1
|
Ferreira T, Dias F, Alves Â, Gama A, Mano JF, Oliveira PA, Medeiros R. Let-7b, miR-29b, and miR-125b as Potential Biomarkers for Differentiating Canine Mammary Carcinoma Histological Types. Animals (Basel) 2024; 15:20. [PMID: 39794962 PMCID: PMC11718878 DOI: 10.3390/ani15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Epigenetics is the study of changes in organisms that result from modifications in gene expression rather than alterations in the genetic code itself [...].
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (F.D.); (Â.A.)
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (F.D.); (Â.A.)
| | - Ângela Alves
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (F.D.); (Â.A.)
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João F. Mano
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (F.D.); (Â.A.)
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Research Department of the Portuguese League against Cancer—Regional Nucleus of the North (Liga Portuguesa Contra o Cancro—Núcleo Regional do Norte), 4200-177 Porto, Portugal
- Virology Service, Portuguese Institute of Oncology (IPO), 4200-072 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal
| |
Collapse
|
2
|
Zhang C, Li Y, Dong Y, Chen W, Yu C. Prediction of miRNA-disease associations based on PCA and cascade forest. BMC Bioinformatics 2024; 25:386. [PMID: 39701957 DOI: 10.1186/s12859-024-05999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND As a key non-coding RNA molecule, miRNA profoundly affects gene expression regulation and connects to the pathological processes of several kinds of human diseases. However, conventional experimental methods for validating miRNA-disease associations are laborious. Consequently, the development of efficient and reliable computational prediction models is crucial for the identification and validation of these associations. RESULTS In this research, we developed the PCACFMDA method to predict the potential associations between miRNAs and diseases. To construct a multidimensional feature matrix, we consider the fusion similarities of miRNA and disease and miRNA-disease pairs. We then use principal component analysis(PCA) to reduce data complexity and extract low-dimensional features. Subsequently, a tuned cascade forest is used to mine the features and output prediction scores deeply. The results of the 5-fold cross-validation using the HMDD v2.0 database indicate that the PCACFMDA algorithm achieved an AUC of 98.56%. Additionally, we perform case studies on breast, esophageal and lung neoplasms. The findings revealed that the top 50 miRNAs most strongly linked to each disease have been validated. CONCLUSIONS Based on PCA and optimized cascade forests, we propose the PCACFMDA model for predicting undiscovered miRNA-disease associations. The experimental results demonstrate superior prediction performance and commendable stability. Consequently, the PCACFMDA is a potent instrument for in-depth exploration of miRNA-disease associations.
Collapse
Affiliation(s)
- Chuanlei Zhang
- Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yubo Li
- Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yinglun Dong
- Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wei Chen
- Computer Science, China University of Mining and Technology, Xuzhou, 221116, China
| | - Changqing Yu
- Electronic Information, Xijing University, Xi'an, 710123, China.
| |
Collapse
|
3
|
Xiao Y, Yang P, Xiao W, Yu Z, Li J, Li X, Lin J, Zhang J, Pei M, Hong L, Yang J, Lin Z, Jiang P, Xiang L, Li G, Ai X, Dai W, Tang W, Wang J. POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration. Chin Med J (Engl) 2024:00029330-990000000-01195. [PMID: 39183556 DOI: 10.1097/cm9.0000000000003181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown. METHODS Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice. RESULTS POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo. Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p, and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p, miR-29a-3p, PIK3R1, and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1, PIK3R1, and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples. CONCLUSIONS The POU2F1-miR-29b-3p/miR-29a-3p-PIK3R1/PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Yizhi Xiao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Ping Yang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wushuang Xiao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhen Yu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaying Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaofeng Li
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jianjiao Lin
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| | - Jieming Zhang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Miaomiao Pei
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Linjie Hong
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Juanying Yang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhizhao Lin
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ping Jiang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Li Xiang
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinbo Ai
- Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Weiyu Dai
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Weimei Tang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jide Wang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| |
Collapse
|
4
|
Choudhury AR, Nagesh AM, Gupta S, Chaturvedi PK, Kumar N, Sandeep K, Pandey D. MicroRNA signature of stromal-epithelial interactions in prostate and breast cancers. Exp Cell Res 2024; 441:114171. [PMID: 39029573 DOI: 10.1016/j.yexcr.2024.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Stromal-epithelial communication is an absolute necessity when it comes to the morphogenesis and pathogenesis of solid tissues, including the prostate and breast. So far, signalling pathways of several growth factors have been investigated. Besides such chemical factors, non-coding RNAs such as miRNAs have recently gained much interest because of their variety and complexity of action. Prostate and breast tissues being highly responsive to steroid hormones such as androgen and estrogen, respectively, it is not surprising that a huge set of available literature critically investigated the interplay between such hormones and miRNAs, especially in carcinogenesis. This review showcases our effort to highlight hormonally-related miRNAs that also somehow perturb the regular stromal-epithelial interactions during carcinogenesis in the prostate and breast. In future, we look forward to exploring how hormonal changes in the tissue microenvironment bring about miRNA-mediated changes in stromal-epithelial interactome in carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Ankit Roy Choudhury
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India; Department of Biology, Philipps University, Marburg, Germany
| | - A Muni Nagesh
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Kumar Sandeep
- Department of Preventive Oncology, Dr. Bhim Rao Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Pandey
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
5
|
Norouzi R, Mohamadzade Z, Norouzi R, Norouzi R, Esmaeili R, Soltani BM. In-silico and in-vitro evidence suggest LINC01405 as a sponge for miR-29b and miR-497-5p, and a potential regulator of Wnt, PI3K, and TGFB signaling pathways in breast carcinoma. Cancer Rep (Hoboken) 2024; 7:e1972. [PMID: 38225865 PMCID: PMC10849987 DOI: 10.1002/cnr2.1972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/09/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Carcinoma of the breast, a prevailing factor in female mortality worldwide, involves dysregulation of lncRNAs and microRNAs. AIM The main goal of this research was to predict and experimentally examine the LINC01405 expression status in breast cancer subtypes, along with investigation of its interaction with miR-29b and miR-497-5p that results in regulating PI3-Kinase, WNT, and TGF-beta signaling pathways. METHODS AND RESULTS We performed a meta-analysis of five GEO datasets, encompassing microarray and RNA-seq data, to identify differentially expressed genes. The Cancer Genome Atlas transcriptome dataset was also analyzed to determine essential gene modules, associated with different stages of breast cancer by weighted gene co-expression networks. In addition, networks of drug-gene interactions were constructed to explore potential treatment options. LINC01405 as a microRNA sponge was chosen and examined. furthermore, downstream target genes were discovered. Experimental validation consisted of plasmid constructs used in cell culture experiments, RT-qPCR for expression analysis, and cell cycle assays. Our bioinformatics findings showed higher LINC01405 expression in Basal-like triple-negative breast carcinoma. In contrast, lower expression in Luminal samples was observed compared with normal samples, which was consistently observed in both breast cancer tissues and cell lines. LINC01405 expression level was correlated with miR-29b and miR-497 levels. The MDA-MB-231 cell line demonstrated higher LINC01405 expression and lower miR-29b and miR-497 expression levels. However, SKBR3 and MCF7 cells had lower LINC01405 expression and higher miR-29b and miR-497 levels, suggesting a regulatory role for LINC01405 as a competing endogenous RNA. This was experimentally confirmed when LINC01405 was overexpressed in SKBR3 cells, and the common target genes of miR-29b and miR-497 were upregulated. Additionally, LINC01405 upregulation led to the increased cell populations, proliferation, and upregulation of critical cancer-related genes, including AKT1, AKT3, mTOR, WNT3A, SMAD3, CYCLIN D1, CYCLIN D2, BCL2, and GSK3B. CONCLUSION We revealed the differential expression of LINC01405 in several types of breast cancer and its role in regulating signaling pathways, potentially via scavenging miRNAs. These findings clarified the role of LINC01405 in breast cancer development and identified potential therapeutic targets.
Collapse
Affiliation(s)
- Romina Norouzi
- Molecular Genetics Department, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Zahra Mohamadzade
- Molecular Genetics Department, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Rambod Norouzi
- Molecular Biosciences DepartmentAutonomous University of MadridMadridSpain
| | | | - Rezvan Esmaeili
- Genetics Department, Center for Breast Cancer ResearchMotamed Cancer InstituteTehranIran
| | - Bahram M. Soltani
- Molecular Genetics Department, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
6
|
Abbas MA, El Sayed IET, Kamel Abdu-Allah AM, Kalam A, Al-Sehemi AG, Al-Hartomy OA, Salah Abd El-rahman M. Expression of MiRNA-29b and MiRNA-31 and their diagnostic and prognostic values in Egyptian females with breast cancer. Noncoding RNA Res 2022; 7:248-257. [PMID: 36247409 PMCID: PMC9530401 DOI: 10.1016/j.ncrna.2022.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Breast cancer is a major health threat to women globally. Many circulating microRNAs are non-invasive cancer biomarkers. In this study, the expression of miR-29b and miR-31 was assessed in blood samples from 200 patients with breast cancer and wholesome volunteer women using quantitative reverse transcriptase PCR to evaluate their role in the disease. MiR-29b was significantly overexpressed in patients compared to controls. Multivariate regression analysis showed that it was an established risk factor for relapse and mortality. MiR-31 was significantly under-expressed in patients. It was an established risk factor for relapse and was strongly associated with mortality. For the prediction of relapse, miR-29b had a sensitivity of 81.25% and a specificity of 88.24% at a cutoff of > 30.09, while miR-31 had a sensitivity of 87.50% and a specificity of 79.41% at a cutoff of 0.12. The specificity was enhanced to 100% by combining the values of miR-29b and miR-31. In predicting mortality, miR-29b exhibited a sensitivity of 90% and a specificity of 97.5% at a cutoff of > 48.10. At a cutoff of 0.119, miR-31 exhibited a sensitivity of 87.50% and a specificity of 79.41%. High miR-29b expression and low miR-31 expression were linked with a low survival rate. MiR-29b and miR-31 could be useful markers for predicting breast cancer relapse and mortality.
Collapse
|
7
|
Mir-29b in Breast Cancer: A Promising Target for Therapeutic Approaches. Diagnostics (Basel) 2022; 12:diagnostics12092139. [PMID: 36140539 PMCID: PMC9497770 DOI: 10.3390/diagnostics12092139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The miR-29 family comprises miR-29a, miR-29b, and miR-29c, and these molecules play crucial and partially overlapped functions in solid tumors, in which the different isoforms are variously de-regulated and mainly correlated with tumor suppression. miR-29b is the most expressed family member in cancer, in which it is involved in regulating gene expression at both transcriptional and post-transcriptional levels. This review focuses on the role of miR-29b in breast cancer, in which it plays a controversial role as tumor suppressor or onco-miRNA. Here we have highlighted the dual effect of miR-29b on breast tumor features, which depend on the prevailing function of this miRNA, on the mature miR-29b evaluated, and on the breast tumor characteristics. Remarkably, the analyzed miR-29b form emerged as a crucial element in the results obtained by various research groups, as the most abundant miR-29b-3p and the less expressed miR-29b1-5p seem to play distinct roles in breast tumors with different phenotypes. Of particular interest are the data showing that miR-29b1-5p counteracts cell proliferation and migration and reduces stemness in breast tumor cells with a triple negative phenotype. Even if further studies are required to define exactly the role of each miR-29b, our review highlights its possible implication in phenotype-specific management of breast tumors.
Collapse
|
8
|
Nguyen TTP, Suman KH, Nguyen TB, Nguyen HT, Do DN. The Role of miR-29s in Human Cancers—An Update. Biomedicines 2022; 10:biomedicines10092121. [PMID: 36140219 PMCID: PMC9495592 DOI: 10.3390/biomedicines10092121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that directly bind to the 3’ untranslated region (3’-UTR) of the target mRNAs to inhibit their expression. The miRNA-29s (miR-29s) are suggested to be either tumor suppressors or oncogenic miRNAs that are strongly dysregulated in various types of cancer. Their dysregulation alters the expression of their target genes, thereby exerting influence on different cellular pathways including cell proliferation, apoptosis, migration, and invasion, thereby contributing to carcinogenesis. In the present review, we aimed to provide an overview of the current knowledge on the miR-29s biological network and its functions in cancer, as well as its current and potential applications as a diagnostic and prognostic biomarker and/or a therapeutic target in major types of human cancer.
Collapse
Affiliation(s)
- Thuy T. P. Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kamrul Hassan Suman
- Department of Fisheries, Ministry of Fisheries and Livestock, Dhaka 1205, Bangladesh
| | - Thong Ba Nguyen
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Vietnam
- Correspondence: (H.T.N.); (D.N.D.)
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: (H.T.N.); (D.N.D.)
| |
Collapse
|
9
|
Man X, Li Q, Wang B, Zhang H, Zhang S, Li Z. DNMT3A and DNMT3B in Breast Tumorigenesis and Potential Therapy. Front Cell Dev Biol 2022; 10:916725. [PMID: 35620052 PMCID: PMC9127442 DOI: 10.3389/fcell.2022.916725] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 01/15/2023] Open
Abstract
Breast cancer has become a leading cause of cancer-related deaths in women worldwide. DNA methylation has been revealed to play an enormously important role in the development and progression of breast cancer. DNA methylation is regulated by DNA methyltransferases (DNMTs), including DNMT1, DNMT2, and DNMT3. DNMT3 family has three members: DNMT3A, DNMT3B, and DNMT3L. The roles and functions of DNMT1 in breast cancer have been well reviewed. In this article, the roles of DNMT3A and DNMT3B in breast tumorigenesis and development are reviewed. We also discuss the SNP and mutations of DNMT3A and DNMT3B in breast cancer. In addition, we summarize how DNMT3A and DNMT3B are regulated by non-coding RNAs and signaling pathways in breast cancer, and targeting the expression levels of DNMT3A and DNMT3B may be a promising therapeutic approach for breast cancer. This review will provide reference for further studies on the biological functions and molecular mechanisms of DNMT3A and DNMT3B in breast cancer.
Collapse
Affiliation(s)
- Xiaxia Man
- Department of Oncologic Gynecology, the First Hospital of Jilin University, Jilin, China
| | - Qi Li
- State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, the First Hospital of Jilin University, Jilin, China
| | - Baogang Wang
- Department of Cardiac Surgery, the First Hospital of Jilin University, Jilin, China
| | - He Zhang
- Department of Oncologic Gynecology, the First Hospital of Jilin University, Jilin, China
| | - Songling Zhang
- Department of Oncologic Gynecology, the First Hospital of Jilin University, Jilin, China
| | - Ziyi Li
- State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, the First Hospital of Jilin University, Jilin, China
| |
Collapse
|
10
|
CEA, CA 15-3, and miRNA expression as potential biomarkers in canine mammary tumors. Chromosome Res 2021; 29:175-188. [PMID: 33638118 DOI: 10.1007/s10577-021-09652-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The most often detected tumor in intact bitches is mammary tumors and represents a significant clinical problem throughout the world. Mammary neoplasms in canine have heterogeneous morphology, so the choice of the most appropriate biomarker is the biggest challenge in CMT detection. We performed a retrospective analysis and evaluated the canine cancer antigens and miRNA expression profiles as potential biomarkers. Sixty dogs based on histological examination divided into three groups, viz., dogs with a benign mammary tumor, malignant mammary tumor, and control/healthy. The CA 15-3 was found more sensitive than CEA but detection of both will increase sensitivity. miR-21 expression differed significantly in all three groups. miR-29b expression differed significantly between the control and benign group and control and malignant group. The miR-21 overexpression and miR-29b downregulation with CMT are associated with clinical stage and can be used as non-invasive diagnostic and prognostic biomarkers. Hence, evaluation of CA 15-3 along with CEA would be a non-invasive technique for detecting canine mammary tumors. Evaluation of deregulated circulating miR-21 could be a valuable prognostic marker for early detection of mammary tumors in canines while miR-29b can add sensitivity in the detection of the canine mammary tumors if evaluated with miR-21.
Collapse
|
11
|
Ben-Elazar S, Aure MR, Jonsdottir K, Leivonen SK, Kristensen VN, Janssen EAM, Kleivi Sahlberg K, Lingjærde OC, Yakhini Z. miRNA normalization enables joint analysis of several datasets to increase sensitivity and to reveal novel miRNAs differentially expressed in breast cancer. PLoS Comput Biol 2021; 17:e1008608. [PMID: 33566819 PMCID: PMC7901788 DOI: 10.1371/journal.pcbi.1008608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/23/2021] [Accepted: 12/06/2020] [Indexed: 01/24/2023] Open
Abstract
Different miRNA profiling protocols and technologies introduce differences in the resulting quantitative expression profiles. These include differences in the presence (and measurability) of certain miRNAs. We present and examine a method based on quantile normalization, Adjusted Quantile Normalization (AQuN), to combine miRNA expression data from multiple studies in breast cancer into a single joint dataset for integrative analysis. By pooling multiple datasets, we obtain increased statistical power, surfacing patterns that do not emerge as statistically significant when separately analyzing these datasets. To merge several datasets, as we do here, one needs to overcome both technical and batch differences between these datasets. We compare several approaches for merging and jointly analyzing miRNA datasets. We investigate the statistical confidence for known results and highlight potential new findings that resulted from the joint analysis using AQuN. In particular, we detect several miRNAs to be differentially expressed in estrogen receptor (ER) positive versus ER negative samples. In addition, we identify new potential biomarkers and therapeutic targets for both clinical groups. As a specific example, using the AQuN-derived dataset we detect hsa-miR-193b-5p to have a statistically significant over-expression in the ER positive group, a phenomenon that was not previously reported. Furthermore, as demonstrated by functional assays in breast cancer cell lines, overexpression of hsa-miR-193b-5p in breast cancer cell lines resulted in decreased cell viability in addition to inducing apoptosis. Together, these observations suggest a novel functional role for this miRNA in breast cancer. Packages implementing AQuN are provided for Python and Matlab: https://github.com/YakhiniGroup/PyAQN. This work demonstrates a practical approach to the joint-analysis of multiple miRNA expression profiling datasets acquired with different measurement technologies. The use of different platforms in miRNA profiling can lead to major differences in results. In particular, some miRNA species are less amenable to detection and quantification by certain platforms or designs. Our approach, termed AQuN, combines quantile normalization with special attention to missing entities, to normalize miRNA expression across datasets, technologies, designs and platforms. As we show, our proposed approach uncovers patterns of interest that would not have emerged as statistically significant when analyzing the datasets individually or with other standard-practice normalization methods. Amongst our findings, we noted a previously undocumented miRNA that is significantly over-expressed in samples from estrogen-receptor positive breast cancer patients as compared to samples from estrogen-receptor negative patients. We further investigated this miRNA, hsa-miR-193b-5p, and experimentally show, in cell lines, that its expression level impacts the viability of tumor cells. AQuN is available to the community in the form of Python and Matlab packages. The joint-processed data is also made available for further investigation.
Collapse
Affiliation(s)
- Shay Ben-Elazar
- School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
- Department of Computer Science, Interdisciplinary Center, Herzliya, Israel
- * E-mail: (SBE); (MRA); (ZY)
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- * E-mail: (SBE); (MRA); (ZY)
| | - Kristin Jonsdottir
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Suvi-Katri Leivonen
- Helsinki University Hospital Comprehensive Cancer Centre and University of Helsinki, Helsinki, Finland
| | - Vessela N. Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Emiel A. M. Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Kristine Kleivi Sahlberg
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Research, Vestre Viken Hospital Trust, Drammen, Norway
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Zohar Yakhini
- Department of Computer Science, Interdisciplinary Center, Herzliya, Israel
- Department of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel
- * E-mail: (SBE); (MRA); (ZY)
| |
Collapse
|
12
|
c-myc regulates the sensitivity of breast cancer cells to palbociclib via c-myc/miR-29b-3p/CDK6 axis. Cell Death Dis 2020; 11:760. [PMID: 32934206 PMCID: PMC7493901 DOI: 10.1038/s41419-020-02980-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022]
Abstract
Palbociclib, a CDK4/6 inhibitor, has been granted accelerated approval by US FDA for hormone receptor-positive HER2-negative metastatic breast cancer. To determine potential biomarkers of palbociclib sensitivity to assist in patient selection and clinical development, we investigated the effects of palbociclib in a panel of molecularly characterized breast cancer cell lines. We quantified palbociclib sensitivity and c-myc expression in 11 breast cancer cell lines, 124 breast cancer samples, and The Cancer Genome Atlas database. We found non-TNBC subtypes were more sensitive to palbociclib than TNBC. Activation of c-myc led to differential palbociclib sensitivities, and further inhibition of c-myc enhanced palbociclib sensitivity. Moreover, we identified for the first time a c-myc/miR-29b-3p/CDK6 axis in breast cancer that could be responsible for c-myc-induced palbociclib insensitivity, in which c-myc activation resulted in downregulation of miR-29b-3p, further activated CDK6 and inhibited cell-cycle arrest at G1 phase. Moreover, downregulated (inactived) c-myc-induced oncogenic addiction could increase palbociclib efficacy, using both Xenograft model and patient-derived tumor xenograft (PDTX) model. Our finding extends the concept of combined blockade of the CDK4/6 and c-myc signaling pathways to increase palbociclib sensitivity, making c-myc a promising biomarker for palbociclib sensitivity in breast cancer.
Collapse
|
13
|
Wang W, Wang M, Xu J, Long F, Zhan X. Overexpressed GATA3 enhances the sensitivity of colorectal cancer cells to oxaliplatin through regulating MiR-29b. Cancer Cell Int 2020; 20:339. [PMID: 32760217 PMCID: PMC7379773 DOI: 10.1186/s12935-020-01424-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background GATA binding protein 3 (GATA3) and miR-29b are related to colorectal cancer (CRC). The current study explored the regulatory relationship between GATA3 and miR-29b, and the mechanism of the two in the drug resistance of CRC cells to oxaliplatin. Method Apoptosis of CRC cells induced by oxaliplatin at various doses was detected by flow cytometry. CRC cells were separately transfected with overexpression and knockdown of GATA3, miR-29b agomir and antagomir, and treated by oxaliplatin to detect the cell viability and apoptosis by performing Cell Couting Kit-8 (CCK-8) and flow cytometry. The expression levels of GATA3, caspase3 and cleaved caspase3 were determined by Western blot, and the expression of miR-29b was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Animal experiments were performed to examine the changes of transplanted tumors in nude mouse xenograft studies and observed by in vivo imaging. TUNEL staining was performed to detect tumor cell apoptosis. Result Both GATA3 and miR-29b agomir inhibited the activity of the CRC cells, promoted apoptosis and Cleaved caspase3 expression, and reduced the resistance of the cells to chemotherapy drug oxaliplatin. Although GATA3 could up-regulate miR-29b expression, the tumor-suppressive effect of GATA3 was partially reversed by miR-29b antagomir. In vivo experiments showed that down-regulating the expression of GATA3 promoted the growth rate and volume of transplanted tumors, while overexpressing GATA3 had no significant effect on tumor growth. TUNEL staining results showed that knocking down or overexpression of GATA3 did not cause significant changes to apoptotic bodies of CRC cells, while oxaliplatin treatment increased the number of apoptotic bodies. Conclusion GATA3 inhibits the cell viability of CRC cells, promotes apoptosis, and reduces oxaliplatin resistance of CRC cells through regulating miR-29b.
Collapse
Affiliation(s)
- Wei Wang
- Department of Oncology, Changhai Hospital of Shanghai, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433 China
| | - Mei Wang
- Department of Oncology, North Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- Department of Oncology, Changhai Hospital of Shanghai, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433 China
| | - Fei Long
- Department of Oncology, Changhai Hospital of Shanghai, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433 China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital of Shanghai, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433 China
| |
Collapse
|
14
|
Yin H, Wang Y, Wu Y, Zhang X, Zhang X, Liu J, Wang T, Fan J, Sun J, Yang A, Zhang R. EZH2-mediated Epigenetic Silencing of miR-29/miR-30 targets LOXL4 and contributes to Tumorigenesis, Metastasis, and Immune Microenvironment Remodeling in Breast Cancer. Theranostics 2020; 10:8494-8512. [PMID: 32754259 PMCID: PMC7392008 DOI: 10.7150/thno.44849] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/21/2020] [Indexed: 12/14/2022] Open
Abstract
Enhancer of Zeste Homolog 2 (EZH2), a key epigenetic regulator, is involved in breast cancer progression and metastasis. LOXL4 is increasingly recognized as an important player in cancer progression. To date, how EZH2 regulates LOXL4 in the progression of breast cancer remains unclear. Methods: We evaluated the association between LOX family proteins and EZH2 in invasive breast carcinoma through the starBase v2.0 analysis, and its correlation with breast tumorigenesis using the Oncomine dataset. We then applied miRcode data combined with gene expression omnibus (GEO) data to screen candidate miRNAs mediating the regulation of LOXL4 by EZH2. We explored the regulatory mechanism of EZH2, miR-29b/miR-30d, and LOXL4 in breast cancer cells by qRT-PCR, Western blotting, cell proliferation, colony formation, and wound healing assays, xenograft experiments, dual-luciferase reporter assay, and chromatin immunoprecipitation. All statistical tests were two-sided. Results: Inhibition of EZH2 or LOXL4, or miR-29b/miR-30d overexpression, decreased breast cancer cell proliferation, migration, and metastasis in vitro and in vivo. LOXL4 was identified as a direct target of miR-29b and miR-30d. EZH2 inhibition enhanced miR-30d and miR-29b transcription via promoter binding activity, leading to the reduced expression of LOXL4. Immunohistochemical analysis of human breast cancer specimens and flow cytometry analysis of tumor-infiltrating macrophages in mice showed a positive association of EZH2 with LOXL4 expression and macrophage infiltration. Conclusions: Our findings identified EZH2-miR-29b/miR-30d-LOXL4 signaling pathway was involved in breast tumorigenesis, and suggested that the epigenetic modulation represents a potential therapeutic target for breast cancer by controlling macrophage activation.
Collapse
|
15
|
Zografos E, Zagouri F, Kalapanida D, Zakopoulou R, Kyriazoglou A, Apostolidou K, Gazouli M, Dimopoulos MA. Prognostic role of microRNAs in breast cancer: A systematic review. Oncotarget 2019; 10:7156-7178. [PMID: 31903173 PMCID: PMC6935258 DOI: 10.18632/oncotarget.27327] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to play an important role in breast cancer, functioning either as potential oncogenes or tumor suppressor genes, but their role in the prognosis of patients remains unclear. The aim of the present review study is to highlight recent preclinical and clinical studies performed on both circulating and tissue-specific miRNAs and their potential role as prognostic markers in breast cancer. We systematically searched the PubMed database to explore the prognostic value of miRNAs in breast cancer. After performing the literature search and review, 117 eligible studies were identified. We found that 110 aberrantly expressed miRNAs have been associated with prognosis in breast cancer. In conclusion, the collective data presented in this review indicate that miRNAs could serve as novel prognostic tools in breast cancer, while the clinical application of these findings has yet to be verified.
Collapse
Affiliation(s)
- Eleni Zografos
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Kalapanida
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Roubini Zakopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Kyriazoglou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleoniki Apostolidou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
16
|
Zhong F, Huang T, Leng J. Serum miR-29b as a novel biomarker for glioblastoma diagnosis and prognosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4106-4112. [PMID: 31933806 PMCID: PMC6949802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Altered expression of serum microRNAs (miRNA) has been reported to correlate with carcinogenesis and progression of glioblastoma (GBM). This study assessed the potential diagnostic and prognostic value of serum miR-29b for GBM. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect the expression levels of serum miR-29b in 107 patients with GBM patients, 40 patients with anaplastic astrocytoma (AA) and 80 healthy volunteers. The results showed that serum miR-29b levels were much lower in patients with GBM than in those with AA or healthy controls. Receiver operating characteristic (ROC) curve analysis revealed that serum exosomal miR-29b could effectively distinguish GBM patients from AA patients or normal controls. In addition, serum exosomal miR-29b level was significantly increased after treatment. Low serum exosomal miR-29b expression was strongly associated with aggressive clinical findings and shorter survival. Moreover, the Cox regression analysis demonstrated that serum exosomal miR-29b was an independent prognostic indicator. Collectively, serum exosomal miR-29b might be a promising biomarker for predicting prognosis of GBM.
Collapse
Affiliation(s)
- Fengying Zhong
- Department of Neurosurgery, Jiangxi Provincial People’s HospitalNanchang City, Jiangxi Province, P. R. China
| | - Ting Huang
- Department of Neurology, Jiangxi Provincial Children’s HospitalNanchang City, Jiangxi Province, P. R. China
| | - Jingxing Leng
- Department of Neurosurgery, Jiangxi Provincial People’s HospitalNanchang City, Jiangxi Province, P. R. China
| |
Collapse
|
17
|
Klinge CM, Piell KM, Tooley CS, Rouchka EC. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep 2019; 9:9430. [PMID: 31263129 PMCID: PMC6603045 DOI: 10.1038/s41598-019-45636-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are dysregulated in breast cancer. Heterogeneous Nuclear Ribonucleoprotein A2/B1 (HNRNPA2/B1) is a reader of the N(6)-methyladenosine (m6A) mark in primary-miRNAs (pri-miRNAs) and promotes DROSHA processing to precursor-miRNAs (pre-miRNAs). We examined the expression of writers, readers, and erasers of m6A and report that HNRNPA2/B1 expression is higher in tamoxifen-resistant LCC9 breast cancer cells as compared to parental, tamoxifen-sensitive MCF-7 cells. To examine how increased expression of HNRNPA2/B1 affects miRNA expression, HNRNPA2/B1 was transiently overexpressed (~5.4-fold) in MCF-7 cells for whole genome miRNA profiling (miRNA-seq). 148 and 88 miRNAs were up- and down-regulated, respectively, 48 h after transfection and 177 and 172 up- and down-regulated, respectively, 72 h after transfection. MetaCore Enrichment analysis identified progesterone receptor action and transforming growth factor β (TGFβ) signaling via miRNA in breast cancer as pathways downstream of the upregulated miRNAs and TGFβ signaling via SMADs and Notch signaling as pathways of the downregulated miRNAs. GO biological processes for mRNA targets of HNRNPA2/B1-regulated miRNAs included response to estradiol and cell-substrate adhesion. qPCR confirmed HNRNPA2B1 downregulation of miR-29a-3p, miR-29b-3p, and miR-222 and upregulation of miR-1266-5p, miR-1268a, miR-671-3p. Transient overexpression of HNRNPA2/B1 reduced MCF-7 sensitivity to 4-hydroxytamoxifen and fulvestrant, suggesting a role for HNRNPA2/B1 in endocrine-resistance.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Christine Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Eric C Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
18
|
Zhang T, Xue X, Peng H. Therapeutic Delivery of miR-29b Enhances Radiosensitivity in Cervical Cancer. Mol Ther 2019; 27:1183-1194. [PMID: 31029553 PMCID: PMC6554684 DOI: 10.1016/j.ymthe.2019.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Radioresistant cervical cancer is likely to give rise to local recurrence, distant metastatic relapse, and decreased survival rates. Recent studies revealed microRNA mediated regulation of tumor aggressiveness and metastasis; however, whether specific microRNAs regulate tumor radioresistance and can be exploited as radiosensitizing agents remains unclear. Here, we find that miR-29b could promote radiosensitivity in radioresistant subpopulations of cervical cancer cells. Notably, therapeutic delivery of miR-29b mimics via R11-SSPEI nanoparticle, whose specificity has been proved by our previous studies, can sensitize the tumor to radiation in a xenograft model. Mechanistically, we reveal a novel function of miR-29b in regulating intracellular reactive oxygen species signaling and explore a potential application for its use in combination with therapies known to increase oxidative stress such as radiation. Moreover, miR-29b inhibits DNA damage repair by targeting phosphate and tension homology deleted on chromsome ten (PTEN), and overexpression of PTEN could partially rescue miR-29b-mediated homologous recombination (HR)-DNA damage repair and increase radiosensitivity. These findings identify miR-29b as a radiosensitizing microRNA and reveal a new therapeutic strategy for radioresistant tumors.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Gynecology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Xiang Xue
- Department of Gynecology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.
| | - Huixia Peng
- Department of Gynecology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Wang P, Yan Y, Yu W, Zhang H. Role of ten-eleven translocation proteins and 5-hydroxymethylcytosine in hepatocellular carcinoma. Cell Prolif 2019; 52:e12626. [PMID: 31033072 PMCID: PMC6668972 DOI: 10.1111/cpr.12626] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
In mammals, methylation of the 5th position of cytosine (5mC) seems to be a major epigenetic modification of DNA. This process can be reversed (resulting in cytosine) with high efficiency by dioxygenases of the ten‐eleven translocation (TET) family, which perform oxidation of 5mC to 5‐hydroxymethylcytosine (5hmC), 5‐formylcytosine and 5‐carboxylcytosine. It has been demonstrated that these 5mC oxidation derivatives are in a dynamic state and have pivotal regulatory functions. Here, we comprehensively summarized the recent research progress in the understanding of the physiological functions of the TET proteins and their mechanisms of regulation of DNA methylation and transcription. Among the three TET genes, TET1 and TET2 expression levels have frequently been shown to be low in hepatocellular carcinoma (HCC) tissues and received most attention. The modulation of TET1 also correlates with microRNAs in a post‐transcriptional regulatory process. Additionally, recent studies revealed that global genomic 5hmC levels are down‐regulated in HCC tissues and cell lines. Combined with the reported results, identification of 5hmC signatures in HCC tissues and in circulating cell‐free DNA will certainly contribute to early detection and should help to design therapeutic strategies against HCC. 5hmC might also be a novel prognostic biomarker of HCC. Thus, a detailed understanding of the molecular mechanisms resulting in the premalignant and aggressive transformation of TET proteins and cells with 5hmC disruption might help to develop novel epigenetic therapies for HCC.
Collapse
Affiliation(s)
- Penghui Wang
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunmeng Yan
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Yu
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongyi Zhang
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
MiR-29b-1-5p is altered in BRCA1 mutant tumours and is a biomarker in basal-like breast cancer. Oncotarget 2018; 9:33577-33588. [PMID: 30323900 PMCID: PMC6173367 DOI: 10.18632/oncotarget.26094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Depletion of BRCA1 protein in mouse mammary glands results in defects in lactational development and increased susceptibility to mammary cancer. Extensive work has focussed on the role of BRCA1 in the normal breast and in the development of breast cancer, the cell of origin for BRCA1 tumours and the protein-coding genes altered in BRCA1 deficient cells. However, the role of non-coding RNAs in BRCA1-deficient cells is poorly understood. To evaluate miRNA expression in BRCA1 deficient mammary cells, RNA sequencing was performed on the mammary glands of Brca1 knockout mice. We identified 140 differentially expressed miRNAs, 9 of which were also differentially expressed in human BRCA1 breast tumours or familial non-BRCA1 patients and during normal gland development. We show that BRCA1 binds to putative cis-elements in promoter regions of the miRNAs with the potential to regulate their expression, and that four miRNAs (miR-29b-1-5p, miR-664, miR-16-2 and miR-744) significantly stratified the overall survival of basal-like tumours. Importantly the prognostic value of miR-29b-1-5p was higher in significance than several commonly used clinical biomarkers. These results emphasise the role of Brca1 in modulating expression of miRNAs and highlights the potential for BRCA1 regulated miRNAs to be informative biomarkers associated with BRCA1 loss and survival in breast cancer.
Collapse
|
21
|
Malik DES, David RM, Gooderham NJ. Mechanistic evidence that benzo[a]pyrene promotes an inflammatory microenvironment that drives the metastatic potential of human mammary cells. Arch Toxicol 2018; 92:3223-3239. [PMID: 30155724 PMCID: PMC6132703 DOI: 10.1007/s00204-018-2291-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
Abstract
Benzo[a]pyrene (B(a)P) is a major cancer-causing contaminant present in food such as cooked meats and cereals, and is ubiquitous in the environment in smoke derived from the combustion of organic material. Exposure to B(a)P is epidemiologically linked with the incidence of breast cancer. Although B(a)P is recognized as a complete genotoxic carcinogen, thought to act primarily via CYP-mediated metabolic activation to DNA-damaging species, there is also evidence that B(a)P exposure elicits other biological responses that promote development of the cancer phenotype. Here in mechanistic studies using human mammary cells MCF-7 and MDA-MB-231, we have explored mechanisms whereby B(a)P (10- 8 to 10- 5M) promotes inflammation pathways via TNF-α and NFκB leading to IL-6 upregulation, microRNA (Let7a, miR21 and miR29b) dysregulation and activation of VEGF. The miRNA dysregulation is associated with altered expression of inflammation mediators and increased migration and invasive potential of human mammary cancer cells. Our data suggest that mammary cell exposure to B(a)P results in perturbation of inflammation mediators and dysregulation of tumorigenic miRNAs, leading to an inflammation microenvironment that facilitates migration and invasion of mammary epithelial cells. These properties of B(a)P, together with its well-established metabolic activation to DNA-damaging species, offer mechanistic insights into its carcinogenic mode of action.
Collapse
Affiliation(s)
- Durr-E-Shahwar Malik
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Rhiannon M David
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK
- Genetic Toxicology, Drug Safety and Metabolism, MSAS Unit, AstraZeneca, Cambridge, UK
| | - Nigel J Gooderham
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
22
|
Expression Analysis of miR-29b in Malignant and Benign Breast Tumors: A Promising Prognostic Biomarker for Invasive Ductal Carcinoma With a Possible Histotype-Related Expression Status. Clin Breast Cancer 2018; 18:305-312.e3. [DOI: 10.1016/j.clbc.2017.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/02/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022]
|
23
|
Drago-Ferrante R, Pentimalli F, Carlisi D, De Blasio A, Saliba C, Baldacchino S, Degaetano J, Debono J, Caruana-Dingli G, Grech G, Scerri C, Tesoriere G, Giordano A, Vento R, Di Fiore R. Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation. Oncotarget 2018; 8:28939-28958. [PMID: 28423652 PMCID: PMC5438704 DOI: 10.18632/oncotarget.15960] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/18/2017] [Indexed: 01/06/2023] Open
Abstract
MiR-29 family dysregulation occurs in various cancers including breast cancers. We investigated miR-29b-1 functional role in human triple negative breast cancer (TNBC) the most aggressive breast cancer subtype. We found that miR-29b-1-5p was downregulated in human TNBC tissues and cell lines. To assess whether miR-29b-1-5p correlated with TNBC regenerative potential, we evaluated cancer stem cell enrichment in our TNBC cell lines, and found that only MDA-MB-231 and BT-20 produced primary, secondary and tertiary mammospheres, which were progressively enriched in OCT4, NANOG and SOX2 stemness genes. MiR-29b-1-5p expression inversely correlated with mammosphere stemness potential, and miR-29b-1 ectopic overexpression decreased TNBC cell growth, self-renewal, migration, invasiveness and paclitaxel resistance repressing WNT/βcatenin and AKT signaling pathways and stemness regulators. We identified SPINDLIN1 (SPIN1) among predicted miR-29b-1-5p targets. Consistently, SPIN1 was overexpressed in most TNBC tissues and cell lines and negatively correlated with miR-29b-1-5p. Target site inhibition showed that SPIN1 seems to be directly controlled by miR-29b-1-5p. Silencing SPIN1 mirrored the effects triggered by miR-29b-1 overexpression, whereas SPIN1 rescue by SPIN1miScript protector, determined the reversal of the molecular effects produced by the mimic-miR-29b-1-5p. Overall, we show that miR-29b-1 deregulation impacts on multiple oncogenic features of TNBC cells and their renewal potential, acting, at least partly, through SPIN1, and suggest that both these factors should be evaluated as new possible therapeutic targets against TNBC.
Collapse
Affiliation(s)
- Rosa Drago-Ferrante
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Daniela Carlisi
- Laboratory of Biochemistry, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Polyclinic, Palermo, Italy
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Christian Saliba
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, MSD, Malta
| | - Shawn Baldacchino
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, MSD, Malta
| | - James Degaetano
- Department of Pathology, Mater Dei Hospital, Msida, MSD, Malta
| | - Joseph Debono
- Department of Surgery, Mater Dei Hospital, Msida, MSD, Malta
| | | | - Godfrey Grech
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, MSD, Malta
| | - Christian Scerri
- Department of Pathology, Mater Dei Hospital, Msida, MSD, Malta.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, MSD, Malta
| | - Giovanni Tesoriere
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Associazione Siciliana per la Lotta contro i Tumori (ASLOT), Palermo, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery & Neuroscience University of Siena, Italy
| | - Renza Vento
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Associazione Siciliana per la Lotta contro i Tumori (ASLOT), Palermo, Italy
| | - Riccardo Di Fiore
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy.,Associazione Siciliana per la Lotta contro i Tumori (ASLOT), Palermo, Italy
| |
Collapse
|
24
|
Zhao X, Hou Y, Tuo Z, Wei F. Application values of miR-194 and miR-29 in the diagnosis and prognosis of gastric cancer. Exp Ther Med 2018; 15:4179-4184. [PMID: 29725366 PMCID: PMC5920402 DOI: 10.3892/etm.2018.5931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
The object of this study was to analyze the expression of miR-194 and miR-29 in gastric cancer and their roles in the regulation of malignant phenotype of gastric cancer cells, and to explore the application value of miR-194 and miR-29 in diagnosis and prognosis of gastric cancer. Tumor tissue and adjacent healthy tissue of 165 gastric cancer patients diagnosed by pathologic examinations were collected. Expression of miR-194 and miR-29 in the tissues was detected by RT-PCR. The relationship between miR-194 and miR-29 expression and clinical data was analyzed. SGC7901 cells were treated with miR-194 and miR-29 mimics, respectively. Effects of miR-194 and miR-29 on proliferation and invasion of SGC7901 cells were investigated. Expression levels of miR-194 and miR-29 in tumor tissue were lower than those in adjacent tissues (P<0.001). There was no significant difference in expression level of miR-194 and miR-29 in cancer tissues derived from gastric cancer patients in different age and gender groups (P>0.05). Expression of miR-194 and miR-29 in tumor tissue was closely related to TNM stage, differentiation degree of cancer cells and lymph node metastasis (P<0.05). Proliferation and migration of SGC7901 cells were significantly inhibited by miR-194 mimic and miR-29 mimic transfection (P<0.05). miR-194 and miR-29 are downregulated in gastric cancer, and the expression levels of miR-194 and miR-29 were closely related to tumor differentiation and metastasis. Overexpression of miR-194 and miR-29 significantly inhibited the proliferation and migration of gastric cancer. The detection of the expression of miR-194 and miR-29 can provide basis for the diagnosis and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Xin Zhao
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yunxia Hou
- Department of Clinical Laboratory, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Zhongzhen Tuo
- Department of Clinical Laboratory, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Fangmeng Wei
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
25
|
Wang H, An X, Yu H, Zhang S, Tang B, Zhang X, Li Z. MiR-29b/TET1/ZEB2 signaling axis regulates metastatic properties and epithelial-mesenchymal transition in breast cancer cells. Oncotarget 2017; 8:102119-102133. [PMID: 29254230 PMCID: PMC5731940 DOI: 10.18632/oncotarget.22183] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/27/2017] [Indexed: 12/21/2022] Open
Abstract
MiR-29b has been reported to be both a suppressor and a promoter in breast cancer (BC) cells proliferation and metastasis. Significant efforts have been made to explain the seemingly contradictory effects of miR-29b on BC, but no answer has yet been clearly verified. In this study, we overexpressed and knocked down miR-29b in BC cell lines, modulated expression of its downstream target gene TET1 and downregulated a downstream target gene of TET1, ZEB2, to explore the regulatory mechanism of miR-29b in BC cell proliferation, migration and epithelial-mesenchymal transition (EMT). Our results showed lower expression of miR-29b in BC samples and cell lines. Functional assays showed that miR-29b overexpression resulted in a higher cell proliferation, greater colony formation, higher migration rate and EMT. A dual luciferase assay identified TET1 as a direct target of miR-29b. As the promoting effects of miR-29b in the proliferation and metastasis of MDA-MB-231 and MCF-7, knockdown of TET1 also led to increased proliferation, colony formation, invasion and EMT. Further, we found that TET1 bound to the promoter of ZEB2, and siTET1 enhanced ZEB2 expression. Disruption of ZEB2 expression inhibited BC cells proliferation, colony formation and invasion. Our results establish the miR-29b/TET1/ZEB2 pathway in BC cell proliferation, migration and provide a theoretical basis for further research on the molecular mechanisms and new clinical treatments for BC.
Collapse
Affiliation(s)
- Hua Wang
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xinglan An
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Sheng Zhang
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Ziyi Li
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
26
|
Lin J, Wang L, Gao J, Zhu S. MiR-203 inhibits estrogen-induced viability, migration and invasion of estrogen receptor α-positive breast cancer cells. Exp Ther Med 2017; 14:2702-2708. [PMID: 28962215 DOI: 10.3892/etm.2017.4828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is common in females, and accounts for a large proportion of cancer-related cases of mortality. MicroRNAs (miRs) have been found to be involved in the progression of breast cancer via mediation of tumor suppressor genes or oncogenes. Previously, miR-203 has been reported to play a suppressive role in breast cancer. In the present study, the effects of miR-203 on the malignant phenotypes of estrogen receptor α (ERα)-positive breast cancer cells were investigated. It was found that treatment with estradiol (E2) significantly enhanced the viability, migration and invasion of ERα-positive breast cancer MCF-7 cells, accompanied by the significant downregulation of miR-203 in a dose-dependent manner. Furthermore, MCF-7 cells were transfected with miR-203 mimics, resulting in a significant increase in miR-203 levels. Upregulation of miR-203 was found to significantly inhibit E2-induced upregulation of MCF-7 cell viability, migration and invasion. Upregulation of miR-203 also led to a significant decrease in the protein expression of ERα in MCF-7 cells. Using a luciferase reporter assay, ERα was identified as a direct target of miR-203 in MCF-7 cells. Finally, it was demonstrated that miR-203 was significantly downregulated in ERα-positive breast cancer tissues compared to their matched normal adjacent tissues. The expression levels of miR-203 were inversely correlated to the ERα levels in ERα-positive breast cancer tissues. Based on these results, it is proposed that miR-203 inhibits E2-induced viability, migration and invasion of ERα-positive breast cancer cells, and that this may be via direct targeting of ERα. Therefore, the present study highlights the importance of miR-203 and ERα in breast cancer progression.
Collapse
Affiliation(s)
- Jun Lin
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Li Wang
- Department of Hematology, Yantai Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Jie Gao
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Shiguang Zhu
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
27
|
Sun F, Yang X, Jin Y, Chen L, Wang L, Shi M, Zhan C, Shi Y, Wang Q. Bioinformatics analyses of the differences between lung adenocarcinoma and squamous cell carcinoma using The Cancer Genome Atlas expression data. Mol Med Rep 2017; 16:609-616. [PMID: 28560415 PMCID: PMC5482124 DOI: 10.3892/mmr.2017.6629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/20/2017] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to explore gene and microRNA (miRNA) expression differences between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified by analyzing mRNA and miRNA expression data in normal and cancerous lung tissues that were obtained from The Cancer Genome Atlas database. A total of 778 DEGs and 7 DEMs were identified. Altered gene functions and signaling pathways were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, which revealed that DEGs were significantly enriched in extracellular matrix organization, cell differentiation, negative regulation of toll signaling pathway, and several other terms and pathways. Transcription factor (TF)-miRNA-gene networks in LUAD and LUSC were predicted using the TargetScan, Miranda, and TRANSFAC databases, which revealed the regulatory links among the TFs, DEMs, and DEGs. The central TFs, i.e., the TFs in the middle of the TF-miRNA-gene network, of LUAD and LUSC were similar. Although LUAD and LUSC shared similar miRNAs in the predicted networks, miR-29b-3p was demonstrated to be upregulated only in LUAD, whereas miR-1, miR-105-5p, and miR-193b-5p were altered in LUSC. These findings may improve our understanding of the different molecular mechanisms in non-small cell lung cancers and may promote new and accurate strategies for prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Yulin Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Li Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Lin Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Mengkun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| |
Collapse
|
28
|
Tian YP, Zhu YM, Sun XH, Lai MD. Multiple Functions of Ten-eleven Translocation 1 during Tumorigenesis. Chin Med J (Engl) 2017; 129:1744-51. [PMID: 27411465 PMCID: PMC4960967 DOI: 10.4103/0366-6999.185873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: Aberrant expression of ten-eleven translocation 1 (TET1) plays a critical role in tumor development and progression. We systematically summarized the latest research progress on the role and mechanisms of TET1 in cancer biology. Data Sources: Relevant articles published in English from 1980 to April 2016 were selected from the PubMed database. The terms “ten-eleven translocation 1,” “5mC,” “5hmC,” “microRNA,” “hypoxia,” and “embryonic stem cell” were used for the search. Study Selection: Articles focusing on the role and mechanism of TET1 in tumor were reviewed, including clinical and basic research articles. Results: TET proteins, the key enzymes converting 5-methylcytosine to 5-hydroxymethylcytosine, play vital roles in DNA demethylation regulation. Recent studies have shown that loss of TET1 is associated with tumorigenesis and can be used as a potential biomarker for cancer therapy, which indicates that TET1 serves as tumor suppressor gene. Moreover, besides its dioxygenase activity, TET1 could induce epithelial-mesenchymal transition and act as a coactivator to regulate gene transcription, such as developmental regulator in embryonic stem cells (ESCs) and hypoxia-responsive gene in cancer. The regulation of TET1 is also correlated with microRNA in a posttranscriptional modification process. Hence, it is complex but critical to comprehend the mechanisms of TET1 in the biology of ESCs and cancer. Conclusions: TET1 not only serves as a demethylation enzyme but also plays multiple roles during tumorigenesis and progression. More studies should be carried out to elucidate the exact mechanisms of TET1 and its associations with cancer before considering it as a therapeutic tool.
Collapse
Affiliation(s)
- Yi-Ping Tian
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Key Laboratory of Disease Proteomics of Zhejiang Province, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yi-Min Zhu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Xiao-Hui Sun
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Mao-De Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Key Laboratory of Disease Proteomics of Zhejiang Province, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
29
|
Iguchi T, Nambara S, Masuda T, Komatsu H, Ueda M, Kidogami S, Ogawa Y, Hu Q, Sato K, Saito T, Hirata H, Sakimura S, Uchi R, Hayashi N, Ito S, Eguchi H, Sugimachi K, Maehara Y, Mimori K. miR-146a Polymorphism (rs2910164) Predicts Colorectal Cancer Patients' Susceptibility to Liver Metastasis. PLoS One 2016; 11:e0165912. [PMID: 27824903 PMCID: PMC5100922 DOI: 10.1371/journal.pone.0165912] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
miR-146a plays important roles in cancer as it directly targets NUMB, an inhibitor of Notch signaling. miR-146a is reportedly regulated by a G>C polymorphism (SNP; rs2910164). This polymorphism affects various cancers, including colorectal cancer (CRC). However, the clinical significance of miR-146a polymorphism in CRC remains unclear. A total of 59 patients with CRC were divided into 2 groups: a CC/CG genotype (n = 32) and a GG genotype (n = 27), based on the miR-146a polymorphism. cDNA microarray analysis was performed using 59 clinical samples. Significantly enriched gene sets in each genotype were extracted using GSEA. We also investigated the association between miR-146a polymorphism and miR-146a, NUMB expression or migratory response in CRC cell lines. The CC/CG genotype was associated with significantly more synchronous liver metastasis (p = 0.007). A heat map of the two genotypes showed that the expression profiles were clearly stratified. GSEA indicated that Notch signaling and JAK/STAT3 signaling were significantly associated with the CC/CG genotype (p = 0.004 and p = 0.023, respectively). CRC cell lines with the pre-miR-146a/C revealed significantly higher miR-146a expression (p = 0.034) and higher NUMB expression and chemotactic activity. In CRC, miR-146a polymorphism is involved in liver metastasis. Identification of this polymorphism could be useful to identify patients with a high risk of liver metastasis in CRC.
Collapse
Affiliation(s)
- Tomohiro Iguchi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Sho Nambara
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Hisateru Komatsu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Masami Ueda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Shinya Kidogami
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Yushi Ogawa
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Qingjiang Hu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Tomoko Saito
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Hidenari Hirata
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Shotaro Sakimura
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Ryutaro Uchi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Naoki Hayashi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science Graduate School of Medical Sciences Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
- * E-mail:
| |
Collapse
|
30
|
Zhong J, Li X, Cai W, Wang Y, Dong S, Yang J, Zhang J, Wu N, Li Y, Mao F, Zeng C, Wu J, Xu X, Sun ZS. TET1 modulates H4K16 acetylation by controlling auto-acetylation of hMOF to affect gene regulation and DNA repair function. Nucleic Acids Res 2016; 45:672-684. [PMID: 27733505 PMCID: PMC5314799 DOI: 10.1093/nar/gkw919] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
The Ten Eleven Translocation 1 (TET1) protein is a DNA demethylase that regulates gene expression through altering statue of DNA methylation. However, recent studies have demonstrated that TET1 could modulate transcriptional expression independent of its DNA demethylation activity; yet, the detailed mechanisms underlying TET1's role in such transcriptional regulation remain not well understood. Here, we uncovered that Tet1 formed a chromatin complex with histone acetyltransferase Mof and scaffold protein Sin3a in mouse embryonic stem cells by integrative genomic analysis using publicly available ChIP-seq data sets and a series of in vitro biochemical studies in human cell lines. Mechanistically, the TET1 facilitated chromatin affinity and enzymatic activity of hMOF against acetylation of histone H4 at lysine 16 via preventing auto-acetylation of hMOF, to regulate expression of the downstream genes, including DNA repair genes. We found that Tet1 knockout MEF cells exhibited an accumulation of DNA damage and genomic instability and Tet1 deficient mice were more sensitive to x-ray exposure. Taken together, our findings reveal that TET1 forms a complex with hMOF to modulate its function and the level of H4K16Ac ultimately affect gene expression and DNA repair.
Collapse
Affiliation(s)
- Jianing Zhong
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Dong
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Jie Yang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Jian'an Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Nana Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuanyuan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Zeng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyu Wu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100049, China
| | - Zhong Sheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China .,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Amorim M, Salta S, Henrique R, Jerónimo C. Decoding the usefulness of non-coding RNAs as breast cancer markers. J Transl Med 2016; 14:265. [PMID: 27629831 PMCID: PMC5024523 DOI: 10.1186/s12967-016-1025-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Although important advances in the management of breast cancer (BC) have been recently accomplished, it still constitutes the leading cause of cancer death in women worldwide. BC is a heterogeneous and complex disease, making clinical prediction of outcome a very challenging task. In recent years, gene expression profiling emerged as a tool to assist in clinical decision, enabling the identification of genetic signatures that better predict prognosis and response to therapy. Nevertheless, translation to routine practice has been limited by economical and technical reasons and, thus, novel biomarkers, especially those requiring non-invasive or minimally invasive collection procedures, while retaining high sensitivity and specificity might represent a significant development in this field. An increasing amount of evidence demonstrates that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are aberrantly expressed in several cancers, including BC. miRNAs are of particular interest as new, easily accessible, cost-effective and non-invasive tools for precise management of BC patients because they circulate in bodily fluids (e.g., serum and plasma) in a very stable manner, enabling BC assessment and monitoring through liquid biopsies. This review focus on how ncRNAs have the potential to answer present clinical needs in the personalized management of patients with BC and comprehensively describes the state of the art on the role of ncRNAs in the diagnosis, prognosis and prediction of response to therapy in BC.
Collapse
Affiliation(s)
- Maria Amorim
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal.
| |
Collapse
|
32
|
Girotra S, Yeghiazaryan K, Golubnitschaja O. Potential biomarker panels in overall breast cancer management: advancements by multilevel diagnostics. Per Med 2016; 13:469-484. [PMID: 29767597 DOI: 10.2217/pme-2016-0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Breast cancer (BC) prevalence has reached an epidemic scale with half a million deaths annually. Current deficits in BC management include predictive and preventive approaches, optimized screening programs, individualized patient profiling, highly sensitive detection technologies for more precise diagnostics and therapy monitoring, individualized prediction and effective treatment of BC metastatic disease. To advance BC management, paradigm shift from delayed to predictive, preventive and personalized medical services is essential. Corresponding step forwards requires innovative multilevel diagnostics procuring specific panels of validated biomarkers. Here, we discuss current instrumental advancements including genomics, proteomics, epigenetics, miRNA, metabolomics, circulating tumor cells and cancer stem cells with a focus on biomarker discovery and multilevel diagnostic panels. A list of the recommended biomarker candidates is provided.
Collapse
|
33
|
Liu Q, Liao F, Wu H, Cai T, Yang L, Fang J. Different expression of miR-29b and VEGFA in glioma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1927-1932. [DOI: 10.3109/21691401.2015.1111237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|