1
|
Miracle CE, McCallister CL, Denning KL, Russell R, Allen J, Lawrence L, Legenza M, Krutzler-Berry D, Salisbury TB. High BMI Is Associated with Changes in Peritumor Breast Adipose Tissue That Increase the Invasive Activity of Triple-Negative Breast Cancer Cells. Int J Mol Sci 2024; 25:10592. [PMID: 39408921 PMCID: PMC11476838 DOI: 10.3390/ijms251910592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer is the most common cancer in women with multiple risk factors including smoking, genetics, environmental factors, and obesity. Smoking and obesity are the top two risk factors for the development of breast cancer. The effect of obesity on adipose tissue mediates the pathogenesis of breast cancer in the context of obesity. Triple-negative breast cancer (TNBC) is a breast cancer subtype within which the cells lack estrogen, progesterone, and HER2 receptors. TNBC is the deadliest breast cancer subtype. The 5-year survival rates for patients with TNBC are 8-16% lower than the 5-year survival rates for patients with estrogen-receptor-positive breast tumors. In addition, TNBC patients have early relapse rates (3-5 years after diagnosis). Obesity is associated with an increased risk for TNBC, larger TNBC tumors, and increased breast cancer metastasis compared with lean women. Thus, novel therapeutic approaches are warranted to treat TNBC in the context of obesity. In this paper, we show that peritumor breast adipose-derived secretome (ADS) from patients with a high (>30) BMI is a stronger inducer of TNBC cell invasiveness and JAG1 expression than peritumor breast ADS from patients with low (<30) BMI. These findings indicate that patient BMI-associated changes in peritumor AT induce changes in peritumor ADS, which in turn acts on TNBC cells to stimulate JAG1 expression and cancer cell invasiveness.
Collapse
Affiliation(s)
- Cora E. Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| | - Chelsea L. McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| | - Krista L. Denning
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Rebecca Russell
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Jennifer Allen
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Logan Lawrence
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Mary Legenza
- Edwards Comprehensive Cancer Center, Department of Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.L.); (D.K.-B.)
| | - Diane Krutzler-Berry
- Edwards Comprehensive Cancer Center, Department of Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.L.); (D.K.-B.)
| | - Travis B. Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| |
Collapse
|
2
|
Qiu Y, Chen A, Yu R, Llevenes P, Seen M, Ko NY, Monti S, Denis GV. Insulin Resistance Increases TNBC Aggressiveness and Brain Metastasis via Adipocyte-derived Exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592097. [PMID: 38746141 PMCID: PMC11092600 DOI: 10.1101/2024.05.01.592097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Patients with triple negative breast cancer (TNBC) and comorbid Type 2 Diabetes (T2D), characterized by insulin resistance of adipose tissue, have higher risk of metastasis and shorter survival. Adipocytes are the main non-malignant cells of the breast tumor microenvironment (TME). However, adipocyte metabolism is usually ignored in oncology and mechanisms that couple T2D to TNBC outcomes are poorly understood. Here we hypothesized that exosomes, small vesicles secreted by TME breast adipocytes, drive epithelial-to-mesenchymal transition (EMT) and metastasis in TNBC via miRNAs. Exosomes were purified from conditioned media of 3T3-L1 mature adipocytes, either insulin-sensitive (IS) or insulin-resistant (IR). Murine 4T1 cells, a TNBC model, were treated with exosomes in vitro (72h). EMT, proliferation and angiogenesis were elevated in IR vs. control and IS. Brain metastases showed more mesenchymal morphology and EMT enrichment in the IR group. MiR-145a-3p is highly differentially expressed between IS and IR, and potentially regulates metastasis. Significance IR adipocyte exosomes modify TME, increase EMT and promote metastasis to distant organs, likely through miRNA pathways. We suggest metabolic diseases such as T2D reshape the TME, promoting metastasis and decreasing survival. Therefore, TNBC patients with T2D should be closely monitored for metastasis, with metabolic medications considered.
Collapse
|
3
|
Liu M, Zhang Q. Polydatin ameliorates low-density lipoprotein cholesterol and lipid metabolism by downregulating proprotein convertase subtilisin/kexin type 9 (PCSK9) in triple-negative breast cancer with hyperlipidemia. Am J Cancer Res 2024; 14:52-72. [PMID: 38323270 PMCID: PMC10839302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024] Open
Abstract
To investigate polydatin's effects on low-density lipoprotein cholesterol (LDL-C) and lipid metabolism in mice with triple-negative breast cancer (TNBC) and hyperlipidemia, as well as the underlying mechanism of proprotein convertase subtilisin/kexin type 9 (PCSK9). In vivo, we designed two animal models, namely breast pad in situ inoculation of TNBC model and TNBC with lung metastatic were inoculated with the caudal vein model. Mice were administered a high-fat diet. Upon the completion of the experiment, plasma triglycerides (TG), total plasma cholesterol (TC), plasma LDL-C, and plasma high-density lipoprotein cholesterol (HDL-C) were measured. ELISA was employed to measure PCSK9 and the low-density lipoprotein receptor (LDLR). The morphological alterations were observed using Oil-red O staining. Immunohistochemical labeling was used to determine the expression of PCSK9 and LDLR in mouse breast cancer (BC) tissues. MTT, wound healing assay, and the transwell migration and invasion test were conducted to examine co-cultured adipocytes' effects on the growth, invasion, and migration of BC cells. In the 4T1-luc cell model injected in situ into the breast pad and 4T1-luc cell model injected into the tail vein, we observed that a high-fat diet promoted the proliferation and lung metastasis of BC cells, whereas polydatin suppressed the proliferation and lung metastasis of BC cells. Co-culture of BC cells with adipocytes enhanced the proliferation, invasion, and metastasis, while polydatin intervention inhibited the growth, invasion, and metastasis. After treatment with polydatin, serum lipid levels decreased, PCSK9 decreased, LDLR increased, and LDL-C decreased in mouse BC, liver, and lung tissues. After polydatin treatment, PCSK9 decreased, LDLR increased, and LDL-C decreased in an in vitro co-culture system of BC cells and adipocytes. After transfection of siRNA PCSK9 in the co-culture system, the LDLR increased more significantly, and the LDL-C decreased more significantly. After transfection of LV-PCSK9, PCSK9 decreased, LDLR increased, and LDL-C decreased. We concluded that polydatin inhibited breast tumor proliferation and distant lung metastasis in mice promoted by a high lipid environment. By suppressing PCSK9, polydatin alters the lipid profile of hyperlipidemic TNBC mice and prevents distant metastases. Our findings provide credence to the established practice of using polydatin in treating TNBC combined with hyperlipidemia.
Collapse
Affiliation(s)
- Min Liu
- School of Traditional Chinese Medicine, Capital Medical UniversityBeijing 100069, China
| | - Qing Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing 100010, China
| |
Collapse
|
4
|
Lee CM, Hwang Y, Jeong JW, Kim M, Lee J, Bae SJ, Ahn SG, Fang S. BRCA1 mutation promotes sprouting angiogenesis in inflammatory cancer-associated fibroblast of triple-negative breast cancer. Cell Death Discov 2024; 10:5. [PMID: 38182557 PMCID: PMC10770063 DOI: 10.1038/s41420-023-01768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with inferior outcomes owing to its low treatment response and high invasiveness. Based on abundant cancer-associated fibroblasts (CAFs) and frequent mutation of breast cancer-associated 1 (BRCA1) in TNBC, the characteristics of CAFs in TNBC patients with BRCA1 mutation compared to wild-type were investigated using single-cell analysis. Intriguingly, we observed that characteristics of inflammatory CAFs (iCAFs) were enriched in patients with BRCA1 mutation compared to the wild-type. iCAFs in patients with BRCA1 mutation exhibited outgoing signals to endothelial cells (ECs) clusters, including chemokine (C-X-C motif) ligand (CXCL) and vascular endothelial growth factor (VEGF). During CXCL signaling, the atypical chemokine receptor 1 (ACKR1) mainly interacts with CXCL family members in tumor endothelial cells (TECs). ACKR1-high TECs also showed high expression levels of angiogenesis-related genes, such as ANGPT2, MMP1, and SELE, which might lead to EC migration. Furthermore, iCAFs showed VEGF signals for FLT1 and KDR in TECs, which showed high co-expression with tip cell marker genes, including ZEB1 and MAFF, involved in sprouting angiogenesis. Moreover, BRCA1 mutation patients with relatively abundant iCAFs and tip cell gene expression exhibited a limited response to neoadjuvant chemotherapy, including cisplatin and bevacizumab. Importantly, our study observed the intricate link between iCAFs-mediated angiogenesis and chemoresistance in TNBC with BRCA1 mutation.
Collapse
Affiliation(s)
- Chae Min Lee
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yeseong Hwang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jae Woong Jeong
- Department of Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Minki Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Janghee Lee
- Department of Surgery, Sacred Heart Hospital, Hallym University, Dongtan, 18450, Republic of Korea
- Department of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
| | - Soong June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Lee CM, Fang S. Fat Biology in Triple-Negative Breast Cancer: Immune Regulation, Fibrosis, and Senescence. J Obes Metab Syndr 2023; 32:312-321. [PMID: 38014425 PMCID: PMC10786212 DOI: 10.7570/jomes23044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
Obesity, now officially recognized as a disease requiring intervention, has emerged as a significant health concern due to its strong association with elevated susceptibility to diverse diseases and various types of cancer, including breast cancer. The link between obesity and cancer is intricate, with obesity exerting a significant impact on cancer recurrence and elevated mortality rates. Among the various subtypes of breast cancer, triple-negative breast cancer (TNBC) is the most aggressive, accounting for 15% to 20% of all cases. TNBC is characterized by low expression of estrogen receptors and progesterone receptors as well as the human epidermal growth factor 2 receptor protein. This subtype poses distinct challenges in terms of treatment response and exhibits strong invasiveness. Furthermore, TNBC has garnered attention because of its association with obesity, in which excess body fat and reduced physical activity have been identified as contributing factors to the increased incidence of this aggressive form of breast cancer. In this comprehensive review, the impact of obesity on TNBC was explored. Specifically, we focused on the three key mechanisms by which obesity affects TNBC development and progression: modification of the immune profile, facilitation of fibrosis, and initiation of senescence. By comprehensively examining these mechanisms, we illuminated the complex interplay between TNBC and obesity, facilitating the development of novel approaches for prevention, early detection, and effective management of this challenging disease.
Collapse
Affiliation(s)
- Chae Min Lee
- Graduate School of Medical Science, Brain Korea 2 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 2 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Conner SJ, Guarin JR, Borges HB, Salhany KJ, Mensah DN, Hamilton GA, Le GH, Oudin MJ. Age and obesity-driven changes in the extracellular matrix of the primary tumor and metastatic site influence tumor invasion and metastatic outgrowth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554492. [PMID: 37662270 PMCID: PMC10473680 DOI: 10.1101/2023.08.24.554492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Younger age and obesity increase the incidence and metastasis of triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer. The extracellular matrix (ECM) promotes tumor invasion and metastasis. We characterized the effect of age and obesity on the ECM of mammary fat pads, lungs, and liver using a diet-induced obesity (DIO) model. At 4 week intervals, we either injected the mammary fat pads with allograft tumor cells to characterize tumor growth and metastasis or isolated the mammary fat pads and livers to characterize the ECM. Age had no effect on tumor growth but increased lung and liver metastasis after 16 weeks. Obesity increased tumor growth starting at 12 weeks, increased liver metastasis only at 4 weeks, and weight gain correlated to increased lung but not liver metastasis. Utilizing whole decellularized ECM coupled with proteomics, we found that early stages of obesity were sufficient to induce changes in the ECM composition and invasive potential of mammary fat pads with increased abundance of pro-invasive ECM proteins Collagen IV and Collagen VI. We identified cells of stromal vascular fraction and adipose stem and progenitor cells as primarily responsible for secreting Collagen IV and VI, not adipocytes. We characterized the changes in ECM in the lungs and liver, and determined that older age decreases the metastatic potential of lung and liver ECM while later-stage obesity increases the metastatic potential. These data implicate ECM changes in the primary tumor and metastatic microenvironment as mechanisms by which age and obesity contribute to breast cancer progression.
Collapse
Affiliation(s)
- Sydney J. Conner
- Department of Biomedical Engineering, Tufts University, Medford, MA 02478
| | - Justinne R. Guarin
- Department of Biomedical Engineering, Tufts University, Medford, MA 02478
| | - Hannah B. Borges
- Department of Biomedical Engineering, Tufts University, Medford, MA 02478
| | - Kenneth J. Salhany
- Department of Biomedical Engineering, Tufts University, Medford, MA 02478
| | - Diamond N. Mensah
- Department of Biomedical Engineering, Tufts University, Medford, MA 02478
| | - Grace A. Hamilton
- Department of Biomedical Engineering, Tufts University, Medford, MA 02478
| | - Giang H. Le
- Department of Biomedical Engineering, Tufts University, Medford, MA 02478
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, MA 02478
| |
Collapse
|
7
|
Oh M, Batty S, Banerjee N, Kim TH. High extracellular glucose promotes cell motility by modulating cell deformability and contractility via the cAMP-RhoA-ROCK axis in human breast cancer cells. Mol Biol Cell 2023; 34:ar79. [PMID: 37195739 PMCID: PMC10398875 DOI: 10.1091/mbc.e22-12-0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
The mechanical properties, or mechanotypes, of cells are largely determined by their deformability and contractility. The ability of cancer cells to deform and generate contractile force is critical in multiple steps of metastasis. Identifying soluble cues that regulate cancer cell mechanotypes and understanding the underlying molecular mechanisms regulating these cellular mechanotypes could provide novel therapeutic targets to prevent metastasis. Although a strong correlation between high glucose level and cancer metastasis has been demonstrated, the causality has not been elucidated, and the underlying molecular mechanisms remain largely unknown. In this study, using novel high-throughput mechanotyping assays, we show that human breast cancer cells become less deformable and more contractile with increased extracellular glucose levels (>5 mM). These altered cell mechanotypes are due to increased F-actin rearrangement and nonmuscle myosin II (NMII) activity. We identify the cAMP-RhoA-ROCK-NMII axis as playing a major role in regulating cell mechanotypes at high extracellular glucose levels, whereas calcium and myosin light-chain kinase (MLCK) are not required. The altered mechanotypes are also associated with increased cell migration and invasion. Our study identifies key components in breast cancer cells that convert high extracellular glucose levels into changes in cellular mechanotype and behavior relevant in cancer metastasis.
Collapse
Affiliation(s)
- Mijung Oh
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Skylar Batty
- Undergraduate Pipeline Network Summer Research Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Tae-Hyung Kim
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131
| |
Collapse
|
8
|
Akingbesote ND, Owusu D, Liu R, Cartmel B, Ferrucci LM, Zupa M, Lustberg MB, Sanft T, Blenman KRM, Irwin ML, Perry RJ. A review of the impact of energy balance on triple-negative breast cancer. J Natl Cancer Inst Monogr 2023; 2023:104-124. [PMID: 37139977 DOI: 10.1093/jncimonographs/lgad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 05/05/2023] Open
Abstract
Cancer cells cannot proliferate without sufficient energy to generate biomass for rapid cell division, as well as to fuel their functions at baseline. For this reason, many recent observational and interventional studies have focused on increasing energy expenditure and/or reducing energy intake during and after cancer treatment. The impact of variance in diet composition and in exercise on cancer outcomes has been detailed extensively elsewhere and is not the primary focus of this review. Instead, in this translational, narrative review we examine studies of how energy balance impacts anticancer immune activation and outcomes in triple-negative breast cancer (TNBC). We discuss preclinical, clinical observational, and the few clinical interventional studies on energy balance in TNBC. We advocate for the implementation of clinical studies to examine how optimizing energy balance-through changes in diet and/or exercise-may optimize the response to immunotherapy in people with TNBC. It is our conviction that by taking a holistic approach that includes energy balance as a key factor to be considered during and after treatment, cancer care may be optimized, and the detrimental effects of cancer treatment and recovery on overall health may be minimized.
Collapse
Affiliation(s)
- Ngozi D Akingbesote
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Dennis Owusu
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, Ghana
| | - Ryan Liu
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Cedar Park High School, Cedar Park, TX, USA
| | - Brenda Cartmel
- Yale School of Public Health, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Leah M Ferrucci
- Yale School of Public Health, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | | | - Maryam B Lustberg
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Tara Sanft
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Kim R M Blenman
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Melinda L Irwin
- Yale School of Public Health, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
9
|
Papakonstantinou E, Piperigkou Z, Karamanos NK, Zolota V. Altered Adipokine Expression in Tumor Microenvironment Promotes Development of Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:4139. [PMID: 36077676 PMCID: PMC9454958 DOI: 10.3390/cancers14174139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a remarkably important factor for breast carcinogenesis and aggressiveness. The implication of increased BMI in triple negative breast cancer (TNBC) development is also well established. A malignancy-promoting role of the adipose tissue has been supposed, where the adipocytes that constitute the majority of stromal cells release pro-inflammatory cytokines and growth factors. Alterations in adipokines and their receptors play significant roles in breast cancer initiation, progression, metastasis, and drug response. Classic adipokines, such as leptin, adiponectin, and resistin, have been extensively studied in breast cancer and connected with breast cancer risk and progression. Notably, new molecules are constantly being discovered and the list is continuously growing. Additionally, substantial progress has been made concerning their differential expression in association with clinical and pathological parameters of tumors and the prognostic and predictive value of their dysregulation in breast cancer carcinogenesis. However, evidence regarding the mechanisms by which adipose tissue is involved in the development of TNBC is lacking. In the present article we comment on current data on the suggested involvement of these mediators in breast cancer development and progression, with particular emphasis on TNBC, to draw attention to the design of novel targeted therapies and biomarkers.
Collapse
Affiliation(s)
- Efthymia Papakonstantinou
- Department of Gynecology and Obstetrics, School of Medicine, University of Patras, 26504 Patras, Greece or
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 26504 Patras, Greece
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 26504 Patras, Greece
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
10
|
Rujchanarong D, Scott D, Park Y, Brown S, Mehta AS, Drake R, Sandusky GE, Nakshatri H, Angel PM. Metabolic Links to Socioeconomic Stresses Uniquely Affecting Ancestry in Normal Breast Tissue at Risk for Breast Cancer. Front Oncol 2022; 12:876651. [PMID: 35832545 PMCID: PMC9273232 DOI: 10.3389/fonc.2022.876651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
A primary difference between black women (BW) and white women (WW) diagnosed with breast cancer is aggressiveness of the tumor. Black women have higher mortalities with similar incidence of breast cancer compared to other race/ethnicities, and they are diagnosed at a younger age with more advanced tumors with double the rate of lethal, triple negative breast cancers. One hypothesis is that chronic social and economic stressors result in ancestry-dependent molecular responses that create a tumor permissive tissue microenvironment in normal breast tissue. Altered regulation of N-glycosylation of proteins, a glucose metabolism-linked post-translational modification attached to an asparagine (N) residue, has been associated with two strong independent risk factors for breast cancer: increased breast density and body mass index (BMI). Interestingly, high body mass index (BMI) levels have been reported to associate with increases of cancer-associated N-glycan signatures. In this study, we used matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) to investigate molecular pattern changes of N-glycosylation in ancestry defined normal breast tissue from BW and WW with significant 5-year risk of breast cancer by Gail score. N-glycosylation was tested against social stressors including marital status, single, education, economic status (income), personal reproductive history, the risk factors BMI and age. Normal breast tissue microarrays from the Susan G. Komen tissue bank (BW=43; WW= 43) were used to evaluate glycosylation against socioeconomic stress and risk factors. One specific N-glycan (2158 m/z) appeared dependent on ancestry with high sensitivity and specificity (AUC 0.77, Brown/Wilson p-value<0.0001). Application of a linear regression model with ancestry as group variable and socioeconomic covariates as predictors identified a specific N-glycan signature associated with different socioeconomic stresses. For WW, household income was strongly associated to certain N-glycans, while for BW, marital status (married and single) was strongly associated with the same N-glycan signature. Current work focuses on understanding if combined N-glycan biosignatures can further help understand normal breast tissue at risk. This study lays the foundation for understanding the complexities linking socioeconomic stresses and molecular factors to their role in ancestry dependent breast cancer risk.
Collapse
Affiliation(s)
- Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Danielle Scott
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Yeonhee Park
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sean Brown
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Richard Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
11
|
Devericks EN, Carson MS, McCullough LE, Coleman MF, Hursting SD. The obesity-breast cancer link: a multidisciplinary perspective. Cancer Metastasis Rev 2022; 41:607-625. [PMID: 35752704 PMCID: PMC9470704 DOI: 10.1007/s10555-022-10043-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
Obesity, exceptionally prevalent in the USA, promotes the incidence and progression of numerous cancer types including breast cancer. Complex, interacting metabolic and immune dysregulation marks the development of both breast cancer and obesity. Obesity promotes chronic low-grade inflammation, particularly in white adipose tissue, which drives immune dysfunction marked by increased pro-inflammatory cytokine production, alternative macrophage activation, and reduced T cell function. Breast tissue is predominantly composed of white adipose, and developing breast cancer readily and directly interacts with cells and signals from adipose remodeled by obesity. This review discusses the biological mechanisms through which obesity promotes breast cancer, the role of obesity in breast cancer health disparities, and dietary interventions to mitigate the adverse effects of obesity on breast cancer. We detail the intersection of obesity and breast cancer, with an emphasis on the shared and unique patterns of immune dysregulation in these disease processes. We have highlighted key areas of breast cancer biology exacerbated by obesity, including incidence, progression, and therapeutic response. We posit that interception of obesity-driven breast cancer will require interventions that limit protumor signaling from obese adipose tissue and that consider genetic, structural, and social determinants of the obesity–breast cancer link. Finally, we detail the evidence for various dietary interventions to offset obesity effects in clinical and preclinical studies of breast cancer. In light of the strong associations between obesity and breast cancer and the rising rates of obesity in many parts of the world, the development of effective, safe, well-tolerated, and equitable interventions to limit the burden of obesity on breast cancer are urgently needed.
Collapse
Affiliation(s)
- Emily N Devericks
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meredith S Carson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael F Coleman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D Hursting
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Chen K, Zhang J, Beeraka NM, Tang C, Babayeva YV, Sinelnikov MY, Zhang X, Zhang J, Liu J, Reshetov IV, Sukocheva OA, Lu P, Fan R. Advances in the Prevention and Treatment of Obesity-Driven Effects in Breast Cancers. Front Oncol 2022; 12:820968. [PMID: 35814391 PMCID: PMC9258420 DOI: 10.3389/fonc.2022.820968] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Obesity and associated chronic inflammation were shown to facilitate breast cancer (BC) growth and metastasis. Leptin, adiponectin, estrogen, and several pro-inflammatory cytokines are involved in the development of obesity-driven BC through the activation of multiple oncogenic and pro-inflammatory pathways. The aim of this study was to assess the reported mechanisms of obesity-induced breast carcinogenesis and effectiveness of conventional and complementary BC therapies. We screened published original articles, reviews, and meta-analyses that addressed the involvement of obesity-related signaling mechanisms in BC development, BC treatment/prevention approaches, and posttreatment complications. PubMed, Medline, eMedicine, National Library of Medicine (NLM), and ReleMed databases were used to retrieve relevant studies using a set of keywords, including "obesity," "oncogenic signaling pathways," "inflammation," "surgery," "radiotherapy," "conventional therapies," and "diet." Multiple studies indicated that effective BC treatment requires the involvement of diet- and exercise-based approaches in obese postmenopausal women. Furthermore, active lifestyle and diet-related interventions improved the patients' overall quality of life and minimized adverse side effects after traditional BC treatment, including postsurgical lymphedema, post-chemo nausea, vomiting, and fatigue. Further investigation of beneficial effects of diet and physical activity may help improve obesity-linked cancer therapies.
Collapse
Affiliation(s)
- Kuo Chen
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Zhang
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Narasimha M. Beeraka
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical College, Mysuru, India
| | - Chengyun Tang
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Yulia V. Babayeva
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Mikhail Y. Sinelnikov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Xinliang Zhang
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Jiacheng Zhang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Igor V. Reshetov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Olga A. Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Pengwei Lu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruitai Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Ramirez MU, Clear KYJ, Cornelius Z, Bawaneh A, Feliz‐Mosquea YR, Wilson AS, Ruggiero AD, Cruz‐Diaz N, Shi L, Kerr BA, Soto‐Pantoja DR, Cook KL. Diet impacts triple-negative breast cancer growth, metastatic potential, chemotherapy responsiveness, and doxorubicin-mediated cardiac dysfunction. Physiol Rep 2022; 10:e15192. [PMID: 35439354 PMCID: PMC9017973 DOI: 10.14814/phy2.15192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 05/21/2023] Open
Abstract
Anthracyclines are standard-of-care chemotherapy for the treatment of triple-negative breast cancer (TNBC). However, high anthracyclines cumulative doses increase heart failure risk. Designing therapeutic strategies that ameliorate cardiac toxicities without compromising oncologic efficacy are important to improve TNBC outcomes and survivorship. The purpose of this study was to determine the impact of diet on TNBC chemotherapeutic responsiveness and development of chemotherapy-induced cardiac damage. Female BALB/c mice fed a control, Western, Mediterranean, or Western + fish oil diet were injected with 1 × 106 4T1-luciferase TNBC into the mammary fat pad. Tumors grew for 21 days before surgical tumor resection, then mice were treated with 3.3 mg/kg i.v. doxorubicin for 3 weeks. Vevo (R) cardiac ultrasound was performed. Female nu/nu mice were placed on diets before 1 × 105 MDA-MB-231-luciferase TNBC were injected via the tail vein to induce the development of lung metastases. Mice were treated with saline or 3.3 mg/kg i.v. doxorubicin for 3 weeks, and the development of metastases visualized by IVIS (R). Consumption of a high-fat diet increased TNBC growth regardless of dietary pattern. Western diet-fed mice developed lung metastases sooner and displayed increased lung metastatic lesion formation, which was not observed in Mediterranean diet-fed mice. Western diet-fed animals displayed worse cardiac function when compared with Mediterranean diet-fed animals. Hearts from Western diet-fed animals displayed increased fibrosis. Diet represents a modifiable component directly impacting tumor growth, antitumor chemotherapy efficacy, and cardiac toxicities. Our data suggest that the Mediterranean diet may reduce lung metastatic lesions formation and prevent the development of cardiac toxicities.
Collapse
Affiliation(s)
- Manuel U. Ramirez
- Department of Physiology and PharmacologyWake Forest University Health SciencesWinston‐SalemNorth CarolinaUSA
- Department of Surgery‐HypertensionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Kenysha Y. J. Clear
- Department of Physiology and PharmacologyWake Forest University Health SciencesWinston‐SalemNorth CarolinaUSA
- Department of Surgery‐HypertensionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Zipporah Cornelius
- Department of Surgery‐HypertensionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Alaa Bawaneh
- Department of Physiology and PharmacologyWake Forest University Health SciencesWinston‐SalemNorth CarolinaUSA
- Department of Surgery‐HypertensionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Yismeilin R. Feliz‐Mosquea
- Department of Physiology and PharmacologyWake Forest University Health SciencesWinston‐SalemNorth CarolinaUSA
- Department of Surgery‐HypertensionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Adam S. Wilson
- Department of Surgery‐HypertensionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | | | - Nildris Cruz‐Diaz
- Department of Surgery‐HypertensionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Cardiovascular SciencesWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Lihong Shi
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Bethany A. Kerr
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Comprehensive Cancer CenterWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - David R. Soto‐Pantoja
- Department of Surgery‐HypertensionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Cardiovascular SciencesWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Comprehensive Cancer CenterWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Katherine L. Cook
- Department of Surgery‐HypertensionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Cardiovascular SciencesWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Comprehensive Cancer CenterWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
14
|
Liu M, Li Y, Kong B, Zhang G, Zhang Q. Polydatin down-regulates the phosphorylation level of STAT3 and induces pyroptosis in triple-negative breast cancer mice with a high-fat diet. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:173. [PMID: 35280371 PMCID: PMC8908165 DOI: 10.21037/atm-22-73] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 12/26/2022]
Abstract
Background To explore the impact of polydatin on mice with triple-negative breast cancer (TNBC) receiving a high-fat diet, as well as the underlying processes. Methods A total of 40 female Balb/c mice were randomly separated into 4 groups (4T1 + polydatin + fat diet group, 4T1 + high-fat diet group, 4T1 + polydatin group, and 4T1 group). To establish the obese TNBC mouse model, TNBC was xenografted 1×105 4T1 cells/50 µL per mouse at the right fourth mammary fat pad under anesthesia and the mice were fed a high fat diet. When the experiment was completed, total plasma cholesterol (TC) and cancer antigen (CA)15-3 were measured. The enzyme-linked immunosorbent assay (ELISA) method was used detect CA15-3. Oil red O staining was used to observe the morphological changes. Western blot analysis and reverse transcription polymerase chain reaction (RT-PCR) were used to detect the corresponding protein expression and the messenger RNA (mRNA) level. Results Polydatin decreased the degree of fatty liver, as determined by oil red O staining. The TC level in the 4T1 + fat diet group was significantly higher, and it was decreased in the 4T1 + polydatin group. The results of ELISA showed that compared with the 4T1 group, CA15-3 was significantly increased in the 4T1 + fat diet group, and polydatin was shown to significantly reduce the expression of CA15-3. Polydatin inhibited p-JAK2 and p-STAT3 mRNA and protein levels. Polydatin increased pyroptosis-related gene mRNA and protein level. Conclusions We believe that polydatin can effectively reduce blood lipid levels in TNBC mice with a high-fat diet, and play an anticancer role in TNBC. The underlying mechanism may be related to the JAK2/STAT3 signaling pathway and pyroptosis in TNBC. Our results contribute to validating the traditional use of polydatin in the treatment of TNBC with hyperlipidemia.
Collapse
Affiliation(s)
- Min Liu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yinan Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Bingtan Kong
- Beijing University of Chinese Medicine, Beijing, China
| | - Ganlin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qing Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Zunica ERM, Axelrod CL, Cho E, Spielmann G, Davuluri G, Alexopoulos SJ, Beretta M, Hoehn KL, Dantas WS, Stadler K, King WT, Pergola K, Irving BA, Langohr IM, Yang S, Hoppel CL, Gilmore LA, Kirwan JP. Breast cancer growth and proliferation is suppressed by the mitochondrial targeted furazano[3,4-b]pyrazine BAM15. Cancer Metab 2021; 9:36. [PMID: 34627389 PMCID: PMC8502397 DOI: 10.1186/s40170-021-00274-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Enhanced metabolic plasticity and diversification of energy production is a hallmark of highly proliferative breast cancers. This contributes to poor pharmacotherapy efficacy, recurrence, and metastases. We have previously identified a mitochondrial-targeted furazano[3,4-b]pyrazine named BAM15 that selectively reduces bioenergetic coupling efficiency and is orally available. Here, we evaluated the antineoplastic properties of uncoupling oxidative phosphorylation from ATP production in breast cancer using BAM15. METHODS The anticancer effects of BAM15 were evaluated in human triple-negative MDA-MB-231 and murine luminal B, ERα-negative EO771 cells as well as in an orthotopic allograft model of highly proliferative mammary cancer in mice fed a standard or high fat diet (HFD). Untargeted transcriptomic profiling of MDA-MB-231 cells was conducted after 16-h exposure to BAM15. Additionally, oxidative phosphorylation and electron transfer capacity was determined in permeabilized cells and excised tumor homogenates after treatment with BAM15. RESULTS BAM15 increased proton leak and over time, diminished cell proliferation, migration, and ATP production in both MDA-MB-231 and EO771 cells. Additionally, BAM15 decreased mitochondrial membrane potential, while inducing apoptosis and reactive oxygen species accumulation in MDA-MB-231 and EO771 cells. Untargeted transcriptomic profiling of MDA-MB-231 cells further revealed inhibition of signatures associated with cell survival and energy production by BAM15. In lean mice, BAM15 lowered body weight independent of food intake and slowed tumor progression compared to vehicle-treated controls. In HFD mice, BAM15 reduced tumor growth relative to vehicle and calorie-restricted weight-matched controls mediated in part by impaired cell proliferation, mitochondrial respiratory function, and ATP production. LC-MS/MS profiling of plasma and tissues from BAM15-treated animals revealed distribution of BAM15 in adipose, liver, and tumor tissue with low abundance in skeletal muscle. CONCLUSIONS Collectively, these data indicate that mitochondrial uncoupling may be an effective strategy to limit proliferation of aggressive forms of breast cancer. More broadly, these findings highlight the metabolic vulnerabilities of highly proliferative breast cancers which may be leveraged in overcoming poor responsiveness to existing therapies.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44109, USA.,Clinical Oncology and Metabolism, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.,Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Eunhan Cho
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | | | - Gangarao Davuluri
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.,Sarcopenia and Malnutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Krisztian Stadler
- Department of Oxidative Stress and Disease, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - William T King
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.,Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Kathryn Pergola
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.,Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Brian A Irving
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | - Ingeborg M Langohr
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Charles L Hoppel
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44109, USA
| | - L Anne Gilmore
- Clinical Oncology and Metabolism, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA. .,Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44109, USA. .,Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
16
|
Moringa Oleifera Seed Extract Concomitantly Supplemented with Chemotherapy Worsens Tumor Progression in Mice with Triple Negative Breast Cancer and Obesity. Nutrients 2021; 13:nu13092923. [PMID: 34578801 PMCID: PMC8472177 DOI: 10.3390/nu13092923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/26/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive and highly metastatic breast cancer subtype with limited treatment options. Obesity and insulin resistance are associated with a worse prognosis in those with TNBC. Moringa oleifera (moringa) is a tropical edible plant used for both food and medicinal purposes and found to have anti-obesity and anti-cancer effects in vitro and in preclinical models. The anti-cancer effects of moringa seed extract alone and in combination with chemotherapy were evaluated in immunocompromised female mice with diet-induced obesity bearing MDA-MB-231-derived xenograft tumors. Moringa supplementation protected against high-fat diet- and chemotherapy-induced increases in fasting glucose and improved insulin sensitivity. Moringa supplementation alone did not attenuate tumor growth relative to chemotherapy alone, and in combination worsened tumor progression. Moringa supplementation alone reduced angiogenesis, but this effect was abrogated in combination with chemotherapy. Moringa supplementation may be an effective strategy to improve metabolic health in mice with obesity and TNBC and reduce angiogenesis in tumors, but may have a negative interaction when used as a concurrent complementary therapy. Caution should be taken when considering the consumption of moringa seed extracts while receiving chemotherapy for breast cancer treatment. Further investigations of alternative timings of moringa therapy are warranted.
Collapse
|
17
|
Gordon NT, Alberty-Oller JJ, Fei K, Greco G, Gallagher EJ, LeRoith D, Feldman SM, Killilea B, Boolbol SK, Choi L, Friedman N, Pilewskie M, Port E, Tiersten A, Bickell NA. Association of Insulin Resistance and Higher Oncotype DX™ Recurrence Score. Ann Surg Oncol 2021; 28:5941-5947. [PMID: 33813671 DOI: 10.1245/s10434-021-09748-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 02/04/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Black women with breast cancer have a worse overall survival compared with White women; however, no difference in Oncotype DX™ (ODX) recurrence scores has been observed to explain this health disparity. Black women are also disproportionately affected by insulin resistance. We evaluated whether insulin resistance is associated with a higher ODX recurrence score and whether there is a difference between White and Black women to explain disparate clinical outcomes. METHODS A subgroup analysis of patients in a multi-institutional cross-sectional study evaluating differences in insulin resistance between White and Black women was performed. Women diagnosed with a new hormone receptor-positive, HER2/neu-negative breast cancer with an ODX recurrence score were identified. Fasting blood glucose and insulin measurements were used to calculate the homeostatic model assessment of insulin resistance (HOMA-IR) score, a method for assessing insulin resistance, and compared against ODX scores. RESULTS Overall, 412 women (358 White women, 54 Black women) were identified. Compared with White women, Black women had a higher body mass index (30 vs. 26 kg/m2, p < 0.0001), higher HOMA-IR score (2.4 vs. 1.4, p = 0.004), and more high-grade tumors (30% vs. 16%, p = 0.01). There was a direct positive association with an increasing ODX score and HOMA-IR (p = 0.014). On subset analysis, this relationship was seen in White women (p = 0.005), but not in Black women (p = 0.55). CONCLUSION In women with newly diagnosed breast cancer, increasing insulin resistance is associated with a higher recurrence score; however, this association was not present in Black women. This lack of association may be due to the small number of Black women in the cohort, or possibly a reflection of a different biological disease process of the patient's tumor.
Collapse
Affiliation(s)
- Nicole T Gordon
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute at Mount Sinai, New York, NY, USA. .,, Bakersfield, CA, USA.
| | - Jaime J Alberty-Oller
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Kezhen Fei
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, Center for Health Equity and Community Engaged Research, New York, NY, USA.,Center for Health Equity and Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giampaolo Greco
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, Center for Health Equity and Community Engaged Research, New York, NY, USA.,Center for Health Equity and Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily J Gallagher
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute at Mount Sinai, New York, NY, USA.,Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Derek LeRoith
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute at Mount Sinai, New York, NY, USA.,Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bridgid Killilea
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Susan K Boolbol
- Department of Surgery, Mount Sinai Beth Israel, New York, NY, USA
| | - Lydia Choi
- Department of Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Neil Friedman
- Department of Surgery, Mercy Medical Center, Baltimore, MD, USA
| | - Melissa Pilewskie
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa Port
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Amy Tiersten
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute at Mount Sinai, New York, NY, USA.,Department of Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina A Bickell
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Lichtiger L, Rivera J, Sahay D, Miller RL. Polycyclic Aromatic Hydrocarbons and Mammary Cancer Risk: Does Obesity Matter too? JOURNAL OF CANCER IMMUNOLOGY 2021; 3:154-162. [PMID: 34734210 PMCID: PMC8561337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Breast cancer risk remains incompletely explained, and higher incidence rates of breast cancer over recent times and in urban and industrialized areas suggest environmental causes. Polycyclic aromatic hydrocarbons (PAH) are ubiquitous in the environment and epidemiological and rodent studies have shown associations between exposure to PAH and breast cancer incidence as well as mammary tumorigenesis. In addition, in vitro and rodent studies have implicated alterations in estrogen receptor alpha (Erα) signaling pathways following PAH exposure in limited experimental studies. However, our understanding of these mechanisms is incomplete. Sahay et al. addressed this gap by examining the effect of PAH exposure on epigenetic and transcriptional regulation of genes in the Erα pathway in a mouse cohort exposed to aerosolized PAH at proportions measured in urban air. In addition to alterations in the Erα signaling pathway in the pregnant mice and in their offspring and grandoffspring, the investigators observed higher body weights in mice exposed to PAH compared to the control. Given that associations between mammary tissue adiposity, systemic adiposity, and breast cancer risk have been observed previously, the finding of higher body weight in the PAH exposure group raises the possibility that body weight might influence the association between PAH exposure and breast cancer risk. Along with new analyses, we discuss the possibility that body weight may modify the association between PAH exposure, mammary cellular proliferation, and mammary gland ductal hyperplasia in offspring and grandoffspring mice and future research that may be needed to delineate these associations.
Collapse
Affiliation(s)
| | | | | | - Rachel L. Miller
- Correspondence should be addressed to Rachel L. Miller MD, FAAAAI;
| |
Collapse
|
19
|
Prakash O, Hossain F, Danos D, Lassak A, Scribner R, Miele L. Racial Disparities in Triple Negative Breast Cancer: A Review of the Role of Biologic and Non-biologic Factors. Front Public Health 2020; 8:576964. [PMID: 33415093 PMCID: PMC7783321 DOI: 10.3389/fpubh.2020.576964] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (HER2). TNBC constitutes about 15–30 percent of all diagnosed invasive breast cancer cases in the United States. African-American (AA) women have high prevalence of TNBC with worse clinical outcomes than European-American (EA) women. The contributing factors underlying racial disparities have been divided into two major categories based on whether they are related to lifestyle (non-biologic) or unrelated to lifestyle (biologic). Our objective in the present review article was to understand the potential interactions by which these risk factors intersect to drive the initiation and development of the disparities resulting in the aggressive TNBC subtypes in AA women more likely than in EA women. To reach our goal, we conducted literature searches using MEDLINE/PubMed to identify relevant articles published from 2005 to 2019 addressing breast cancer disparities primarily among AA and EA women in the United States. We found that disparities in TNBC may be attributed to racial differences in biological factors, such as tumor heterogeneity, population genetics, somatic genomic mutations, and increased expression of genes in AA breast tumors which have direct link to breast cancer. In addition, a large number of non-biologic factors, including socioeconomic deprivation adversities associated with poverty, social stress, unsafe neighborhoods, lack of healthcare access and pattern of reproductive factors, can promote comorbid diseases such as obesity and diabetes which may adversely contribute to the aggression of TNBC biology in AA women. Further, the biological risk factors directly linked to TNBC in AA women may potentially interact with non-biologic factors to promote a higher prevalence of TNBC, more aggressive biology, and poor survival. The relative contributions of the biologic and non-biologic factors and their potential interactions is essential to our understanding of disproportionately high burden and poor survival rates of AA women with TNBC.
Collapse
Affiliation(s)
- Om Prakash
- Louisiana Health Sciences Center, School of Medicine, New Orleans, LA, United States
| | - Fokhrul Hossain
- Louisiana Health Sciences Center, School of Medicine, New Orleans, LA, United States
| | - Denise Danos
- Louisiana Health Sciences Center, School of Medicine, New Orleans, LA, United States
| | - Adam Lassak
- Louisiana Health Sciences Center, School of Medicine, New Orleans, LA, United States
| | - Richard Scribner
- Department of Public Health and Preventive Medicine, St. George's University, True Blue, Grenada
| | - Lucio Miele
- Louisiana Health Sciences Center, School of Medicine, New Orleans, LA, United States
| |
Collapse
|
20
|
Matossian MD, Giardina AA, Wright MK, Elliott S, Loch MM, Nguyen K, Zea AH, Lau FH, Moroz K, Riker AI, Jones SD, Martin EC, Bunnell BA, Miele L, Collins-Burow BM, Burow ME. Patient-Derived Xenografts as an Innovative Surrogate Tumor Model for the Investigation of Health Disparities in Triple Negative Breast Cancer. ACTA ACUST UNITED AC 2020; 1:383-392. [PMID: 33786503 PMCID: PMC7784803 DOI: 10.1089/whr.2020.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
Despite a decline in overall incidence rates for cancer in the past decade, due in part to impressive advancements in both diagnosis and treatment, breast cancer (BC) remains the leading cause of cancer-related deaths in women. BC alone accounts for ∼30% of all new cancer diagnoses in women worldwide. Triple-negative BC (TNBC), defined as having no expression of the estrogen or progesterone receptors and no amplification of the HER2 receptor, is a subtype of BC that does not benefit from the use of estrogen receptor-targeting or HER2-targeting therapies. Differences in socioeconomic factors and cell intrinsic and extrinsic characteristics have been demonstrated in Black and White TNBC patient tumors. The emergence of patient-derived xenograft (PDX) models as a surrogate, translational, and functional representation of the patient with TNBC has led to the advances in drug discovery and testing of novel targeted approaches and combination therapies. However, current established TNBC PDX models fail to represent the diverse patient population and, most importantly, the specific ethnic patient populations that have higher rates of incidence and mortality. The primary aim of this review is to emphasize the importance of using clinically relevant translatable tumor models that reflect TNBC human tumor biology and heterogeneity in high-risk patient populations. The focus is to highlight the complexity of BC as it specifically relates to the management of TNBC in Black women. We discuss the importance of utilizing PDX models to study the extracellular matrix (ECM), and the distinct differences in ECM composition and biophysical properties in Black and White women. Finally, we demonstrate the crucial importance of PDX models toward novel drug discovery in this patient population.
Collapse
Affiliation(s)
- Margarite D Matossian
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Alexandra A Giardina
- Biospecimen Core Laboratory, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| | - Maryl K Wright
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Steven Elliott
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Michelle M Loch
- Section of Hematology and Oncology, Department of Medicine, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Khoa Nguyen
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Arnold H Zea
- Biospecimen Core Laboratory, Louisiana Cancer Research Center, New Orleans, Louisiana, USA.,Department of Genetics and Stanley S. Scott Cancer Center, Louisiana Health Sciences Center, New Orleans, Louisiana, USA
| | - Frank H Lau
- Department of Surgery, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Krzysztof Moroz
- Biospecimen Core Laboratory, Louisiana Cancer Research Center, New Orleans, Louisiana, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Adam I Riker
- Department of Surgery, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA.,Department of Surgery, DeCesaris Cancer Institute, Anne Arundel Medical Center, Luminis Health, Annapolis, Maryland, USA
| | - Steven D Jones
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elizabeth C Martin
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bruce A Bunnell
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana Health Sciences Center, New Orleans, Louisiana, USA
| | - Bridgette M Collins-Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew E Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
21
|
Is Host Metabolism the Missing Link to Improving Cancer Outcomes? Cancers (Basel) 2020; 12:cancers12092338. [PMID: 32825010 PMCID: PMC7564800 DOI: 10.3390/cancers12092338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
For the past 100 years, oncologists have relentlessly pursued the destruction of tumor cells by surgical, chemotherapeutic or radiation oncological means. Consistent with this focus, treatment plans are typically based on key characteristics of the tumor itself such as disease site, histology and staging based on local, regional and systemic dissemination. Precision medicine is similarly built on the premise that detailed knowledge of molecular alterations of tumor cells themselves enables better and more effective tumor cell destruction. Recently, host factors within the tumor microenvironment including the vasculature and immune systems have been recognized as modifiers of disease progression and are being targeted for therapeutic gain. In this review, we argue that—to optimize the impact of old and new treatment options—we need to take account of an epidemic that occurs independently of—but has major impact on—the development and treatment of malignant diseases. This is the rapidly increasing number of patients with excess weight and its’ attendant metabolic consequences, commonly described as metabolic syndrome. It is well established that patients with altered metabolism manifesting as obesity, metabolic syndrome and chronic inflammation have an increased incidence of cancer. Here, we focus on evidence that these patients also respond differently to cancer therapy including radiation and provide a perspective how exercise, diet or pharmacological agents may be harnessed to improve therapeutic responses in this patient population.
Collapse
|
22
|
Role of Adipose Tissue-Derived Autotaxin, Lysophosphatidate Signaling, and Inflammation in the Progression and Treatment of Breast Cancer. Int J Mol Sci 2020; 21:ijms21165938. [PMID: 32824846 PMCID: PMC7460696 DOI: 10.3390/ijms21165938] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Autotaxin (ATX) is a secreted enzyme that produces lysophosphatidate (LPA), which signals through six G-protein coupled receptors, promoting tumor growth, metastasis, and survival from chemotherapy and radiotherapy. Many cancer cells produce ATX, but breast cancer cells express little ATX. In breast tumors, ATX is produced by tumor-associated stroma. Breast tumors are also surrounded by adipose tissue, which is a major bodily source of ATX. In mice, a high-fat diet increases adipocyte ATX production. ATX production in obesity is also increased because of low-level inflammation in the expanded adipose tissue. This increased ATX secretion and consequent LPA signaling is associated with decreased adiponectin production, which results in adverse metabolic profiles and glucose homeostasis. Increased ATX production by inflamed adipose tissue may explain the obesity-breast cancer association. Breast tumors produce inflammatory mediators that stimulate ATX transcription in tumor-adjacent adipose tissue. This drives a feedforward inflammatory cycle since increased LPA signaling increases production of more inflammatory mediators and cyclooxygenase-2. Inhibiting ATX activity, which has implications in breast cancer adjuvant treatments, attenuates this cycle. Targeting ATX activity and LPA signaling may potentially increase chemotherapy and radiotherapy efficacy, and decrease radiation-induced fibrosis morbidity independently of breast cancer type because most ATX is not derived from breast cancer cells.
Collapse
|
23
|
Purrington KS, Knight J, Dyson G, Ali-Fehmi R, Schwartz AG, Boerner JL, Bandyopadhyay S. CLCA2 expression is associated with survival among African American women with triple negative breast cancer. PLoS One 2020; 15:e0231712. [PMID: 32298355 PMCID: PMC7161959 DOI: 10.1371/journal.pone.0231712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Black/African American (AA) women are twice as likely to be diagnosed with triple negative breast cancer (TNBC) compared to whites, an aggressive breast cancer subtype associated with poor prognosis. There are no routinely used targeted clinical therapies for TNBC; thus there is a clear need to identify prognostic markers and potential therapeutic targets. Methods We evaluated expression of 27,016 genes in 155 treatment-naïve TN tumors from AA women in Detroit. Associations with survival were evaluated using Cox proportional hazards models adjusting for stage and age at diagnosis, and p-values were corrected using a false discovery rate. Our validation sample consisted of 494 TN tumors using four publically available data sets. Meta-analyses were performed using summary statistics from the four validation results. Results In the Detroit AA cohort, CLCA2 [Hazard ratio (HR) = 1.56, 95% confidence interval (CI) 1.31–1.86, nominal p = 5.1x10-7, FDR p = 0.014], SPIC [HR = 1.47, 95%CI 1.26–1.73, nominal p = 1.8x10-6, FDR p = 0.022], and MIR4311 [HR = 1.57, 95% CI 1.31–1.92, nominal p = 2.5x10-5, FDR p = 0.022] expression were associated with overall survival. Further adjustment for treatment and breast cancer specific survival analysis did not substantially alter effect estimates. CLCA2 was also associated with increased risk of death in the validation cohorts [HR = 1.14, 95% CI 1.05–1.24, p = 0.038, p-heterogeneity = 0.88]. Conclusions We identified CLCA2 as a potential prognostic marker for TNBC in AA women.
Collapse
Affiliation(s)
- Kristen S. Purrington
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- * E-mail:
| | - Jimmie Knight
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Rouba Ali-Fehmi
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Ann G. Schwartz
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Julie L. Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Sudeshna Bandyopadhyay
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| |
Collapse
|
24
|
Naik A, Monjazeb AM, Decock J. The Obesity Paradox in Cancer, Tumor Immunology, and Immunotherapy: Potential Therapeutic Implications in Triple Negative Breast Cancer. Front Immunol 2019; 10:1940. [PMID: 31475003 PMCID: PMC6703078 DOI: 10.3389/fimmu.2019.01940] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
Cancer immunotherapy has been heralded as a breakthrough cancer treatment demonstrating tremendous success in improving tumor responses and survival of patients with hematological cancers and solid tumors. This novel promising treatment approach has in particular triggered optimism for triple negative breast cancer (TNBC) treatment, a subtype of breast cancer with distinct clinical features and poor clinical outcome. In early 2019, the FDA granted the first approval of immune checkpoint therapy, targeting PD-L1 (Atezolizumab) in combination with chemotherapy for the treatment of patients with locally advanced or metastatic PD-L1 positive TNBC. The efficacy of immuno-based interventions varies across cancer types and patient cohorts, which is attributed to a variety of lifestyle, clinical, and pathological factors. For instance, obesity has emerged as a risk factor for a dampened anti-tumor immune response and increased risk of immunotherapy-induced immune-related adverse events (irAEs) but has also been linked to improved outcomes with checkpoint blockade. Given the breadth of the rising global obesity epidemic, it is imperative to gain insight into the immunomodulatory effects of obesity in the peripheral circulation and within the tumor microenvironment. In this review, we resolve the impact of obesity on breast tumorigenesis and progression on the one hand, and on the immune contexture on the other hand. Finally, we speculate on the potential implications of obesity on immunotherapy response in breast cancer. This review clearly highlights the need for in vivo obese cancer models and representative clinical cohorts for evaluation of immunotherapy efficacy.
Collapse
Affiliation(s)
- Adviti Naik
- Qatar Foundation (QF), Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Arta Monir Monjazeb
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, University of California, Sacramento, Sacramento, CA, United States
| | - Julie Decock
- Qatar Foundation (QF), Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
25
|
Sabol RA, Bowles AC, Côté A, Wise R, O'Donnell B, Matossian MD, Hossain FM, Burks HE, Del Valle L, Miele L, Collins-Burow BM, Burow ME, Bunnell BA. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res 2019; 21:67. [PMID: 31118047 PMCID: PMC6530039 DOI: 10.1186/s13058-019-1153-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Background Breast cancer is the second leading cause of cancer deaths in the USA. Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer with high rates of metastasis, tumor recurrence, and resistance to therapeutics. Obesity, defined by a high body mass index (BMI), is an established risk factor for breast cancer. Women with a high BMI have increased incidence and mortality of breast cancer; however, the mechanisms(s) by which obesity promotes tumor progression are not well understood. Methods In this study, obesity-altered adipose stem cells (obASCs) were used to evaluate obesity-mediated effects of TNBC. Both in vitro and in vivo analyses of TNBC cell lines were co-cultured with six pooled donors of obASCs (BMI > 30) or ASCs isolated from lean women (lnASCs) (BMI < 25). Results We found that obASCs promote a pro-metastatic phenotype by upregulating genes associated with epithelial-to-mesenchymal transition and promoting migration in vitro. We confirmed our findings using a TNBC patient-derived xenograft (PDX) model. PDX tumors grown in the presence of obASCS in SCID/beige mice had increased circulating HLA1+ human cells as well as increased numbers of CD44+CD24− cancer stem cells in the peripheral blood. Exposure of the TNBC PDX to obASCs also increased the formation of metastases. The knockdown of leptin expression in obASCs suppressed the pro-metastatic effects of obASCs. Conclusions Leptin signaling is a potential mechanism through which obASCs promote metastasis of TNBC in both in vitro and in vivo analyses. Electronic supplementary material The online version of this article (10.1186/s13058-019-1153-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachel A Sabol
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Annie C Bowles
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Alex Côté
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Rachel Wise
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Benjamen O'Donnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Margarite D Matossian
- Department of Medicine, Section of Hematology and Oncology, Tulane University, New Orleans, LA, USA
| | - Fokhrul M Hossain
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana Cancer Research Center (LCRC), LSUSHC, New Orleans, LA, USA
| | - Hope E Burks
- Department of Medicine, Section of Hematology and Oncology, Tulane University, New Orleans, LA, USA
| | - Luis Del Valle
- Stanley S. Scott Cancer Center, Louisiana Cancer Research Center (LCRC), LSUSHC, New Orleans, LA, USA.,Department of Pathology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana Cancer Research Center (LCRC), LSUSHC, New Orleans, LA, USA
| | | | - Matthew E Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University, New Orleans, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
26
|
Mikó E, Kovács T, Sebő É, Tóth J, Csonka T, Ujlaki G, Sipos A, Szabó J, Méhes G, Bai P. Microbiome-Microbial Metabolome-Cancer Cell Interactions in Breast Cancer-Familiar, but Unexplored. Cells 2019; 8:E293. [PMID: 30934972 PMCID: PMC6523810 DOI: 10.3390/cells8040293] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a leading cause of death among women worldwide. Dysbiosis, an aberrant composition of the microbiome, characterizes breast cancer. In this review we discuss the changes to the metabolism of breast cancer cells, as well as the composition of the breast and gut microbiome in breast cancer. The role of the breast microbiome in breast cancer is unresolved, nevertheless it seems that the gut microbiome does have a role in the pathology of the disease. The gut microbiome secretes bioactive metabolites (reactivated estrogens, short chain fatty acids, amino acid metabolites, or secondary bile acids) that modulate breast cancer. We highlight the bacterial species or taxonomical units that generate these metabolites, we show their mode of action, and discuss how the metabolites affect mitochondrial metabolism and other molecular events in breast cancer. These metabolites resemble human hormones, as they are produced in a "gland" (in this case, the microbiome) and they are subsequently transferred to distant sites of action through the circulation. These metabolites appear to be important constituents of the tumor microenvironment. Finally, we discuss how bacterial dysbiosis interferes with breast cancer treatment through interfering with chemotherapeutic drug metabolism and availability.
Collapse
Affiliation(s)
- Edit Mikó
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
- Department of Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Éva Sebő
- Kenézy Breast Center, Kenézy Gyula County Hospital, 4032 Debrecen, Hungary.
| | - Judit Tóth
- Kenézy Breast Center, Kenézy Gyula County Hospital, 4032 Debrecen, Hungary.
| | - Tamás Csonka
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gyula Ujlaki
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Judit Szabó
- Department of Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
27
|
Paxton RJ, Garner W, Dean LT, Logan G, Allen-Watts K. Health Behaviors and Lifestyle Interventions in African American Breast Cancer Survivors: A Review. Front Oncol 2019; 9:3. [PMID: 30723698 PMCID: PMC6349825 DOI: 10.3389/fonc.2019.00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 01/02/2019] [Indexed: 11/13/2022] Open
Abstract
Background: African American breast cancer survivors have a higher incidence of estrogen receptor negative and basal-like (e.g., triple negative) tumors, placing them at greater risk for poorer survival when compared to women of other racial and ethnic groups. While access to equitable care, late disease stage at diagnosis, tumor biology, and sociodemographic characteristics contribute to health disparities, poor lifestyle characteristics (i.e., inactivity, obesity, and poor diet) contribute equally to these disparities. Lifestyle interventions hold promise in shielding African American survivors from second cancers, comorbidities, and premature mortality, but they are often underrepresented in studies promoting positive behaviors. This review examined the available literature to document health behaviors and lifestyle intervention (i.e., obesity, physical activity, and sedentary behavior) studies in African American breast cancer survivors. Methods: We used PubMed, Academic Search Premier, and Scopus to identify cross-sectional and intervention studies examining the lifestyle behaviors of African American breast cancer survivors. Identified intervention studies were assessed for risk of bias. Other articles were identified and described to provide context for the review. Results: Our systematic review identified 226 relevant articles. The cross-sectional articles indicated poor adherence to physical activity and dietary intake and high rates of overweight and obesity. The 16 identified intervention studies indicated reasonable to modest study adherence rates (>70%), significant reductions in weight (range -1.9 to -3.6%), sedentary behavior (-18%), and dietary fat intake (range -13 to -33%) and improvements in fruit and vegetable intake (range +25 to +55%) and physical activity (range +13 to +544%). The risk of bias for most studies were rated as high (44%) or moderate (44%). Conclusions: The available literature suggests that African American breast cancer survivors adhere to interventions of various modalities and are capable of making modest to significant changes. Future studies should consider examining (a) mediators and moderators of lifestyle behaviors and interventions, (b) biological outcomes, and (c) determinants of enhanced survival in this population.
Collapse
Affiliation(s)
- Raheem J Paxton
- Department of Community Medicine and Population Health, The University of Alabama, Tuscaloosa, AL, United States
| | - William Garner
- Department of Life and Health Sciences, University of North Texas at Dallas, Dallas, TX, United States
| | - Lorraine T Dean
- Department of Epidemiology, John Hopkins School of Public Health, Baltimore, MD, United States
| | - Georgiana Logan
- Department of Community Medicine and Population Health, The University of Alabama, Tuscaloosa, AL, United States
| | - Kristen Allen-Watts
- Department of Community Medicine and Population Health, The University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
28
|
Strober JW, Brady MJ. Dietary Fructose Consumption and Triple-Negative Breast Cancer Incidence. Front Endocrinol (Lausanne) 2019; 10:367. [PMID: 31244777 PMCID: PMC6581676 DOI: 10.3389/fendo.2019.00367] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
In the past century the western world has found a way to combat most communicative diseases; however, throughout that time the prevalence of obesity, hyperglycemia, and hyperlipidemia have drastically increased. These symptoms characterize metabolic syndrome-a non-communicable disease which has become one of the greatest health hazards of the world. During this same time period the western diet had dramatically changed. Homecooked meals have been replaced by highly-processed, calorically dense foods. This conversion to the current western diet was highlighted by the incorporation of high-fructose corn syrup (HFCS) into sweetened beverages and foods. The consumption of large amounts of dietary sugar, and fructose in particular, has been associated with an altered metabolic state, both systemically and in specific tissues. This altered metabolic state has many profound effects and is associated with many diseases, including diabetes, cardiovascular disease, and even cancer (1). Specific types of cancer, like triple-negative breast cancer (TNBC), are both responsive to dietary factors and exceptionally difficult to treat, illustrating the possibility for preventative care through dietary intervention in at risk populations. To treat these non-communicable diseases, including obesity, diabetes, and cancer, it is imperative to understand systemic and localized metabolic abnormalities that drive its progression. This review will specifically explore the links between increased dietary fructose consumption, development of metabolic disturbances and increased incidence of TNBC.
Collapse
Affiliation(s)
- Jordan W. Strober
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, United States
| | - Matthew J. Brady
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, United States
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, United States
- *Correspondence: Matthew J. Brady
| |
Collapse
|
29
|
Zhu L, Xue L. Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Breast Cancer Cells. Oncol Res 2018; 27:629-634. [PMID: 29739490 PMCID: PMC7848404 DOI: 10.3727/096504018x15228018559434] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kaempferol is a flavonoid that has been extensively investigated owing to its antitumor effects. Nevertheless, little is known about its underlying mechanisms of action. We aimed to explore the role of kaempferol in breast cancer (BC), and thus we investigated how kaempferol suppresses the growth of BC cells. The cells were treated with kaempferol, and the effects on multiple cancer-associated pathways were evaluated. The MTS assay was used to study the cell growth inhibition induced by kaempferol. The cell cycle was analyzed by flow cytometry. Western blotting was used to analyze cellular apoptosis and DNA damage. We found that the proliferation of the triple-negative BC (TNBC) MDA-MB-231 cells was suppressed effectively by kaempferol. Interestingly, the suppressive effect of kaempferol on cell proliferation was stronger in MDA-MB-231 cells than in the estrogen receptor-positive BT474 cell line. Furthermore, after the treatment with kaempferol for 48 h, the population of cells in the G1 phase was significantly reduced, from 85.48% to 51.35%, and the population of cells in the G2 phase increased markedly from 9.27% to 37.5%, which indicated that kaempferol contributed to the induction of G2/M arrest. Kaempferol also induced apoptosis and DNA damage in MDA-MB-231 cells. Kaempferol increased the expression levels of γH2AX, cleaved caspase 9, cleaved caspase 3, and p-ATM compared to those of the control group. Collectively, these results showed that kaempferol may be a potential drug for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Li Zhu
- Department of Medical Laboratory, Shanghai Second People's Hospital, Shanghai, P.R. China
| | - Lijun Xue
- Madonna University, Livonia, MI, USA
| |
Collapse
|