally modulating gene expression in both animals and plants. This study investigates the relationship between microRNA polymorphisms and the occurrence of primary ovarian insufficiency in Korean women. Our hypothesis posits that polymorphisms in microRNAs-specifically miR-10aA > T, miR-30cA > G, miR-181aT > C, and miR-499bA > G-may be linked to primary ovarian insufficiency, influencing the risk of developing the condition. METHODS We conducted a case-control study of 141 Korean women with primary ovarian insufficiency and 281 control individuals with at least one live birth and no history of pregnancy loss. RESULTS Our findings indicate that various combinations of these four microRNA polymorphic sites are associated with an increased risk of primary ovarian insufficiency. The combination analysis indicated a significant decrease in the frequency of the miR-181a/miR-499b TC/AA allele combination in individuals with primary ovarian insufficiency (P < 0.05). Additionally, one-way analysis of variance of data from patients with primary ovarian insufficiency revealed that, in comparison with miR-181aTT, the miR-181aCC genotype was associated with significantly lower levels of both follicle-stimulating hormone and luteinizing hormone, suggesting potential protective effects. CONCLUSIONS Our data suggest that dysregulation of the miR-10aA > T, miR-30cA > G, miR-181aT > C, and miR-499bA > G polymorphisms in these microRNAs contributes to the regulation of target genes related to primary ovarian insufficiency.
Collapse
Affiliation(s)
- Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea; College of Life Science, Gangneung-Wonju National University, 7 Jukheon-Gil, Gangneung 25457, South Korea.
| | - Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea.
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea.
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea.
| | - Hyeon Woo Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea.
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, South Korea.
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, South Korea.
| | - Ji Eun Shin
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, South Korea.
| | - Seong-Soo Joo
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-Gil, Gangneung 25457, South Korea.
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, South Korea.
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea.
| |
Collapse
|
2
|
Chen HY, Por CR, Hong YK, Kong EQZ, Subramaniyan V. Molecular mechanisms underlying oesophageal cancer development triggered by chronic alcohol consumption. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/24/2024] [Indexed: 12/27/2024]
Abstract
AbstractThis review explores the mechanisms underlying alcohol‐induced oesophageal carcinogenesis, including DNA damage, oxidative stress, and nutritional deficiencies. Alcohol metabolism primarily involves alcohol dehydrogenase (ADH) converting ethanol to acetaldehyde, which can cause DNA damage, inhibit repair mechanisms, and form DNA adducts thus inhibiting DNA replication. Plus, it delves into the epidemiological evidence, genetic susceptibility, epigenetic modifications, biomarkers, and preventive strategies associated with alcohol‐related oesophageal cancers. Consumption of alcohol increases the risk of gastroesophageal reflux disease thus compromising mucosal integrity of the oesophagus as dysregulation of cytokines such as IL‐18, TNFA, GATA3, TLR4, and CD68 expands the intercellular spaces of epithelial cells. Genetic variants, such as ADH1B rs1229984 and ALDH2 rs671, significantly influence susceptibility to alcohol‐related oesophageal cancers, with these variations affecting acetaldehyde metabolism and cancer risk. Understanding these factors is crucial for early detection, effective treatment, and the development of targeted prevention strategies. Biomarkers, such as miRNA and metabolite markers, offer non‐invasive methods for early detection, while advanced endoscopic techniques provide better diagnostic accuracy. Pharmacological interventions, such as statins and proton pump inhibitors, also show potential for reducing cancer progression in high‐risk individuals. Despite advances, late‐stage oesophageal cancer diagnoses are still common, highlighting the need for better screening and prevention. Further research, including this study, should aim to improve early detection, personalise prevention, and explore new treatments to reduce cases and enhance outcomes in alcohol‐related oesophageal cancers.
Collapse
Affiliation(s)
- Huai Yi Chen
- Jeffrey Cheah School of Medicine and Health Sciences Monash University Jalan Lagoon Selatan Bandar Sunway Subang Jaya Malaysia
| | - Chia Rou Por
- Jeffrey Cheah School of Medicine and Health Sciences Monash University Jalan Lagoon Selatan Bandar Sunway Subang Jaya Malaysia
| | - Yong Kai Hong
- Jeffrey Cheah School of Medicine and Health Sciences Monash University Jalan Lagoon Selatan Bandar Sunway Subang Jaya Malaysia
| | - Eason Qi Zheng Kong
- Jeffrey Cheah School of Medicine and Health Sciences Monash University Jalan Lagoon Selatan Bandar Sunway Subang Jaya Malaysia
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences Monash University Jalan Lagoon Selatan Bandar Sunway Subang Jaya Malaysia
- School of Medical and Life Sciences Sunway University Jalan Lagoon Selatan Bandar Sunway Petaling Jaya Malaysia
| |
Collapse
|
3
|
SHADBAD MAHDIABDOLI, BARADARAN BEHZAD. hsa-miR-181a-5p inhibits glioblastoma development via the MAPK pathway: in-silico and in-vitro study. Oncol Res 2024; 32:1949-1958. [PMID: 39574474 PMCID: PMC11576920 DOI: 10.32604/or.2024.051569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/22/2024] [Indexed: 11/24/2024] Open
Abstract
Background Glioblastoma remains a highly invasive primary brain malignancy with an undesirable prognosis. Growing evidence has shed light on the importance of microRNAs (miRs), as small non-coding RNAs, in tumor development and progression. The present study leverages the in-silico and in-vitro techniques to investigate the significance of hsa-miR-181a-5p and the underlying hsa-miR-181a-5p-meidated signaling pathway in glioblastoma development. Methods Bioinformatic studies were performed on GSE158284, GSE108474 (REMBRANDT study), TCGA-GTEx, CCLE, GeneMANIA, Reactome, WikiPathways, KEGG, miRDB, and microT-CDS to identify the significance of hsa-miR-181a-5p and its underlying target. Afterward, the U373 cell line was selected and transfected with hsa-miR-181a-5p mimics, and the cell viability, clonogenicity, migration, mRNA expression, apoptosis, and cell cycle were studied using the MTT assay, colony formation test, migration assay, qRT-PCR, and flow cytometry respectively. Results hsa-miR-181a-5p expression is decreased in glioblastoma samples. The in-silico results have shown that hsa-miR-181a-5p could regulate the MAPK pathway by targeting AKT3. The experimental assays have shown that hsa-miR-181a-5p decreases the migration of glioblastoma cells, arrests the cell cycle, and increases the apoptosis rate. Besides downregulating MMP9 and upregulating BAX, hsa-miR-181a-5p downregulates MET, MAP2K1, MAPK1, MAPK3, and AKT3 expression in U373 cells. The in-vitro results were consistent with in-silico results regarding the regulatory effect of hsa-miR-181a-5p on the MAPK pathway, leading to tumor suppression in glioblastoma. Conclusions hsa-miR-181a-5p inhibits glioblastoma development partially by regulating the signaling factors of the MAPK pathway.
Collapse
Affiliation(s)
| | - BEHZAD BARADARAN
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Gao Y, Zandieh K, Zhao K, Khizanishvili N, Fazio PD, Yu X, Schulte L, Aillaud M, Chung HR, Ball Z, Meixner M, Bauer UM, Bartsch DK, Buchholz M, Lauth M, Nimsky C, Cook L, Bartsch JW. The long non-coding RNA NEAT1 contributes to aberrant STAT3 signaling in pancreatic cancer and is regulated by a metalloprotease-disintegrin ADAM8/miR-181a-5p axis. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01001-0. [PMID: 39412616 DOI: 10.1007/s13402-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 12/05/2024] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and several studies demonstrate that STAT3 has critical roles throughout the course of PDAC pathogenesis. METHODS TCGA, microarray, and immunohistochemistry data from a PDAC cohort were used for clinical analyses. Panc89 cells with ADAM8 knockout, re-expression of ADAM8 mutants, and Panc1 cells overexpressing ADAM8 were generated. Gene expression analyses of ADAM8, STAT3, long non-coding (lnc) RNA NEAT1, miR-181a-5p and ICAM1 were performed by quantitative PCR. Subcellular fractionation quantified NEAT1 expression in cytoplasm and nucleus of PDAC cell lines. Cell proliferation, scratch, and invasion assays were performed to detect growth rate, migration and invasion capabilities of cells. Gain and loss of function experiments were carried out to investigate the biological effects of lncRNA NEAT1 and miR-181a-5p on PDAC cells and downstream genes. Dual-luciferase reporter gene assay determined interaction and binding sites of miR-181a-5p in lncRNA NEAT1. Pull down assays, RNA binding protein immunoprecipitation (RIP), and ubiquitination assays explored the molecular interaction between lncRNA NEAT1 and STAT3. RESULTS High ADAM8 expression causes aberrant STAT3 signaling in PDAC cells and is positively correlated with NEAT1 expression. NEAT1 binding to STAT3 was confirmed and prevents STAT3 degradation in the proteasome as increased degradation of STAT3 was observed in ADAM8 knockout cells and cells treated with bortezomib. Furthermore, miRNA-181a-5p regulates NEAT1 expression by direct binding to the NEAT1 promoter. CONCLUSION ADAM8 regulates intracellular STAT3 levels via miR-181a-5p and NEAT1 in pancreatic cancer.
Collapse
Affiliation(s)
- Yutong Gao
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Kimia Zandieh
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Natalia Khizanishvili
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Xiangdi Yu
- Department of Anesthesiology, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University, Guiyang, Guizhou, 550000, China
| | - Leon Schulte
- Institute for Lung Research, Philipps-University Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Michelle Aillaud
- Institute for Lung Research, Philipps-University Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps-University Marburg, 35033, Marburg, Germany
| | - Zachary Ball
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Marion Meixner
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Detlef Klaus Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Matthias Lauth
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Lena Cook
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany.
| |
Collapse
|
5
|
Ma Y, Xu J, Hao L, Wang G, Huang W, Liu Z. MiR-181a Negatively Regulates Claudin-3 to Facilitate Lateolabrax maculatus Iridovirus Replication in Lateolabrax maculatus Astroglia Cells. Viruses 2024; 16:1589. [PMID: 39459923 PMCID: PMC11512373 DOI: 10.3390/v16101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Lateolabrax maculatus iridovirus (LMIV) is a variant strain of red sea bream iridovirus (RSIV), causing serious economic losses in aquaculture. Claudins (CLDNs) are major components of tight junctions (TJs) forming an important line of defense against pathogens. Our pilot miRNA-mRNA joint analysis indicated the degradation of CLDN3, as well as its interaction with miR-181a during LMIV infection. To elucidate the miR-181a/CLDN3/LMIV interactions, in vitro assays were carried out on LMB-L cells. We first confirmed that LMIV infection could decrease the expression of CLDN3, accompanied by the enhancement of permeability, suggesting the dysfunction of TJs. Contrary to the inhibition of CLDN3, the activation of miR-181a was proved, presenting a negative correlation between miR-181a and CLDN3 (Pearson r = -0.773 and p < 0.01). In addition, the influence of CLDN3 on LMIV replication was analyzed by knockdown and over-expression of CLDN3. When CLDN3 was silenced in LMB-L cells with siCLDN3-623 at 9 days post transfection (dpt), LMIV copies and titers were significantly up-regulated by 1.59-fold and 13.87-fold, respectively. By contrast, LMIV replication in LMB-L cells was reduced by 60% and 71%, post transfection with pcDNA3.1-CLDN3 over-expressed plasmid at 6 dpt and 9 dpt, respectively. Ultimately, the regulatory relationship between miR-181a and CLDN3 was further validated by dual luciferase reporter assays. Taking into account the above-described results, we proposed a "miR-181a/CLDN3/LMIV" regulatory relationship. This study provides a new insight for understanding the mechanism of LMIV replication.
Collapse
Affiliation(s)
- Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| | - Jingjing Xu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| | - Gang Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| | - Wen Huang
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
6
|
Planat M, Chester D. Topology and Dynamics of Transcriptome (Dys)Regulation. Int J Mol Sci 2024; 25:4971. [PMID: 38732192 PMCID: PMC11084388 DOI: 10.3390/ijms25094971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
RNA transcripts play a crucial role as witnesses of gene expression health. Identifying disruptive short sequences in RNA transcription and regulation is essential for potentially treating diseases. Let us delve into the mathematical intricacies of these sequences. We have previously devised a mathematical approach for defining a "healthy" sequence. This sequence is characterized by having at most four distinct nucleotides (denoted as nt≤4). It serves as the generator of a group denoted as fp. The desired properties of this sequence are as follows: fp should be close to a free group of rank nt-1, it must be aperiodic, and fp should not have isolated singularities within its SL2(C) character variety (specifically within the corresponding Groebner basis). Now, let us explore the concept of singularities. There are cubic surfaces associated with the character variety of a four-punctured sphere denoted as S24. When we encounter these singularities, we find ourselves dealing with some algebraic solutions of a dynamical second-order differential (and transcendental) equation known as the Painlevé VI Equation. In certain cases, S24 degenerates, in the sense that two punctures collapse, resulting in a "wild" dynamics governed by the Painlevé equations of an index lower than VI. In our paper, we provide examples of these fascinating mathematical structures within the context of miRNAs. Specifically, we find a clear relationship between decorated character varieties of Painlevé equations and the character variety calculated from the seed of oncomirs. These findings should find many applications including cancer research and the investigation of neurodegenative diseases.
Collapse
Affiliation(s)
- Michel Planat
- Institut FEMTO-ST CNRS UMR 6174, Université de Franche-Comté, 15 B Avenue des Montboucons, F-25044 Besançon, France
| | - David Chester
- Quantum Gravity Research, Los Angeles, CA 90290, USA;
| |
Collapse
|
7
|
Wanram S, Klaewkla N, Pinyosri P. Downregulation of Serum miR-133b and miR-206 Associate with Clinical Outcomes of Progression as Monitoring Biomarkers for Metastasis Colorectal Cancer Patients. Microrna 2024; 13:56-62. [PMID: 38231064 PMCID: PMC11275315 DOI: 10.2174/0122115366266024240101075745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer in the world. Noncoding RNAs or microRNAs (miRNAs; miRs) biomarkers can play a role in cancer carcinogenesis and progression. Specific KRAS and EGFR mutation are associated with CRC development playing a role in controlling the cellular process as epigenetic events. Circulating serum miRs can serve for early diagnosis, monitoring, and prognosis of CRC as biomarkers but it is still unclear, clinically. OBJECTIVE To determine potential biomarkers of circulating serum miR-133b and miR-206 in CRC patients Methods: Bioinformatic prediction of microRNA was screened followed by TargetScanHuman7.2, miRTar2GO, miRDB, MiRanda, and DIANA-microT-CDS. Forty-four CRC serum (19 locally advanced, 23 distant advanced CRC) and 12 normal serum samples were subsequently extracted for RNA isolation, cDNA synthesis, and miR validation. The candidate circulating serum miR-133b and miR-206 were validated resulting in a relative expression via quantitative RT-PCR. Relative expression was normalized to the spike-internal control and compared to normal samples as 1 using the -2ΔΔCt method in principle. RESULTS Our results represented 9 miRs of miR-206, miR-155-5p, miR-143-3p, miR-193a-3p, miR-30a- 5p, miR-30d-5p, miR-30e-5p, miR-543, miR-877-5p relate to KRAS-specific miRs, whereas, 9 miRs of miR-133b, miR-302a-3p, miR-302b-3p, miR-302d-3p, miR-302e, miR-520a-3p, miR-520b, miR-520c- 3p and miR-7-5p relevance to EGFR-specific miRs by using the bioinformatic prediction tools. Our results showed a decreased expression level of circulating serum miR-133b as well as miR-206 associating with CRC patients (local and advanced metastasis) when compared to normal (P < 0.05), significantly. CONCLUSION The circulating serum miR-133b and miR-206 can serve as significant biomarkers for monitoring the clinical outcome of progression with metastatic CRC patients. Increased drug-responsive CRC patients associated with crucial molecular intervention should be further explored, clinically.
Collapse
Affiliation(s)
- Surasak Wanram
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
- Biomedical Science Research Unit, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Namphon Klaewkla
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Parichart Pinyosri
- Biomedical Science Research Unit, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|