1
|
Xiao W, Geng W, Zhou M, Xu J, Wang S, Huang Q, Sun Y, Li Y, Yang G, Jin Y. POU6F1 cooperates with RORA to suppress the proliferation of lung adenocarcinoma by downregulation HIF1A signaling pathway. Cell Death Dis 2022; 13:427. [PMID: 35504868 PMCID: PMC9065044 DOI: 10.1038/s41419-022-04857-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Lung adenocarcinoma (LUAD) represents the most frequently diagnosed histological subtype of non-small cell lung cancer with the highest mortality worldwide. Transcriptional dysregulation is a hallmark of nearly all kinds of cancers. In the study, we identified that the POU domain, class 6, transcription factor 1 (POU6F1), a member of the POU family of transcription factors, was closely associated with tumor stage and death in LUAD. We revealed that POU6F1 was downregulated in LUAD tissues and downregulated POU6F1 was predictive of an unfavorable prognosis in LUAD patients. In vitro assays, including CCK8, soft agar, transwell, clone formation, wound-healing assay, and nude mouse xenograft model all revealed that POU6F1 inhibited the growth and invasion of LUAD cells. Mechanistically, POU6F1 bound and stabilized retinoid-related orphan receptor alpha (RORA) to exert the transcriptional inhibition of hypoxia-inducible factor 1-alpha (HIF1A) and alter the expression of HIF1A signaling pathway-associated genes, including ENO1, PDK1, and PRKCB, thereby leading to the suppression of LUAD cells. Collectively, these results demonstrated the suppressive role of POU6F1/RORA in the progression of LUAD and may potentially be used as a target for the treatment of LUAD.
Collapse
Affiliation(s)
- Wenjing Xiao
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Wei Geng
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Mei Zhou
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Juanjuan Xu
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Sufei Wang
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Qi Huang
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Yice Sun
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Yumei Li
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Guanghai Yang
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yang Jin
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| |
Collapse
|
2
|
Inhibiting DNA-PK CS radiosensitizes human osteosarcoma cells. Biochem Biophys Res Commun 2017; 486:307-313. [PMID: 28300555 DOI: 10.1016/j.bbrc.2017.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/11/2017] [Indexed: 01/14/2023]
Abstract
Osteosarcoma survival rate has not improved over the past three decades, and the debilitating side effects of the surgical treatment suggest the need for alternative local control approaches. Radiotherapy is largely ineffective in osteosarcoma, indicating a potential role for radiosensitizers. Blocking DNA repair, particularly by inhibiting the catalytic subunit of DNA-dependent protein kinase (DNA-PKCS), is an attractive option for the radiosensitization of osteosarcoma. In this study, the expression of DNA-PKCS in osteosarcoma tissue specimens and cell lines was examined. Moreover, the small molecule DNA-PKCS inhibitor, KU60648, was investigated as a radiosensitizing strategy for osteosarcoma cells in vitro. DNA-PKCS was consistently expressed in the osteosarcoma tissue specimens and cell lines studied. Additionally, KU60648 effectively sensitized two of those osteosarcoma cell lines (143B cells by 1.5-fold and U2OS cells by 2.5-fold). KU60648 co-treatment also altered cell cycle distribution and enhanced DNA damage. Cell accumulation at the G2/M transition point increased by 55% and 45%, while the percentage of cells with >20 γH2AX foci were enhanced by 59% and 107% for 143B and U2OS cells, respectively. These results indicate that the DNA-PKCS inhibitor, KU60648, is a promising radiosensitizing agent for osteosarcoma.
Collapse
|
3
|
Abstract
Traditional cytotoxic agents used in cancer therapy were initially discovered based on their ability to kill rapidly dividing cells. The targets of these early-generation agents were typically one or more aspects of DNA synthesis or mitosis. Thus, dose-limiting toxicities commonly associated with these agents include GI dysfunction, immunosuppression, and other consequences of injury to normal tissues in which cells are replicating under normal physiologic conditions. Although many of these agents still play an important role in cancer therapy when given concurrently with radiation therapy, the major thrust of radiobiology research in the last two decades has focused on discovering tumor-specific traits that might be exploited for more selective targeting that would enhance the efficacy of radiotherapy with less normal tissue toxicity. These newer generation molecular targeted therapies interfere with the growth of tumor cells by inhibiting genes and their protein products that are needed specifically by the tumor for survival and expansion. These agents can be complementary to radiotherapy, a spatially targeted agent. Although there have been extraordinary technical advances in radiotherapy in recent years, we are reaching the limits of improvements that radiotherapy delivery technology can bring and need different approaches. This review will highlight promising new tumor biology-based targets and other novel strategies to reduce normal tissue injury, increase tumor control, and expand the use of radiotherapy to treat widespread metastatic disease.
Collapse
|
4
|
Abstract
The transcription factor nuclear factor (erythroid-derived 2)-like 2, also known as NFE2L2 or NRF2, is a master regulator of the anti-oxidative stress response and positively controls the expression of a battery of anti-oxidative stress response proteins and enzymes implicated in detoxification and glutathione generation. Although its detoxifying activity is important in cancer prevention, it has recently been shown that cancer cells also exploit its protective functions to thrive and resist chemotherapy. NRF2 was also shown to the pentose phosphate pathway and glutaminolysis, which promotes purine synthesis for supporting rapid proliferation and glutathione for providing anti-oxidative stress protection. Evidence obtained from cancer patients and cell lines suggest that NRF2 is highly active in a variety of human cancers and is associated with aggressiveness. p53 is a tumor suppressor that also promotes an anti-oxidative stress metabolic program and glutaminolysis. Here we will discuss the similarities between NRF2 and p53 and review evidence that p53 might be exploited by cancer cells to gain protection against oxidative stress, as is the case for NRF2. We discuss findings of co-regulation between these transcription factors and propose possible therapeutic strategies that can be used for treatment of cancers that harbor WT p53 and express high levels of NRF2.
Collapse
|
5
|
Emerging metabolic targets in the therapy of hematological malignancies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:946206. [PMID: 24024216 PMCID: PMC3759275 DOI: 10.1155/2013/946206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
Abstract
During the last decade, the development of anticancer therapies has focused on targeting neoplastic-related metabolism. Cancer cells display a variety of changes in their metabolism, which enable them to satisfy the high bioenergetic and biosynthetic demands for rapid cell division. One of the crucial alterations is referred to as the "Warburg effect", which involves a metabolic shift from oxidative phosphorylation towards the less efficient glycolysis, independent of the presence of oxygen. Although there are many examples of solid tumors having altered metabolism with high rates of glucose uptake and glycolysis, it was only recently reported that this phenomenon occurs in hematological malignancies. This review presents evidence that targeting the glycolytic pathway at different levels in hematological malignancies can inhibit cancer cell proliferation by restoring normal metabolic conditions. However, to achieve cancer regression, high concentrations of glycolytic inhibitors are used due to limited solubility and biodistribution, which may result in toxicity. Besides using these inhibitors as monotherapies, combinatorial approaches using standard chemotherapeutic agents could display enhanced efficacy at eradicating malignant cells. The identification of the metabolic enzymes critical for hematological cancer cell proliferation and survival appears to be an interesting new approach for the targeted therapy of hematological malignancies.
Collapse
|
6
|
Aghaee F, Islamian JP, Baradaran B, Mesbahi A, Mohammadzadeh M, Jafarabadi MA. Enhancing the Effects of Low Dose Doxorubicin Treatment by the Radiation in T47D and SKBR3 Breast Cancer Cells. J Breast Cancer 2013; 16:164-70. [PMID: 23843848 PMCID: PMC3706861 DOI: 10.4048/jbc.2013.16.2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/22/2013] [Indexed: 02/06/2023] Open
Abstract
Purpose Breast cancer is the most common malignancy of women worldwide. Radiotherapy consists of a vital element in the treatment of breast cancer but relative side effects and different radioactive responses are limiting factors for a successful treatment. Doxorubicin has been used to treat cancers for over 30 years and is considered as the most effective drug in the treatment of breast cancer. There are also many chronic side effects that limit the amount of doxorubicin that can be administered. The combined radio-drug treatment, with low doses, can be an approach for reducing side effects from single modality treatments instead of suitable cure rates. Methods We have studied the effect of 1, 1.5, and 2 Gy doses of 9 MV X-rays along with 1 µM doxorubicin on inducing cell death, apoptosis and also p53 and PTEN gene expression in T47D and SKBR3 breast cancer cells. Results Doxorubicin treatment resulted in upregulation of radiation-induced levels of p53 and downregulation of PTEN at 1 and 1.5 Gy in T47D breast cancer cells, as well as downregulation of p53 mRNA level of expression and upregulation of PTEN mRNA level of expression in SKBR3 breast cancer cell line. In addition, doxorubicin in combination with radiation decreased the viability of breast cancer cell lines in the both cell lines. Conclusion Low doses of doxorubicin, with least cell toxicity, may be an effective treatment for breast cancer when used in conjunction with ionizing radiation.
Collapse
Affiliation(s)
- Fahimeh Aghaee
- Department of Medical Physics, Tabriz University of Medical Sciences School of Medicine, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
7
|
Aghaee F, Pirayesh Islamian J, Baradaran B. Enhanced radiosensitivity and chemosensitivity of breast cancer cells by 2-deoxy-d-glucose in combination therapy. J Breast Cancer 2012; 15:141-7. [PMID: 22807930 PMCID: PMC3395736 DOI: 10.4048/jbc.2012.15.2.141] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 02/29/2012] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common malignancy, and it is also the major cause of cancer-related deaths of women worldwide. Breast cancer treatment involves surgery, chemotherapy, radiation therapy, or combination therapy, and novel strategies are needed to boost the oncologic outcome. The non-metabolizable glucose analogue, 2-deoxy-D-glucose (2-DG) which inhibits glucose synthesis and adenosine triphosphate production, is one of the important discoveries involving the disturbances that can be caused to the process of the metabolism. The glucose analogue, 2-DG, is known as a tumor sensitizer to irradiation (IR) and chemotherapy, which help improve the treatment rates. It enhances the cytotoxicity via oxidative stress, which is more redundant in tumor cells than in normal ones. This article provides a brief summary on studies related to 2-DG chemo-/radio-sensitization effects by combination therapy of 2-DG/IR or 2-DG/doxorubicin.
Collapse
Affiliation(s)
- Fahimeh Aghaee
- Department of Medical Physics, Tabriz University of Medical Sciences School of Medicine, Tabriz, Iran
| | | | | |
Collapse
|
8
|
Fath MA, Ahmad IM, Smith CJ, Spence J, Spitz DR. Enhancement of carboplatin-mediated lung cancer cell killing by simultaneous disruption of glutathione and thioredoxin metabolism. Clin Cancer Res 2011; 17:6206-17. [PMID: 21844013 DOI: 10.1158/1078-0432.ccr-11-0736] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer cells (relative to normal cells) show increased steady-state levels of hydroperoxides that are compensated by increased glucose and hydroperoxide metabolism. The current study determined whether inhibitors of glucose and hydroperoxide metabolism could induce chemoradiosensitization by enhancing oxidative stress in lung cancer cells. EXPERIMENTAL DESIGN A549 and NCI-H292 human lung carcinoma cells were treated with 2-deoxy-d-glucose (2DG) combined with carboplatin + ionizing radiation (IR). Lung cancer cells were further sensitized with inhibitors of glutathione (GSH)- and thioredoxin (Trx)-dependent metabolism [buthionine sulfoximine (BSO) and auranofin, respectively] in vitro and in vivo. RESULTS When 2DG was combined with carboplatin + IR, clonogenic cell killing was enhanced in A549 and NCI-H292 cells, and this combination was more effective than paclitaxel + carboplatin + IR. The thiol antioxidant (N-acetylcysteine, NAC) was capable of protecting cancer cells from 2DG + carboplatin -induced cell killing. Simultaneous treatment of cancer cells with BSO and auranofin, at doses that were not toxic as single agents, also enhanced lung cancer cell killing and sensitivity to 2DG + carboplatin. This treatment combination also increased oxidation of both GSH and Trx, which were inhibited by NAC. Mice treated with auranofin + BSO showed no alterations in circulating leukocytes or red blood cells. Xenograft lung tumor growth in mice was more effectively inhibited by treatment with auranofin + BSO + carboplatin than animals treated with carboplatin or auranofin + BSO alone. CONCLUSIONS These results show in vitro and in vivo that simultaneous inhibition of GSH and Trx metabolism can effectively inhibit lung cancer cell growth and induce chemosensitization by a mechanism that involves thiol-mediated oxidative stress.
Collapse
Affiliation(s)
- Melissa A Fath
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
9
|
Sinthupibulyakit C, Ittarat W, St Clair WH, St Clair DK. p53 Protects lung cancer cells against metabolic stress. Int J Oncol 2011; 37:1575-81. [PMID: 21042727 DOI: 10.3892/ijo_00000811] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The preferential use of aerobic glycolysis for energy production by cancer cells, a phenomenon known as the 'Warburg effect', is well recognized and is being considered for therapeutic applications. However, whether inhibition of glycolysis will be effective in all types of cancer is unclear. The current study shows that a glycolytic inhibitor, 2-deoxy-D-glucose (2DG), exhibits the cytotoxic effect on non-small cell lung cancer in a p53-dependent manner. 2DG significantly inhibits ATP production in p53-deficient lung cancer cells (H358) but not in p53-wt cells (A549). In contrast to p53-wt cells, p53-defective cells are unable to compensate for their need of energy via oxidative phosphorylation (OXPHOS) when glycolysis is inhibited. In the presence of p53, increased ROS from OXPHOS increases the expression of p53 target genes known to modulate metabolism, including synthesis of cytochrome c oxidase 2 (SCO2) and TP53-induced glycolysis and apoptosis regulator (TIGAR). Importantly, 2DG selectively induces the expression of the antioxidant enzymes manganese superoxide dismutase (MnSOD) and glutathione peroxidase 1 (GPx1) in a p53-dependent manner. The results demonstrate that the killing of cancer cells by the inhibitor of glycolysis is more efficient in cancer cells without functional p53 and that p53 protects against metabolic stress by up-regulation of oxidative phosphorylation and modulation of antioxidants.
Collapse
|