1
|
Saxena R, Krishnan M P S, Christudass CS, Chauhan A, Malik VS, Gupta A, Gupta S, Anthwal A, Goyal B. Micro-RNAs With Prognostic Significance in Gallbladder Cancer: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e55515. [PMID: 38576631 PMCID: PMC10990876 DOI: 10.7759/cureus.55515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Gallbladder cancer (GBC) stands out as one of the most widespread malignancies impacting the biliary tract globally. Despite increasing interest, to the best of our knowledge, no meta-analysis has been undertaken to amalgamate the existing data concerning the prognostic significance of micro-RNAs (miRNAs) in GBC in comparison to studies on miRNAs in other cancers. Hence, this systematic review and meta-analysis aimed at determining the prognostic significance of miRNAs in GBC patients. Comprehensive literature searches were conducted across PubMed, Cochrane Library, Ovid, Scopus, and Science Direct databases. Studies that evaluated the association between miRNAs and overall survival in GBC patients were included. Random-effect meta-analysis was employed to pool hazard ratios (HRs) and their 95% confidence intervals (CIs) across studies. A total of 15 studies, encompassing 16 miRs, were included for our analysis. The pooled analysis revealed that a high expression of miR-204, miR-7-2-3p, miR-29c-3p, miR-125b, miR-20a, miR-139-5p, miR-141, miR-92b-3p, miR-335, and miR-372 was significantly associated with poor prognosis and increased risk (HR>1 and the upper bound of the 95% CI>1). Additionally, these miRNAs were associated with the overall survival (HR = 1.56, 95% CI = 0.91-2.20, I2 = 91.82%). Significant heterogeneity was observed and could be attributed to the limited number of studies available on the GBC and significant reliance on quantitative real-time PCR for the detection of miRNAs. In conclusion, specific miRNAs exhibit prognostic significance in GBC, with potential implications for patient stratification and targeted therapeutic interventions. However, due to the heterogeneity among studies, these findings should be interpreted cautiously and validated in larger cohorts.
Collapse
Affiliation(s)
- Rahul Saxena
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Sarath Krishnan M P
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | | | - Anil Chauhan
- Telemedicine, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| | - Vivek S Malik
- Telemedicine, Centre for Evidence Synthesis and Public Policy, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Amit Gupta
- General Surgery, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Sweety Gupta
- Radiation Oncology, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Akhil Anthwal
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Bela Goyal
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| |
Collapse
|
2
|
Ghosh I, Dey Ghosh R, Mukhopadhyay S. Identification of genes associated with gall bladder cell carcinogenesis: Implications in targeted therapy of gall bladder cancer. World J Gastrointest Oncol 2023; 15:2053-2063. [PMID: 38173427 PMCID: PMC10758643 DOI: 10.4251/wjgo.v15.i12.2053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 12/14/2023] Open
Abstract
Gall bladder cancer (GBC) is becoming a very devastating form of hepatobiliary cancer in India. Every year new cases of GBC are quite high in India. Despite recent advanced multimodality treatment options, the survival of GBC patients is very low. If the disease is diagnosed at the advanced stage (with local nodal metastasis or distant metastasis) or surgical resection is inoperable, the prognosis of those patients is very poor. So, perspectives of targeted therapy are being taken. Targeted therapy includes hormone therapy, proteasome inhibitors, signal transduction and apoptosis inhibitors, angiogenesis inhibitors, and immunotherapeutic agents. One such signal transduction inhibitor is the specific short interfering RNA (siRNA) or short hairpin RNA (shRNA). For developing siRNA-mediated therapy shRNA, although several preclinical studies to evaluate the efficacy of these key molecules have been performed using gall bladder cells, many more clinical trials are required. To date, many such genes have been identified. This review will discuss the recently identified genes associated with GBC and those that have implications in its treatment by siRNA or shRNA.
Collapse
Affiliation(s)
- Ishita Ghosh
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India
| | - Ruma Dey Ghosh
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India
| | - Soma Mukhopadhyay
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India
| |
Collapse
|
3
|
Doghish AS, Midan HM, Elbadry AMM, Darwish SF, Rizk NI, Ziada BO, Elbokhomy AS, Elrebehy MA, Elballal MS, El-Husseiny HM, Abdel Mageed SS, Abulsoud AI. The potential role of miRNAs in the pathogenesis of gallbladder cancer - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154682. [PMID: 37451195 DOI: 10.1016/j.prp.2023.154682] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
microRNAs (also known as miRNAs or miRs) are a class of small non-coding RNAs that play a critical role in post-transcriptional gene regulation as negative gene regulators by binding complementary sequences in the 3'-UTR of target messenger RNAs (mRNAs) leading to translational repression and/or target degradation a wide range of genes and biological processes, including cell proliferation, invasion, migration, and apoptosis. The development and progression of cancer have been linked to the anomalous expression of miRNAs. According to recent studies, miRNAs have been found to regulate the expression of cancer-related genes through multiple signaling pathways in gallbladder cancer (GBC). Besides, miRNAs are implicated in several modulatory signaling pathways of GBC, including the Notch signaling pathway, JAK/STAT signaling pathway, protein kinase B (AKT), and Hedgehog signaling pathway. This review summarizes our current knowledge of the functions of miRNAs in the mechanisms underlying the pathogenic symptoms of GBC and illustrates their potential significance as treatment targets.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdullah M M Elbadry
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Samar F Darwish
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Bassant O Ziada
- Research Department, Utopia Pharmaceuticals, Nasr City 11765, Cairo, Egypt
| | - Amir S Elbokhomy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
4
|
Circulating microRNAs in gallbladder cancer: Is serum assay of diagnostic value? Pathol Res Pract 2023; 242:154320. [PMID: 36682281 DOI: 10.1016/j.prp.2023.154320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
The microRNAs (miRNAs) in circulation could serve as biomarkers for cancer detection. Gallbladder carcinoma (GBC) is mostly asymptomatic; therefore, using microRNAs (miRNAs) as an early diagnostic biomarker could be a valuable tool. We aimed to identify the tumor-associated miR-1, miR130, miR-146, miR-182, and miR-21expression in serum as a biomarker for early detection of GBC and identify their possible diagnostic role. The study group comprised of paired serum and tissue samples from 34 GBC, 19 cholecystitis (CC), 21 normal controls (uninflamed gall bladder), and additional 29 serum-only samples of GBC. Total RNA was isolated using a commercially available RNA isolation kit (Applied Biosystem, USA) and reverse transcribed using Advanced Taqman MicroRNA reverse transcription kit. The relative expression of miRNAs was analyzed using Quantitative real-time polymerase chain reaction. The diagnostic potential of these miRNAs was assessed by ROC analysis. In paired samples, the trend towards up and down regulation for miR-182, miR-21, miR-1, miR-130, and miR-146 was similar in both tissue and sera of GBC. The expression pattern of serum miR-1, miR130, and miR-146 gradually decreased from normal control (NC) to CC to GBC, while miR-21 and miR-182 gradually increased from NC to CC to GBC. The miR-1, miR-121, miR-182, and miR-146 significantly differed between CC vs. early stage and early stage vs. NC. Among these miRNAs, the sensitivity of miR-1 (85.71 %) was the highest, and the specificity of miR-21 was the highest (92.73 %). The combined sensitivity for miRNAs ranged from 73.13 % (CI: 60.90-83.24 %) to 98.63 % (CI: 89.0-99.61 %); however, the specificity was lower. In stage I&II vs. III&IV discrimination, the diagnostic sensitivity of miR-1 was highest (89.36 %, CI: 76.90-96.45). The two miRNAs, in combination, increase the diagnostic sensitivity. Circulating serum miRNAs may provide a new approach for clinical application. Panels of specific circulating miRNA, which require further validation, could be potential non-invasive diagnostic biomarkers for GBC in combination with abnormal radio diagnostic scans.
Collapse
|
5
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Apurva, Kumar A, Dar GM, Sumayya Abdul Sattar R, Verma R, Mahajan B, Singh Saluja S. Molecular markers in cancer. Clin Chim Acta 2022; 532:95-114. [DOI: https:/doi.org/10.1016/j.cca.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
|
6
|
Circulating miR-141 as a potential biomarker for diagnosis, prognosis and therapeutic targets in gallbladder cancer. Sci Rep 2022; 12:10072. [PMID: 35710767 PMCID: PMC9203542 DOI: 10.1038/s41598-022-13430-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-141(miR-141) has been reported to play vital roles in the regulation of carcinogenesis and cancer progression. However, the biological function of miR-141 in GBC has received less attention. The aim of this study was to estimate the potential value of the expression level of miR-141 as a diagnostic and prognostic blood-based biomarker in gallbladder cancer (GBC) patients. Meanwhile, to explore its biological role in GBC cells. RT-PCR was employed to confirm the expression of miR-141 in ten paired tissue samples (10 GBC tissues and 10 adjacent normal gallbladder tissues), GBC cell lines and peripheral blood specimens from 98 GBC patients and 60 healthy controls. MTT assay was used to evaluate the GBC cells proliferation and flow cytometry was used to detect the cell apoptosis. Receiver operating characteristic curve analysis and the area under the curve (AUC) were used to evaluate the value of miR-141 plasma levels for GBC diagnosis. Finally, clinicopathological and survival data of all GBC patients were collected and analyzed. Here, we confirmed that the expression of miR-141 were upregulated in primary gallbladder cancer cells and tissues compared with human gallbladder epithelial cells and adjacent normal tissues (P < 0.0001). Meanwhile, we found that downregulated expression of miR-141 by miR-141 inhibitor could induce apoptosis and inhibit proliferation of GBC cells. Additionally, elevated plasma miR-141 expression was also detected in the peripheral blood of GBC patients compared with healthy controls (P < 0.0001). The AUC value of miR-141 for GBC diagnosis was 0.894 (95% CI 0.843–0.945), which was more valuable than those including carcinoembryonic antigen (CEA) (0.713, 95% CI 0.633–0.793), carbohydrate antigen 125 (CA125) (0.837, 95% CI 0.776–0.899) and carbohydrate antigen 19–9 (CA19-9) (0.869, 95% CI 0.813–0.924). The high expression level of miR-141 in plasma was significantly associated with tumor invasion (P = 0.008), lymph node metastasis (P < 0.0001) and advanced pathologic tumor/node/metastasis (pTNM) stage (P = 0.009). More importantly, high plasma miR-141 expression was an independent prognostic factor for predicting poorer long-term survival in GBC patients. Elevated expression of circulating miR-141 in peripheral blood might be a potential novel biomarker for diagnosis and prognosis of GBC patients. Downregulated expression of miR-141 could inhibit proliferation and induce apoptosis of GBC cells, that provide a potential therapeutic target for GBC.
Collapse
|
7
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Apurva, Kumar A, Mehdi G, Sumayya Abdul Sattar R, Verma R, Mahajan B, Singh Saluja S. Molecular markers in cancer. Clin Chim Acta 2022; 532:95-114. [DOI: 10.1016/j.cca.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
|
8
|
Singh N, Sharma R, Bose S. Meta-analysis of transcriptomics data identifies potential biomarkers and their associated regulatory networks in gallbladder cancer. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2022; 15:311-325. [PMID: 36762219 PMCID: PMC9876761 DOI: 10.22037/ghfbb.v15i4.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/21/2022] [Indexed: 02/11/2023]
Abstract
Aim This study aimed to identify key genes, non-coding RNAs, and their possible regulatory interactions during gallbladder cancer (GBC). Background The early detection of GBC, i.e. before metastasis, is restricted by our limited knowledge of molecular markers and mechanism(s) involved during carcinogenesis. Therefore, identifying important disease-associated transcriptome-level alterations can be of clinical importance. Methods In this study, six NCBI-GEO microarray dataseries of GBC and control tissue samples were analyzed to identify differentially expressed genes (DEGs) and non-coding RNAs {microRNAs (DEmiRNAs) and long non-coding RNAs (DElncRNAs)} with a computational meta-analysis approach. A series of bioinformatic methods were applied to enrich functional pathways, create protein-protein interaction networks, identify hub genes, and screen potential targets of DEmiRNAs and DElncRNAs. Expression and interaction data were consolidated to reveal putative DElncRNAs:DEmiRNAs:DEGs interactions. Results In total, 351 DEGs (185 downregulated, 166 upregulated), 787 DEmiRNAs (299 downregulated, 488 upregulated), and 7436 DElncRNAs (3127 downregulated, 4309 upregulated) were identified. Eight genes (FGF, CDK1, RPN2, SEC61A1, SOX2, CALR, NGFR, and NCAM) were identified as hub genes. Genes associated with ubiquitin ligase activity, N-linked glycosylation, and blood coagulation were upregulated, while those for cell-cell adhesion, cell differentiation, and surface receptor-linked signaling were downregulated. DEGs-DEmiRNAs-DElncRNAs interaction network identified 46 DElncRNAs to be associated with 28 DEmiRNAs, consecutively regulating 27 DEGs. DEmiRNAs-hsa-miR-26b-5p and hsa-miR-335-5p; and DElnRNAs-LINC00657 and CTB-89H12.4 regulated the highest number of DEGs and DEmiRNAs, respectively. Conclusion The current study has identified meaningful transcriptome-level changes and gene-miRNA-lncRNA interactions during GBC and laid a platform for future studies on novel prognostic and diagnostic markers in GBC.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Rinku Sharma
- Department of Life Sciences, Shiv Nadar University, Noida, Uttar Pradesh, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
9
|
Rompianesi G, Di Martino M, Gordon-Weeks A, Montalti R, Troisi R. Liquid biopsy in cholangiocarcinoma: Current status and future perspectives. World J Gastrointest Oncol 2021; 13:332-350. [PMID: 34040697 PMCID: PMC8131901 DOI: 10.4251/wjgo.v13.i5.332] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) are a heterogeneous group of tumors in terms of aetiology, natural history, morphological subtypes, molecular alterations and management, but all sharing complex diagnosis, management, and poor prognosis. Several mutated genes and epigenetic changes have been detected in CCA, with the potential to identify diagnostic and prognostic biomarkers and therapeutic targets. Accessing tumoral components and genetic material is therefore crucial for the diagnosis, management and selection of targeted therapies; but sampling tumor tissue, when possible, is often risky and difficult to be repeated at different time points. Liquid biopsy (LB) represents a way to overcome these issues and comprises a diverse group of methodologies centering around detection of tumor biomarkers from fluid samples. Compared to the traditional tissue sampling methods LB is less invasive and can be serially repeated, allowing a real-time monitoring of the tumor genetic profile or the response to therapy. In this review, we analysis the current evidence on the possible roles of LB (circulating DNA, circulating RNA, exosomes, cytokines) in the diagnosis and management of patients affected by CCA.
Collapse
Affiliation(s)
- Gianluca Rompianesi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Marcello Di Martino
- Hepato-Bilio-Pancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Roberto Montalti
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Roberto Troisi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| |
Collapse
|
10
|
Overexpression of microRNA-205-5p exerts suppressive effects on stem cell drug resistance in gallbladder cancer by down-regulating PRKCE. Biosci Rep 2021; 40:226278. [PMID: 32869841 PMCID: PMC7533283 DOI: 10.1042/bsr20194509] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Some microRNAs (miRs or miRNAs) have been reported to function as tumor suppressors in gallbladder cancer (GBC). However, the specific effect of miR-205-5p on GBC remains unclear. The objective of the present study was to unravel the effects of miR-205-5p on the drug resistance in GBC. For this purpose, the expression of miR-205-5p and protein kinase C ϵ (PRKCE) was quantified in the peripheral blood sample harvested from GBC patients and healthy volunteers. Then the relationship between miR-205-5p and PRKCE was validated. After isolating the GBC stem cells, ectopic expression and depletion experiments were conducted to analyze the effect of miR-205-5p and PRKCE on cell proliferation, drug resistance, apoptosis, and colony formation rate as well as the expression of apoptotic factors (Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), and cleaved caspase 3). Finally, the mouse xenograft model of GBC was established to verify the function of miR-205-5p in vivo. Intriguingly, our results manifested that miR-205-5p was down-regulated, while PRKCE was up-regulated in peripheral blood samples and stem cells of patients with GBC. Moreover, miR-205-5p targeted PRKCE and negatively regulated its expression. The overexpression of miR-205-5p or silencing of PRKCE inhibited the drug resistance, proliferation, and colony formation rate while promoting apoptosis of GBC stem cells. Additionally, the overexpression of miR-205-5p attenuated drug resistance to gemcitabine but promoted the gemcitabine-induced cell apoptosis by inhibiting the PRKCE in vivo. Overall, an intimate correlation between miR-205-5p and PRKCE is a key determinant of drug resistance of GBC stem cells, thus, suggesting a novel miR-205-5p-based clinical intervention target for GBC patients.
Collapse
|
11
|
Li K, Zhou Z, Li J, Xiang R. miR-146b Functions as an Oncogene in Oral Squamous Cell Carcinoma by Targeting HBP1. Technol Cancer Res Treat 2020; 19:1533033820959404. [PMID: 33327874 PMCID: PMC7750896 DOI: 10.1177/1533033820959404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents more than 90% of all oral cancer and is the most common oral threat around the world. In this study, we examined the roles of miR-146b in OSCC cells. The miR-146b expression in OSCC tissues and cell lines was evaluated by quantitative real-time PCR (qRT-PCR). MTT assay was used to investigate the impact of miR-146b on the growth of OSCC cells in vitro. Transwell assay was utilized to analyze the effect of miR-146b on the migration and invasion of OSCC cells. Target prediction and luciferase assay were employed to demonstrate the interaction between miR-146b and HMG-Box Transcription Factor 1 (HBP1). Western blot was carried out to investigate the protein expressions of HBP1 related genes. miR-146b expression was significantly higher in OSCC tissues and cells compared with paired normal tissues and normal oral keratinocyte cells. Inhibition of miR-146b decreased cell proliferation, migration, and invasion of OSCC cells. Further studies found that HBP1 was a direct target of miR-146b. Co-inhibition of HBP1 reversed the suppressive impact of miR-146b inhibition on OSCC cell proliferation, migration, and invasion. In conclusion-ourresults reveal that miR-146b potentially regulates the proliferation, migration, and invasion of OSCC cells through binding and downregulating HBP1 expression in OSCC cells.
Collapse
Affiliation(s)
- Kui Li
- Department of Stomatology, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Zheng Zhou
- Department of stomatology, Xiangyang Stomatological Hospital, Xiangyang City, Hubei Province, China
| | - Ju Li
- Department of stomatology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Rui Xiang
- Department of prosthodontics, WuXi Stomatology Hospital, Jiangsu Province, China
| |
Collapse
|
12
|
Tiwari PK. Epigenetic Biomarkers in Gallbladder Cancer. Trends Cancer 2020; 6:540-543. [PMID: 32291238 DOI: 10.1016/j.trecan.2020.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Gallbladder cancer (GBC) is associated with various nongenetic and genetic factors. Lack of specific and sensitive diagnostic markers has significantly impacted the mortality of this disease. Here we discuss the recent discovery of epigenetic changes that show great promise as diagnostic biomarkers as well as potential therapeutic targets for GBC.
Collapse
Affiliation(s)
- Pramod K Tiwari
- Centre for Genomics, Jiwaji University, Gwalior 474011, Madhya Pradesh, India.
| |
Collapse
|
13
|
Kong J, Wang W. A Systemic Review on the Regulatory Roles of miR-34a in Gastrointestinal Cancer. Onco Targets Ther 2020; 13:2855-2872. [PMID: 32308419 PMCID: PMC7138617 DOI: 10.2147/ott.s234549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding single-stranded small-molecule RNAs that regulate gene expression by repressing target messenger RNA (mRNA) translation or degrading mRNA. miR-34a is one of the most important miRNAs participating in various physiological and pathological processes. miR-34a is abnormally expressed in a variety of tumors. The roles of miR-34a in gastrointestinal cancer (GIC) draw lots of attention. Numerous studies have demonstrated that dysregulated miR-34a is closely related to the proliferation, differentiation, migration, and invasion of tumor cells, as well as the diagnosis, prognosis, treatment, and chemo-resistance of tumors. Thus, we systematically reviewed the abnormal expression and regulatory roles of miR-34a in GICs including esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), and gallbladder cancer (GBC). It may provide a profile of versatile roles of miR-34a in GICs.
Collapse
Affiliation(s)
- Jiehong Kong
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
14
|
Montalvo-Jave EE, Rahnemai-Azar AA, Papaconstantinou D, Deloiza ME, Tsilimigras DI, Moris D, Mendoza-Barrera GE, Weber SM, Pawlik TM. Molecular pathways and potential biomarkers in gallbladder cancer: A comprehensive review. Surg Oncol 2019; 31:83-89. [PMID: 31541911 DOI: 10.1016/j.suronc.2019.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
The most common malignancy of the biliary tract, gallbladder cancer (GBC) often has a dismal prognosis. The aggressive nature of the tumor, delayed diagnosis at advanced stages of the disease, and lack of effective treatment options are some of the factors that contribute to a poor outcome. Early detection and accurate assessment of disease burden is critical to optimize management and improve long-term survival, as well as identify patients for adjuvant therapy and clinical trials. With recent advances in the understanding of the molecular pathogenesis of GBC, several specific diagnostic and biomarkers have been proposed as being of diagnostic and prognostic importance. Indeed, identification of novel diagnostic and prognostic markers has an important role in early diagnosis and development of targeted therapies among patients with GBC. Next-generation sequencing technology and genomewide data analysis have provided novel insight into understanding the molecular pathogenesis of biliary tract cancers, thereby identifying potential biomarkers for clinical use. We herein review available GBC biomarkers and the potential clinical implications in the management of GBC.
Collapse
Affiliation(s)
- Eduardo E Montalvo-Jave
- Servicio de Cirugía General, Clínica de Cirugía Hepato-Pancreato-Biliary, Hospital General de México, Mexico; Departamento de Cirugía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Amir A Rahnemai-Azar
- Department of Surgery, Division of Surgical Oncology, Kaiser Permanente School of Medicine, Los Angeles, CA, USA
| | | | - Mariana Espejel Deloiza
- Departamento de Cirugía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Diamantis I Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dimitrios Moris
- Department of Surgery, Division of Surgical Oncology, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Sharon M Weber
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin Hospital, Madison, WI, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
15
|
D'Almeida O, Mothar O, Bondzie EA, Lieumo Y, Tagne L, Gupta S, Volkert T, Levine S, Tagne JB. Encapsulated miR-200c and Nkx2.1 in a nuclear/mitochondria transcriptional regulatory network of non-metastatic and metastatic lung cancer cells. BMC Cancer 2019; 19:136. [PMID: 30744585 PMCID: PMC6371494 DOI: 10.1186/s12885-019-5337-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/31/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND MicroRNAs are noncoding RNA molecules of ~ 22 nucleotides with diagnostic and therapeutic action [Curr Drug Targets, 2015. 16(12): p. 1381-403], affecting the expression of mRNAs involved in invasion, migration, and development [Oncotarget, 2015. 6(9): p. 6472-98, Cancer Manag Res, 2014. 6: p. 205-16]. miR-200c is part of the miR-200c/141 cluster on chromosome 12p13. Its mechanism of action when encapsulated is critical in lung cancer when patients express changes in miRNAs. miR-200c be a potential biomarkers for various lung diseases. As a potential therapy, miR-200c can impacts lives as target lung cancer is a leading cause of death with about 234,000 cases annually, high heterogeneity, complex screening, and a 5-year survival rate of 16% [CA Cancer J Clin, 2016.66(1): p. 7-30]. Encapsulated miR-200c efficiently enhances bioavailability, pharmacokinetics of therapeutics and targeting to cells, improves efficacy and provides potential cure. METHODS The functions of miR-200c were determined in non-metastatic KW-634 and metastatic 821-T4 and 821-LN mouse lung cancer cell lines after various Nano vehicle treatments. Viability and cytotoxicity were determined by cell cycle and quantitative real-time PCR analyses were used to quantify levels of miR-200c and its target genes. In situ hybridization was used to visualize patterns of expression of miR-200c and others in the lung and many organs. Next-generation sequencing accession number GSE125000, invasion and migration assays using transwell chambers, and ActivSignal were used to elucidate the activation and inhibition profiles and perform direct expression measurements and modification of cellular components. RESULTS Due to their effectiveness as intracellular vesicles transporting miR-200c into, out, and between parts of the cells, miR-200c is encapsulated with cholesterol, an integral part of the biological membranes with very important physical properties of the vehicle. Nano miR-200c showed efficient cellular uptake in KW-634, 821-T4, and 821-LN cells with important changes in gene expression and new isoforms. In KW-634, when treated with encapsulated miR-200c and compare to the non-encapsulated control; miR-29b increased by 5261-fold, and in 821-T4/LN, miR-1247 increased by 150-fold. Conversely, miR-1247 and miR-675 decreased by 348 and 1029.5-fold, respectively. miR-189 decreased by 34-fold in treated 821-T4 cells. A reduction of growth was observed only after 48 h of treatment with Nano miR-200c. Moreover, labeling the vehicle with carboxy-fluorescein showed that the encapsulated particles enter the nucleus and mitochondria. Encapsulated miR-200c by entering the cells, the nucleus and mitochondria, trigger changes in cell cycle phases with 4 up to 12 fold percentage in G2 and S phase respectively compare to miR-200c. Endogenous expression of Nkx2.1, miR-200c, and their targets Myb, Nfib, Six4 and Six1 showed an inverse correlation, as observed in development. CONCLUSIONS Little is known about miR-200c involvement in regulatory processes. Nano miR-200c affects invasion and migration mechanisms. The expression of encapsulated miR-200c contributes to the inhibition/activation of Kras, EMT, Hippo, regulatory pathways and blockers of metastasis. Delivery of miR-200c increases the expression of miR-29b, an EMY regulator, and miR-1247, an inhibitor of cancer genes, both tumor suppressors involved in lung metastasis. Encapsulated miR-200c act on different proteins that regulates cell cycle pathways. These findings represent a part of a regulatory network providing new insights towards improvement of therapy.
Collapse
Affiliation(s)
- Olga D'Almeida
- The Pulmonary Center, Boston University School of Medicine (BUSM), East Concord Street R304, Boston, MA, 02118, USA.,Faculté de Pharmacie, Université D'Auvergne, Clermont Ferrand, France
| | - Omar Mothar
- The Pulmonary Center, Boston University School of Medicine (BUSM), East Concord Street R304, Boston, MA, 02118, USA
| | - Esther Apraku Bondzie
- The Pulmonary Center, Boston University School of Medicine (BUSM), East Concord Street R304, Boston, MA, 02118, USA
| | - Yolande Lieumo
- The Pulmonary Center, Boston University School of Medicine (BUSM), East Concord Street R304, Boston, MA, 02118, USA
| | - Laure Tagne
- The Pulmonary Center, Boston University School of Medicine (BUSM), East Concord Street R304, Boston, MA, 02118, USA
| | - Sumeet Gupta
- Whitehead Institute for Biomedical Research (WIBR), Nine Cambridge Center Cambridge, Cambridge, MA, 02142, USA
| | - Thomas Volkert
- Whitehead Institute for Biomedical Research (WIBR), Nine Cambridge Center Cambridge, Cambridge, MA, 02142, USA
| | - Stuart Levine
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Jean-Bosco Tagne
- The Pulmonary Center, Boston University School of Medicine (BUSM), East Concord Street R304, Boston, MA, 02118, USA.
| |
Collapse
|
16
|
Zhang M, Gong W, Zuo B, Chu B, Tang Z, Zhang Y, Yang Y, Zhou D, Weng M, Qin Y, Ma M, Jiang A, Ma F, Quan Z. The microRNA miR-33a suppresses IL-6-induced tumor progression by binding Twist in gallbladder cancer. Oncotarget 2018; 7:78640-78652. [PMID: 27769047 PMCID: PMC5346666 DOI: 10.18632/oncotarget.12693] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 09/25/2016] [Indexed: 02/05/2023] Open
Abstract
Cytokine is a key molecular link between chronic inflammation and gallbladder cancer (GBC) progression. The potential mechanism of cytokine-associated modulation of microRNAs (miRNAs) expression in GBC progression is not fully understood. In this study, we investigated the biological effects and prognostic significance of interleukin-6 (IL-6) -induced miRNAs in the development of GBC. We identify that inflammatory cytokine, IL-6 promotes proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of GBC both in vitro and in vivo. Among all the changed miRNAs in miRNA profiling, miR-33a expression was significantly decreased in IL-6 treated GBC cell lines, as well as in GBC tissues compared with case-matched normal tissues and cholecystitis tissues. In turn, miR-33a suppresses IL-6-induced tumor metastasis by directly binding Twist which was identified as an EMT marker. High expression of miR-33a suppressed xenograft tumor growth and dissemination in nude mice. The downregulation of miR-33a was closely associated with advanced clinical stage, lymph node metastasis, and poor clinical outcomes in patients with GBC. miR-33a acts as a tumor suppressor miRNA in GBC progression and may be considered for the development of potential therapeutics against GBC.
Collapse
Affiliation(s)
- Mingdi Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China.,Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Bingfeng Chu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Yong Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Yong Yang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Di Zhou
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Mingzhe Weng
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Yiyu Qin
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Mingzhe Ma
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Alex Jiang
- Schulich School of Medicine and Dentistry, Western Ontario University, London, ON N6A 3K6, Canada
| | - Fei Ma
- Department of Oncology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| |
Collapse
|
17
|
Epithelial-to-mesenchymal transition in gallbladder cancer: from clinical evidence to cellular regulatory networks. Cell Death Discov 2017; 3:17069. [PMID: 29188076 PMCID: PMC5702855 DOI: 10.1038/cddiscovery.2017.69] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC), with late diagnosis, rapid disease progression and early metastasis, is a highly aggressive malignant tumor found worldwide. Patients with GBC have poor survival, low curative resection rates and early recurrence. For such a lethal tumor, uncovering the mechanisms and exploring new strategies to prevent tumor progression and metastasis are critically important. Epithelial-to-mesenchymal transition (EMT) has a prominent role in the early steps of tumor progression and metastasis by initiating polarized epithelial cell transition into motile mesenchymal cells. Accumulating evidence suggests that EMT can be modulated by the cooperation of multiple mechanisms affecting common targets. Signaling pathways, transcriptional and post-transcriptional regulation and epigenetic alterations are involved in the stepwise EMT regulatory network in GBC. Loss of epithelial markers, acquisition of mesenchymal markers and dysregulation of EMT-inducing transcription factors (EMT-TFs) have been observed and are associated with the clinicopathology and prognosis of GBC patients. Therefore, EMT may be a detectable and predictable event for predicting GBC progression and metastasis in the clinic. In this review, we will provide an overview of EMT from the clinical evidence to cellular regulatory networks that have been studied thus far in clinical and basic GBC studies.
Collapse
|
18
|
Upregulation of microRNA-25-3p inhibits proliferation, migration and invasion of osteosarcoma cells in vitro by directly targeting SOX4. Mol Med Rep 2017; 16:4293-4300. [DOI: 10.3892/mmr.2017.7103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/18/2017] [Indexed: 11/05/2022] Open
|
19
|
Hu Y, Qin X, Yan D, Cao H, Zhou L, Fan F, Zang J, Ni J, Xu X, Sha H, Liu S, Yu S, Wu J, Ma R, Feng J. Genome-wide profiling of micro-RNA expression in gefitinib-resistant human lung adenocarcinoma using microarray for the identification of miR-149-5p modulation. Tumour Biol 2017; 39:1010428317691659. [PMID: 28345454 DOI: 10.1177/1010428317691659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To understand the mechanism involved in gefitinib resistance, we established gefitinib-resistant human HCC827/GR-8-1 cell line from the parental HCC827 cell line. We compared the micro-RNA expression profiles of the HCC827 cells HCC827/GR-8-1 using Agilent micro-RNA microarrays. The micro-RNAs, such as the miR-149-5p, were up- or downregulated and associated with acquired gefitinib resistance. Quantitative real-time polymerase chain reaction was then performed to verify the expression patterns of different micro-RNAs. The result showed that miR-149-5p was upregulated in the HCC827/GR-8-1 cell line. To investigate the biological function of miR-149-5p in non-small cell lung cancer cells acquired gefitinib resistance, we examined cell proliferation using a cell counting kit-8 assay. Cell viability was evaluated after the miR-149-5p mimics, inhibitors, and negative control were separately transfected into the non-small cell lung cancer cells. The results showed that the non-small cell lung cancer cells transfected with miR-149-5p mimics exhibited reduced cell motility. The drug-sensitivity assay results revealed that the overexpression of miR-149-5p effectively evaluates the half maximal inhibitory concentration values of the cell in response to gefitinib, and the downregulation of miR-149-5p can attenuate the half maximal inhibitory concentration values of the cell lines in response to gefitinib. Furthermore, the levels of miR-149-5p in the HCC827 and HCC827/GR-8-1 cells were inversely correlated with caspase-3 expression. In conclusion, this study revealed that miR-149-5p is upregulated in the HCC827/GR-8-1 cells and involved in the acquired gefitinib resistance.
Collapse
Affiliation(s)
- Yong Hu
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xiaobing Qin
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,2 Department of Oncology, Xuzhou First People's Hospital, Xuzhou, China
| | - Dali Yan
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Haixia Cao
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Leilei Zhou
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Fan Fan
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Jialan Zang
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Jie Ni
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xiaoyue Xu
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Huanhuan Sha
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Siwen Liu
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Shaorong Yu
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Jianzhong Wu
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Rong Ma
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Jifeng Feng
- 1 Department of Clinical Cancer Research Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| |
Collapse
|
20
|
The Emerging Role of miRNAs and Their Clinical Implication in Biliary Tract Cancer. Gastroenterol Res Pract 2016; 2016:9797410. [PMID: 28115929 PMCID: PMC5223017 DOI: 10.1155/2016/9797410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 12/04/2016] [Indexed: 01/17/2023] Open
Abstract
Biliary tract cancers are aggressive malignancies that include gallbladder cancer and tumors of intra- and extrahepatic ducts and have a poor prognosis. Surgical resection remains the main curative therapy. Nevertheless, numerous patients experience recurrence even after radical surgery. This scenario drives the research to identify biliary tract cancer biomarkers despite the limited progress that has been made. Recently, a large number of studies have demonstrated that deregulated expression of microRNAs is closely associated with cancer development and progression. In this review, we highlight the role and importance of microRNAs in biliary tract cancers with an emphasis on utilizing circulating microRNAs as potential biomarkers. Additionally, we report several single-nucleotide polymorphisms in microRNA genes that are associated with the susceptibility of biliary tract tumors.
Collapse
|