1
|
Effects of platelet-rich plasma glue placement at the prostatectomy site on erectile function restoration and cavernous nerve preservation in a nerve-sparing prostatectomy rat model. Biomed Pharmacother 2023; 161:114499. [PMID: 36913891 DOI: 10.1016/j.biopha.2023.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Despite the widespread use of nerve-sparing prostatectomy techniques, the incidence of post-operative erectile dysfunction (ED) remains high. Early intracavernous (IC) injection of platelet-rich plasma (PRP) after nerve crushing improves erectile function (EF) in rats by promoting cavernous nerve (CN) regeneration and preventing structural changes in the corpus cavernosum. However, the neuroprotective effects of the in situ application of PRP glue in rats after CN-sparing prostatectomy (CNSP) remain unclear. AIM This study aimed to investigate the effects of PRP glue treatment on EF and CN preservation in rats after CNSP. METHODS After prostatectomy, male Sprague-Dawley rats were treated with PRP glue, IC PRP injection, or their combination. The intracavernous pressure (ICP), mean arterial pressure (MAP), and CN preservation status in the rats were evaluated after 4 weeks. Results were corroborated using histology, immunofluorescence, and transmission electron microscopy. RESULTS The PRP glue-treated rats showed 100% CN preservation and significantly higher ICP responses (the ratio of maximum ICP to MAP (0.79 ± 0.09)) than the CNSP rats (the ratio of maximum ICP to MAP (0.33 ± 0.04)). PRP glue also significantly increased neurofilament-1 expression, indicating its positive effect on the CNs. Furthermore, this treatment significantly increased the expression of α-smooth muscle actin. Electron micrographs revealed that PRP glue preserved the myelinated axons and prevented atrophy of the corporal smooth muscle by maintaining the adherens junctions. CONCLUSIONS These results indicate that PRP glue is a potential solution for EF preservation by neuroprotection in patients with prostate cancer who are likely to undergo nerve-sparing radical prostatectomy.
Collapse
|
2
|
Tumor Lysis Syndrome: An Endless Challenge in Onco-Nephrology. Biomedicines 2022; 10:biomedicines10051012. [PMID: 35625753 PMCID: PMC9138780 DOI: 10.3390/biomedicines10051012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Tumor lysis syndrome (TLS) is a common cause of acute kidney injury in patients with malignancies, and it is a frequent condition for which the nephrologist is consulted in the case of the hospitalized oncological patient. Recognizing the patients at risk of developing TLS is essential, and so is the prophylactic treatment. The initiation of treatment for TLS is a medical emergency that must be addressed in a multidisciplinary team (oncologist, nephrologist, critical care physician) in order to reduce the risk of death and that of chronic renal impairment. TLS can occur spontaneously in the case of high tumor burden or may be caused by the initiation of highly efficient anti-tumor therapies, such as chemotherapy, radiation therapy, dexamethasone, monoclonal antibodies, CAR-T therapy, or hematopoietic stem cell transplantation. It is caused by lysis of tumor cells and the release of cellular components in the circulation, resulting in electrolytes and metabolic disturbances that can lead to organ dysfunction and even death. The aim of this paper is to review the scientific data on the updated definition of TLS, epidemiology, pathogenesis, and recognition of patients at risk of developing TLS, as well as to point out the recent advances in TLS treatment.
Collapse
|
3
|
Nowak E, Bednarek I. Aspects of the Epigenetic Regulation of EMT Related to Cancer Metastasis. Cells 2021; 10:3435. [PMID: 34943943 PMCID: PMC8700111 DOI: 10.3390/cells10123435] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) occurs during the pathological process associated with tumor progression and is considered to influence and promote the metastatic cascade. Characterized by loss of cell adhesion and apex base polarity, EMT enhances cell motility and metastasis. The key markers of the epithelial to mesenchymal transition are proteins characteristic of the epithelial phenotype, e.g., E-cadherin, cytokeratins, occludin, or desmoplakin, the concentration and activity of which are reduced during this process. On the other hand, as a result of acquiring the characteristics of mesenchymal cells, an increased amount of N-cadherin, vimentin, fibronectin, or vitronectin is observed. Importantly, epithelial cells undergo partial EMT where some of the cells show both epithelial and mesenchymal characteristics. The significant influence of epigenetic regulatory mechanisms is observed in the gene expression involved in EMT. Among the epigenetic modifications accompanying incorrect genetic reprogramming in cancer are changes in the level of DNA methylation within the CpG islands and posttranslational covalent changes of histone proteins. All observed modifications, which are stable but reversible changes, affect the level of gene expression leading to the development and progression of the disease, and consequently affect the uncontrolled growth of the population of cancer cells.
Collapse
Affiliation(s)
- Ewa Nowak
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | | |
Collapse
|
4
|
Proline Rich Peptides of Neurohypophysial Origin: Related Peptides and Possible Functions. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Granger CJ, Hoyt AK, Moran A, Becker B, Sedani A, Saigh S, Conway SA, Brown J, Galoian K. Cancer stem cells as a therapeutic target in 3D tumor models of human chondrosarcoma: An encouraging future for proline rich polypeptide‑1. Mol Med Rep 2020; 22:3747-3758. [PMID: 32901865 PMCID: PMC7533489 DOI: 10.3892/mmr.2020.11480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Chondrosarcoma is a malignant bone neoplasm that is refractory to chemotherapy and radiation. With no current biological treatments, mutilating surgical resection is the only effective treatment. Proline rich polypeptide 1 (PRP-1), which is a 15-amino acid inhibitor of mammalian target of rapamycin complex-1 (mTORC1), has been indicated to exert cytostatic and immunomodulatory properties in human chondrosarcoma cells in a monolayer. The aim of the present study was to evaluate the effects of PRP-1 on an in vitro 3D chondrosarcoma tumor model, known as spheroids, and on the cancer stem cells (CSCs) which form spheroids. JJ012 cells were cultured and treated with PRP-1. An ALDEFLUOR™ assay was conducted (with N,N-diethylaminobenzaldehyde as the negative control) to assess aldehyde dehydrogenase (ALDH) activity (a recognized CSC marker), and bulk JJ012, ALDHhigh and PRP-1 treated ALDHlow cells were sorted using flow cytometry. Colony formation and spheroid formation assays of cell fractions, including CSCs, were used to compare the PRP-1-treated groups with the control. CSCs were assessed for early apoptosis and cell death with a modified Annexin V/propidium iodide assay. Western blotting was used to identify mesenchymal stem cell markers (STRO1, CD44 and STAT3), and spheroid self-renewal assays were also conducted. A clonogenic dose-response assay demonstrated that 20 µg/ml PRP-1 was the most effective dose for reducing colony formation capacity. Furthermore, CSC spheroid growth was significantly reduced with increasing doses of PRP-1. Annexin V analysis demonstrated that PRP-1 induced CSC cell death, and that this was not attributed to apoptosis or necrosis. Western blot analysis confirmed the expression of mesenchymal markers, and the spheroid self-renewal assay confirmed the presence of self-renewing CSCs. The results of the present study demonstrate that PRP-1 eliminates anchorage independent CSC growth and spheroid formation, indicating that PRP-1 likely inhibits tumor formation in a murine model. Additionally, a decrease in non-CSC bulk tumor cells indicates an advantageous decline in tumor stromal cells. These findings confirm that PRP-1 inhibits CSC proliferation in a 3D tumor model which mimics the behavior of chondrosarcoma in vivo.
Collapse
Affiliation(s)
- Caroline J Granger
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aaron K Hoyt
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexandra Moran
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Beatrice Becker
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anil Sedani
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Shannon Saigh
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Sheila A Conway
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jeffrey Brown
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karina Galoian
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
6
|
Morpho‑functional study of the hypothalamic proline‑rich polypeptide apoptotic activity against mouse Ehrlich ascites carcinoma. Oncol Rep 2020; 44:196-212. [PMID: 32377754 PMCID: PMC7251776 DOI: 10.3892/or.2020.7604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 03/20/2020] [Indexed: 01/22/2023] Open
Abstract
A new type of bioactive polypeptides of the neurosecretory hypothalamus called proline‑rich peptides (PRPs), which are isolated from bovine neurosecretory granules of the neurohypophysis, are synthesized in the form of a common precursor protein (neurophysin vasopressin‑associated glycoprotein). Proline‑rich polypetide 1 (PRP‑1; also known as galarmin) is comprised of 15 amino acids residues, and has been suggested to possess anti‑neurodegenerative, immunoregulatory, hematopoietic, antimicrobial and antitumor properties. The cytostatic, antiproliferative effect of PRP‑1 was demonstrated in the human chondrosarcoma JJ012 and triple negative breast carcinoma MDA MB 231 cell lines. PRP‑1 action is disease and tissue specific. To further explore the antitumorigenic and possible cytotoxic effects of PRP‑1, a morpho‑functional study on the effect of PRP‑1 on a mouse Ehrlich ascites carcinoma (EAC) model was conducted. The PRP‑1‑induced morphological features of EAC cells confirmed the apoptotic nature of PRP‑1, as manifested by cell shrinkage, membrane blebbing, chromosome condensation (pyknosis) and nuclear fragmentation (karyorrhexis). The effect of PRP‑1 on the number of tumor cells incubated for 24 h and their viability in trypan blue‑stained samples lead to a 44% reduction in the number of viable cells on day 11 post‑inoculation vs. 22% inhibition of viable cells after PRP‑1 treatment (0.1 µg/ml) on day 7 post‑inoculation. Apoptosis experiments using an Annexin V‑cyanine 3 apoptosis detection kit indicated that 24 h incubation with 0.1 µg/ml PRP‑1 caused a significant increase in the number of apoptotic cells, reaching 50.33%, compared to 8.33% in the sample control on day 7 post‑inoculation.
Collapse
|
7
|
Hoyt A, Moran A, Granger C, Sedani A, Saigh S, Brown J, Galoian K. PRP‑1 significantly decreases the ALDHhigh cancer stem cell population and regulates the aberrant Wnt/β‑catenin pathway in human chondrosarcoma JJ012 cells. Oncol Rep 2019; 42:103-114. [PMID: 31180539 PMCID: PMC6549102 DOI: 10.3892/or.2019.7172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Chondrosarcomas are malignant bone tumors refractory to chemotherapy and radiation treatment; thus, novel therapeutic strategies are required. Proline‑rich polypeptide 1 (PRP‑1) has previously demonstrated antitumor properties in chondrosarcoma. To further investigate the role of PRP‑1 in chondrosarcoma cells, its effects on cancer stem cell (CSC) populations were determined by analyzing aldehyde dehydrogenase (ALDH) activity, an established marker of CSCs, in association with regulation of the Wnt/β‑catenin signaling. A significant decrease in ALDHhigh CSCs was observed following treatment of chondrosarcoma JJ012 cells with PRP‑1. For RT2 profiler PCR array analysis of Wnt/β‑catenin signaling genes, cells were sorted into: i) Bulk JJ012 cells; ii) ALDHhigh cells sorted from untreated JJ012 cells (ALDHhigh‑untreated); and iii) ALDHlow cells sorted from PRP‑1‑treated JJ012 cells (ALDHlow‑PRP‑1). The expression levels of Wnt/β‑catenin signaling genes were determined to be downregulated in the ALDHhigh‑untreated cells and upregulated in ALDHlow‑PRP‑1 cells when compared to the bulk JJ012 cells. Additionally, two important oncogenes involved in this pathway, MMP7 and CCND2, were found to be downregulated in the ALDHlow‑PRP‑1 cells. Immunocytochemistry demonstrated the localization of β‑catenin in the nuclei of the PRP‑1‑treated cells. Western blotting indicated increased β‑catenin expression in the ALDHlow‑PRP‑1 cells compared with the bulk JJ012 cells. Analysis of the cytoplasmic and nuclear fractions of cells treated with increasing concentrations of PRP‑1 and β‑catenin nuclear translocation inhibitor CGP57380, suggested the nuclear translocation of β‑catenin following PRP‑1 treatment. In addition, treatment of JJ012 cells with a specific ALDH inhibitor, diethylaminobenzaldehyde, and PRP‑1 resulted in a significant decrease in cytoplasmic β‑catenin protein expression. This indicated that ALDH inactivation may be associated with the nuclear translocation of β‑catenin. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway has been previously documented. The findings of the present study support the notion that Wnt/β‑catenin activation may serve a differential role in sarcomas, limiting tumor progression in association with decreased CSC activity.
Collapse
Affiliation(s)
- A.K. Hoyt
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - A. Moran
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - C. Granger
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - A. Sedani
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - S. Saigh
- Sylvester Comprehensive Cancer Center, Flow Cytometry Shared Facility, Miami, FL 33136, USA
| | - J. Brown
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - K.A. Galoian
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
8
|
Role of protein kinase N2 (PKN2) in cigarette smoke-mediated oncogenic transformation of oral cells. J Cell Commun Signal 2018; 12:709-721. [PMID: 29480433 DOI: 10.1007/s12079-017-0442-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/10/2017] [Indexed: 02/06/2023] Open
Abstract
Smoking is the leading cause of preventable death worldwide. Though cigarette smoke is an established cause of head and neck cancer (including oral cancer), molecular alterations associated with chronic cigarette smoke exposure are poorly studied. To understand the signaling alterations induced by chronic exposure to cigarette smoke, we developed a cell line model by exposing normal oral keratinocytes to cigarette smoke for a period of 12 months. Chronic exposure to cigarette smoke resulted in increased cellular proliferation and invasive ability of oral keratinocytes. Proteomic and phosphoproteomic analyses showed dysregulation of several proteins involved in cellular movement and cytoskeletal reorganization in smoke exposed cells. We observed overexpression and hyperphosphorylation of protein kinase N2 (PKN2) in smoke exposed cells as well as in a panel of head and neck cancer cell lines established from smokers. Silencing of PKN2 resulted in decreased colony formation, invasion and migration in both smoke exposed cells and head and neck cancer cell lines. Our results indicate that PKN2 plays an important role in oncogenic transformation of oral keratinocytes in response to cigarette smoke. The current study provides evidence that PKN2 can act as a potential therapeutic target in head and neck squamous cell carcinoma, especially in patients with a history of smoking.
Collapse
|
9
|
Affiliation(s)
- Nicole A. Najor
- Department of Biology, University of Detroit Mercy, Detroit, Michigan 48221
| |
Collapse
|
10
|
Toll like receptors TLR1/2, TLR6 and MUC5B as binding interaction partners with cytostatic proline rich polypeptide 1 in human chondrosarcoma. Int J Oncol 2017; 52:139-154. [PMID: 29138803 PMCID: PMC5743405 DOI: 10.3892/ijo.2017.4199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023] Open
Abstract
Metastatic chondrosarcoma is a bone malignancy not responsive to conventional therapies; new approaches and therapies are urgently needed. We have previously reported that mTORC1 inhibitor, antitumorigenic cytostatic proline rich polypeptide 1 (PRP-1), galarmin caused a significant upregulation of tumor suppressors including TET1/2 and SOCS3 (known to be involved in inflammatory processes), downregulation of oncoproteins and embryonic stem cell marker miR-302C and its targets Nanog, c-Myc and Bmi-1 in human chondrosarcoma. To understand better the mechanism of PRP-1 action it was very important to identify the receptor it binds to. Nuclear pathway receptor and GPCR assays indicated that PRP-1 receptors are not G protein coupled, neither do they belong to family of nuclear or orphan receptors. In the present study, we have demonstrated that PRP-1 binding interacting partners belong to innate immunity pattern recognition toll like receptors TLR1/2 and TLR6 and gel forming secreted mucin MUC5B. MUC5B was identified as PRP-1 receptor in human chondrosarcoma JJ012 cell line using Ligand-receptor capture technology. Toll like receptors TLR1/2 and TLR6 were identified as binding interaction partners with PRP-1 by western blot analysis in human chondrosarcoma JJ012 cell line lysates. Immunocytochemistry experiments confirmed the finding and indicated the localization of PRP-1 receptors in the tumor nucleus predominantly. TLR1/2, TLR6 and MUC5B were downregulated in human chondrosarcoma and upregulated in dose-response manner upon PRP-1 treatment. Experimental data indicated that in this cellular context the mentioned receptors had tumor suppressive function.
Collapse
|
11
|
Galoian K, Patel P. Epigenetic control of cancer by neuropeptides. Biomed Rep 2016; 6:3-7. [PMID: 28123699 DOI: 10.3892/br.2016.804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022] Open
Abstract
Neuropeptides act as neurohormones, neurotransmitters and/or neuromodulators. Neuropeptides maintain physiological homeostasis and are paramount in molecular mechanisms of disease progression and regulation, including in cancer. Neuropeptides, by their definition, originate and are secreted from the neuronal cells, they are able to signal to neighboring cells or are released into the blood flow, if they act as neurohormones. The majority of neuropeptides exert their functions through G protein-coupled receptors, with certain exceptions. Although previous studies indicate that neuropeptides function in supporting proliferation of malignant cells in many types of solid tumor, the antitumorigenic action of the neuropeptides and their receptors, for example, in gastric cancers and chondrosarcoma, were also reported. It is known that epigenetically modified chromatin regulates molecular mechanisms involved in gene expression and malignant progression. The epigenetic modifications are genetically heritable, although they do not cause changes in DNA sequence. DNA methylation, histone modifications and miRNA expression are subject to those modifications. While there is substantial data on epigenetic regulation of neuropeptides, the epigenetic control of cancer by neuropeptides is considered to be uncharted territory. The aim of the current review is to describe the involvement of neuropeptides in the epigenetic machinery of cancer based on data obtained from our laboratory and from other authors.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopedics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Parthik Patel
- Department of Orthopedics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
12
|
Galoian K, Luo S, Qureshi A, Patel P, Price R, Morse AS, Chailyan G, Abrahamyan S, Temple HT. Effect of cytostatic proline rich polypeptide-1 on tumor suppressors of inflammation pathway signaling in chondrosarcoma. Mol Clin Oncol 2016; 5:618-624. [PMID: 27900099 DOI: 10.3892/mco.2016.1010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/11/2016] [Indexed: 12/31/2022] Open
Abstract
Cytokines produced in the tumour microenvironment exert an important role in cancer pathogenesis and in the inhibition of disease progression. Cancer of the cartilage is termed metastatic chondrosarcoma; however, the signaling events resulting in mesenchymal cell transformation to sarcoma have yet to be fully elucidated. The present study aimed to characterize the cytokine expression profile in the human JJ012 chondrosarcoma cell line, as well as the effect of cytostatic proline-rich polypeptide-1 (PRP-1). Western blot experiments demonstrated that the levels of suppressor of cytokine signaling 3 (SOCS3) were upregulated in chondrocytes compared with chondrosarcoma cells. Addition of PRP-1 restored the expression of the tumor suppressors, SOCS3 and ten-eleven-translocation methylcytosine dioxygenase 1 and 2 (TET1/2), in a dose-responsive manner. It is known that methylation of histone H3K9 was eliminated from the promoters of the inflammation-associated genes. PRP-1 inhibited H3K9 demethylase activity with an IC50 (concentration required to give half-maximal inhibition) value of 3.72 µg/ml in the chondrosarcoma cell line. Data obtained from ELISA experiments indicated that the expression of interleukin-6 (IL-6) in chondrosarcoma cells was 86-fold lower compared with that in C28 chondrocytes. In the present study, a 53-fold downregulation of IL-6 expression in co-culture of chondrosarcoma cells and C28 chondrocytes was identified as well. Downregulation of IL-6 expression has been documented in numerous other tumor types, although the reasons for this have not been fully established. In chondrosarcoma, IL-6 manifests itself as an anti-inflammatory agent and, possibly, as an anti-tumorigenic factor. To explore protein-DNA interactions leading to such differences, a gel-shift chemiluminescent assay was performed. Gel shifts were observed for chondrosarcoma and chondrocytes in the lanes that contained nuclear cell extract and oligo-IL-6 DNA. Notably, the DNA-protein complexes in C28 chondrocytes were markedly larger compared with those in chondrosarcoma cells. The mechanisms that underpin such differences, and characterization of the interacting proteins, remain to be fully elucidated.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Shihua Luo
- Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Amir Qureshi
- Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Parthik Patel
- Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Rachel Price
- Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Ashlyn S Morse
- Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Gor Chailyan
- Buniatian Institute of Biochemistry Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - Silva Abrahamyan
- Buniatian Institute of Biochemistry Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - H T Temple
- Center for Translational Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
13
|
Galoian K, Qureshi A, D'Ippolito G, Schiller PC, Molinari M, Johnstone AL, Brothers SP, Paz AC, Temple HT. Epigenetic regulation of embryonic stem cell marker miR302C in human chondrosarcoma as determinant of antiproliferative activity of proline-rich polypeptide 1. Int J Oncol 2015; 47:465-72. [PMID: 26094604 PMCID: PMC4501658 DOI: 10.3892/ijo.2015.3054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023] Open
Abstract
Metastatic chondrosarcoma of mesenchymal origin is the second most common bone malignancy and does not respond either to chemotherapy or radiation; therefore, the search for new therapies is relevant and urgent. We described recently that tumor growth inhibiting cytostatic proline-rich polypeptide 1, (PRP-1) significantly upregulated tumor suppressor miRNAs, downregulated onco-miRNAs in human chondrosarcoma JJ012 cell line, compared to chondrocytes culture. In this study we hypothesized the existence and regulation of a functional marker in cancer stem cells, correlated to peptides antiproliferative activity. Experimental results indicated that among significantly downregulated miRNA after PRP-1treatment was miRNAs 302c*. This miRNA is a part of the cluster miR302-367, which is stemness regulator in human embryonic stem cells and in certain tumors, but is not expressed in adult hMSCs and normal tissues. PRP-1 had strong inhibitory effect on viability of chondrosarcoma and multilineage induced multipotent adult cells (embryonic primitive cell type). Unlike chondrosarcoma, in glioblastoma, PRP-1 does not have any inhibitory activity on cell proliferation, because in glioblastoma miR-302-367 cluster plays an opposite role, its expression is sufficient to suppress the stemness inducing properties. The observed correlation between the antiproliferative activity of PRP-1 and its action on downregulation of miR302c explains the peptides opposite effects on the upregulation of proliferation of adult mesenchymal stem cells, and the inhibition of the proliferation of human bone giant-cell tumor stromal cells, reported earlier. PRP-1 substantially downregulated the miR302c targets, the stemness markers Nanog, c-Myc and polycomb protein Bmi-1. miR302c expression is induced by JMJD2-mediated H3K9me2 demethylase activity in its promoter region. JMJD2 was reported to be a positive regulator for Nanog. Our experimental results proved that PRP-1 strongly inhibited H3K9 activity comprised of a pool of JMJD1 and JMJD2. We conclude that inhibition of H3K9 activity by PRP-1 leads to downregulation of miR302c and its targets, defining the PRP-1 antiproliferative role.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amir Qureshi
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gianluca D'Ippolito
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paul C Schiller
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marco Molinari
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea L Johnstone
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaun P Brothers
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ana C Paz
- Division of Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - H T Temple
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
14
|
Lu L, Zeng H, Gu X, Ma W. Circulating tumor cell clusters-associated gene plakoglobin and breast cancer survival. Breast Cancer Res Treat 2015; 151:491-500. [PMID: 25957595 DOI: 10.1007/s10549-015-3416-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|