1
|
Gholami M, Ahmadi AA, Yusofvand R, Khanchoupan M, Hajimazdarany S, Najibi R. Radioprotective Effects of Vitamin C, Cimetidine, and Famotidine on Lipid Peroxidase and Hepatic Glutathione Levels in Mouse Liver. Int J Cell Biol 2025; 2025:1106920. [PMID: 39803629 PMCID: PMC11724733 DOI: 10.1155/ijcb/1106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Radiation therapy is one of the most effective treatments for approximately 60% of patients with cancer. During radiation exposure, the overproduction of reactive oxygen species (ROS) disrupts the lipid layer of the membrane, leading to subsequent peroxide radical formation. Cimetidine (Cim) and famotidine (Fam) are histamine H2 receptor antagonists (H2 blocker), also known as peptic ulcer drugs, that exert radioprotective effects. Vitamin C (Vit.C) is an effective free radical and ROS scavenger with significant radioprotective effects. In this experimental study, male mice (6-8 weeks and 28 ± 3 g) were used in five groups. To evaluate ionizing radiation, gamma rays were used at two doses of 2 and 4 Gy and different doses of Cim, Fam, and Vit.C administered as the protectives. Finally, the livers of the mice were isolated and homogenized. The levels of lipid peroxidase and reduced and oxidized glutathione were measured using standard methods. With increasing radiation dose, lipid peroxidase activity, GSSG level, and glutathione content increased. The findings showed that in the drug-only group, Vit.C had better protection than the other two drugs, and the combination of the three drugs had excellent radiation protection. Radiation protection of normal cells in radiotherapy is a valuable necessity. A number of drugs can protect cells against ionizing radiation through different mechanisms. The results suggest that Fam, Cim, and Vit.C can be radioprotective individually or in combination.
Collapse
Affiliation(s)
- Mana Gholami
- Department of Biology, Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Reza Yusofvand
- Department of Exceptional Talents, Faculty of Medicine Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Milad Khanchoupan
- Department of Chemical Engineering, Faculty of Engineering, University of Urmia, Urmia, Iran
| | - Shima Hajimazdarany
- Department of Biology, Faculty of Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Reza Najibi
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| |
Collapse
|
2
|
Bansal K, Singh V, Mishra S, Bajpai M. Articulating the Pharmacological and Nanotechnological Aspects of Genistein: Current and Future Prospectives. Curr Pharm Biotechnol 2024; 25:807-824. [PMID: 38902930 DOI: 10.2174/0113892010265344230919170611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 06/22/2024]
Abstract
Throughout the past several centuries, herbal constituents have been the subject of scientific interest and the latest research into their therapeutic potential is underway. Genistein is a soy-derived isoflavone found in huge amounts in soy, along with the plants of the Fabaceae family. Scientific studies have demonstrated the beneficial effects of genistein on various health conditions. Genistein presents a broad range of pharmacological activities, including anticancer, neuroprotective, cardioprotective, antiulcer, anti-diabetic, wound healing, anti-bacterial, antiviral, skin, and radioprotective effects. However, the hydrophobic nature of genistein results in constrained absorption and restricts its therapeutic potential. In this review, the number of nanocarriers for genistein delivery has been explored, such as polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles, liposomes, micelles, transferosomes, and nanoemulsions and nanofibers. These nano-formulations of genistein have been utilized as a potential strategy for various disorders, employing a variety of ex vivo, in vitro, and in vivo models and various administration routes. This review concluded that genistein is a potential therapeutic agent for treating various diseases, including cancer, neurodegenerative disorders, cardiovascular disorders, obesity, diabetes, ulcers, etc., when formulated in suitable nanocarriers.
Collapse
Affiliation(s)
- Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Samiksha Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
3
|
White JM, Ramos N, Saliganan AD, Chung JY, Bell M, Lindquist J, Conner K, Wiesend WN, Schopperle M, Patrick SM, Kim S, Heath EI, Escorcia FE, Viola NT. Selective ablation of TRA-1-60 + pluripotent stem cells suppresses tumor growth of prostate cancer. Theranostics 2023; 13:2057-2071. [PMID: 37153742 PMCID: PMC10157726 DOI: 10.7150/thno.78915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023] Open
Abstract
Purpose: TRA-1-60 (TRA) is an established transcription factor of embryonic signaling and a well-known marker of pluripotency. It has been implicated in tumorigenesis and metastases, is not expressed in differentiated cells, which makes it an appealing biomarker for immunopositron emission tomography (immunoPET) imaging and radiopharmaceutical therapy (RPT). Herein, we explored the clinical implications of TRA in prostate cancer (PCa), examined the potential of TRA-targeted PET to specifically image TRA+ cancer stem cells (CSCs) and assessed response to the selective ablation of PCa CSCs using TRA-targeted RPT. Experimental Design: First, we assessed the relationship between TRA (PODXL) copy number alterations (CNA) and survival using publicly available patient databases. The anti-TRA antibody, Bstrongomab, was radiolabeled with Zr-89 or Lu-177 for immunoPET imaging and RPT in PCa xenografts. Radiosensitive tissues were collected to assess radiotoxicity while excised tumors were examined for pathologic treatment response. Results: Patients with tumors having high PODXL CNA exhibited poorer progression-free survival than those with low PODXL, suggesting that it plays an important role in tumor aggressiveness. TRA-targeted immunoPET imaging specifically imaged CSCs in DU-145 xenografts. Tumors treated with TRA RPT exhibited delayed growth and decreased proliferative activity, marked by Ki-67 immunohistochemistry. Aside from minor weight loss in select animals, no significant signs of radiotoxicity were observed in the kidneys or livers. Conclusions: We successfully demonstrated the clinical significance of TRA expression in human PCa, engineered and tested radiotheranostic agents to image and treat TRA+ prostate CSCs. Ablation of TRA+ CSCs blunted PCa growth. Future studies combining CSC ablation with standard treatment will be explored to achieve durable responses.
Collapse
Affiliation(s)
- Jordan M White
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
- Cancer Biology Graduate Program, Wayne State University, School of Medicine, Detroit, MI 48201
| | - Nicholas Ramos
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| | | | - Joon-Yong Chung
- Molecular Imaging Branch, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Meghan Bell
- Molecular Imaging Branch, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jacob Lindquist
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
- Cancer Biology Graduate Program, Wayne State University, School of Medicine, Detroit, MI 48201
| | - Kayla Conner
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
- Cancer Biology Graduate Program, Wayne State University, School of Medicine, Detroit, MI 48201
| | | | - Michael Schopperle
- Department of Anatomic Pathology, Beaumont Health System, Royal Oak, MI 48073
| | - Steve M Patrick
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| | - Seongho Kim
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| | - Elisabeth I Heath
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| | - Freddy E Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nerissa T Viola
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
4
|
Elbakry MMM, Mansour SZ, Helal H, Ahmed ESA. Nattokinase attenuates bisphenol A or gamma irradiation-mediated hepatic and neural toxicity by activation of Nrf2 and suppression of inflammatory mediators in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75086-75100. [PMID: 35648353 PMCID: PMC9550699 DOI: 10.1007/s11356-022-21126-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 05/05/2023]
Abstract
Nattokinase (NK), a protease enzyme produced by Bacillus subtilis, has various biological effects such as lipid-lowering activity, antihypertensive, antiplatelet/anticoagulant, and neuroprotective effects. Exposure to environmental toxicants such as bisphenol A (BPA) or γ-radiation (IR) causes multi-organ toxicity through several mechanisms such as impairment of oxidative status, signaling pathways, and hepatic and neuronal functions as well as disruption of the inflammatory responses. Therefore, this study is designed to evaluate the ameliorative effect of NK against BPA- or IR-induced liver and brain damage in rats. Serum ammonia level and liver function tests were measured in addition to brain oxidative stress markers, amyloid-beta, tau protein, and neuroinflammatory mediators. Moreover, relative quantification of brain nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) genes, as well as apoptotic markers in brain tissue, was carried out in addition to histopathological examination. The results showed that NK improved liver functions, impaired oxidative status, the cholinergic deficits, and minified the misfolded proteins aggregates. Furthermore, NK alleviated the neuroinflammation via modulating NF-κB/Nrf2/HO-1 pathway and glial cell activation in addition to their antiapoptotic effect. Collectively, the current results revealed the protective effect of NK against hepatic and neurotoxicity derived from BPA or IR.
Collapse
Affiliation(s)
- Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt
| | - Hamed Helal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| |
Collapse
|
5
|
El-Sayed A, Aleya L, Kamel M. Microbiota and epigenetics: promising therapeutic approaches? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49343-49361. [PMID: 34319520 PMCID: PMC8316543 DOI: 10.1007/s11356-021-15623-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/20/2021] [Indexed: 04/15/2023]
Abstract
The direct/indirect responsibility of the gut microbiome in disease induction in and outside the digestive tract is well studied. These results are usually from the overpopulation of certain species on the cost of others, interaction with beneficial microflora, interference with normal epigenetic control mechanisms, or suppression of the immune system. Consequently, it is theoretically possible to cure such disorders by rebalancing the microbiome inside our bodies. This can be achieved by changing the lifestyle pattern and diet or by supplementation with beneficial bacteria or their metabolites. Various approaches have been explored to manipulate the normal microbial inhabitants, including nutraceutical, supplementations with prebiotics, probiotics, postbiotics, synbiotics, and antibiotics, or through microbiome transplantation (fecal, skin, or vaginal microbiome transplantation). In the present review, the interaction between the microbiome and epigenetics and their role in disease induction is discussed. Possible future therapeutic approaches via the reestablishment of equilibrium in our internal micro-ecosystem are also highlighted.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
6
|
Zhang J, Pang Z, Zhang Y, Liu J, Wang Z, Xu C, He L, Li W, Zhang K, Zhang W, Wang S, Zhang C, Hao Q, Zhang Y, Li M, Li Z. Genistein From Fructus sophorae Protects Mice From Radiation-Induced Intestinal Injury. Front Pharmacol 2021; 12:655652. [PMID: 34093188 PMCID: PMC8175795 DOI: 10.3389/fphar.2021.655652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022] Open
Abstract
The development of an effective pharmacological countermeasure is needed to reduce the morbidity and mortality in high-dose ionizing radiation-induced acute damage. Genistein has shown bioactivity in alleviating radiation damage and is currently synthesized by chemosynthetic methods. Due to concerns about chemical residues and high costs, the clinical application of genistein is still a major challenge. In this study, we aimed to establish an efficient method for the extraction of genistein from Fructus sophorae. The effects of extracted genistein (FSGen) on preventing intestinal injury from radiation were further investigated in this study. C57/BL mice were exposed to 7.5 Gy whole body irradiation with and without FSGen treatments. Histological analysis demonstrated significant structural and functional restitution of the intestine and bone marrow in FSGen-pretreated cohorts after irradiation. Through mRNA expression, protein expression, and small interfering RNA analyses, we demonstrated that FSGen protects IEC-6 cells against radiation damage by upregulating the Rassf1a and Ercc1 genes to effectively attenuate DNA irradiation damage. Together, our data established an effective method to extract genistein from the Fructus sophorae plant with high purity, and validated the beneficial roles of the FSGen in protecting the radiation damage. These results promise the future applications of Fructus sophorae extracted genistein in the protection of radiation related damages.
Collapse
Affiliation(s)
- Jieyu Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhijun Pang
- Department of Laboratory Medicine, The 971th Naval Hospital, Shandong, China
| | - Yuting Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Second Battalion of Basic Medical College, Fourth Military Medical University, Xi'an, China
| | - Jiaxin Liu
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Second Battalion of Basic Medical College, Fourth Military Medical University, Xi'an, China
| | - Zhaowei Wang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Chuanyang Xu
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Lei He
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Weina Li
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kuo Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Wangqian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuning Wang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Cun Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Qiang Hao
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yingqi Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Meng Li
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhengmin Li
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Akomolafe IR, Chetty N. Radioprotective potential of <italic>Costus afer</italic> against the radiation-induced hematological and histopathological damage in mice. Radiat Oncol J 2021; 39:61-71. [PMID: 33794575 PMCID: PMC8024188 DOI: 10.3857/roj.2021.00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose This study investigated the possible radioprotective effect of Costus afer extract (CAE) on hematological and histopathological parameters of mice. Materials and Methods Fifty-four male mice with mass between 37–43 g, 11–13 weeks old were used for this study. We divided the mice into six different groups containing nine animals, which were then further sub-divided into irradiated groups and un-irradiated groups. Animals received 250 mg/kg body weight extract of CAE by oral gavage for 6 days in addition to feeding and water ad libitum. Animals in the irradiated group were exposed to radiation at the Department of Radiotherapy and Oncology, Grey’s Hospital using a linear accelerator. Blood samples were collected at 48-hour post-irradiation for the hematology test followed by histopathology examination of kidney and liver. Results Our findings revealed that 3 Gy and 6 Gy dose of X-ray radiation caused a significant reduction in the white blood cell, packed cell volume, hemoglobin, neutrophils, lymphocytes, eosinophils, and platelet counts compared with the control group. However, the administration of CAE before irradiation significantly increased the mentioned parameters. There was no increase in red blood cell and monocyte among treated groups compared with the control. Histopathological changes in the kidney and liver sections revealed that no visible lesion in the pretreated mice. Hepatocytes seem to be within normal histological limits. Conclusions This study concludes that CAE offered some protection against radiation-induced hematological alterations, but there was no significant improvement in the histopathological parameters. Thus, further studies are needed to validate its radioprotective effect on histopathological variables.
Collapse
Affiliation(s)
- Idowu Richard Akomolafe
- Discipline of Physics, School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Naven Chetty
- Discipline of Physics, School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
8
|
Comparative proteomic analysis of serum from nonhuman primates administered BIO 300: a promising radiation countermeasure. Sci Rep 2020; 10:19343. [PMID: 33168863 PMCID: PMC7653926 DOI: 10.1038/s41598-020-76494-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
Hematopoietic acute radiation syndrome (H-ARS) and delayed effects of acute radiation exposure (DEARE) are detrimental health effects that occur after exposure to high doses of ionizing radiation. BIO 300, a synthetic genistein nanosuspension, was previously proven safe and effective against H-ARS when administered (via the oral (po) or intramuscular (im) route) prior to exposure to lethal doses of total-body radiation. In this study, we evaluated the proteomic changes in serum of nonhuman primates (NHP) after administering BIO 300 by different routes (po and im). We utilized nanoflow-ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (NanoUPLC-MS/MS) methods for comprehensive global profiling and quantification of serum proteins. The results corroborate previous findings that suggest a very similar metabolic profile following both routes of drug administration. Furthermore, we observed minor alterations in protein levels, 2 hours after drug administration, which relates to the Cmax of BIO 300 for both routes of administration. Taken together, this assessment may provide an insight into the mechanism of radioprotection of BIO 300 and a reasonable illustration of the pharmacodynamics of this radiation countermeasure.
Collapse
|
9
|
Stanciu AE, Zamfir-Chiru-Anton A, Stanciu MM, Pantea-Stoian A, Nitipir C, Gheorghe DC. Serum melatonin is inversely associated with matrix metalloproteinase-9 in oral squamous cell carcinoma. Oncol Lett 2020; 19:3011-3020. [PMID: 32218858 DOI: 10.3892/ol.2020.11392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix-metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) expression levels have been demonstrated to have prognostic value in oral squamous cell carcinoma (OSCC). The present study hypothesized that melatonin, a small lipophilic molecule primarily secreted by the pineal gland, may be able to regulate MMP activity in OSCC progression. This study aimed to investigate the associations between melatonin, MMPs, TIMPs and the histopathological characteristics of patients with OSCC. A total of 40 men with OSCC (mean age, 57±7 years) and 30 healthy men (mean age, 56±5 years) were enrolled in the present study. Enzyme immunoassays were used to measure the serum levels of melatonin, MMP-9, MMP-2, TIMP-1 and TIMP-2 before and after transoral surgery for OSCC. Serum melatonin level was significantly lower in patients with OSCC compared with controls, both pre-surgery and 2 days after surgery (P<0.001). In addition, melatonin level was negatively correlated with MMP-9 (r=-0.6371) and the MMP-9/TIMP-1 ratio (r=-0.4700), but not with the MMP-2 or MMP-2/TIMP-2 ratio, in patients with OSCC. These results demonstrated that low levels of melatonin and high levels of MMP-9 correlated with large tumors with invasive depth (r=-0.35 and r=0.33) and lymph node metastasis (r=-0.56 and r=0.34). The results of this retrospective clinical study suggested that melatonin may be considered as a predictive biomarker of tumor growth and metastasis and a potential therapeutic agent for patients with OSCC.
Collapse
Affiliation(s)
- Adina Elena Stanciu
- Department of Carcinogenesis and Molecular Biology, Institute of Oncology Bucharest, Bucharest 022328, Romania
| | - Adina Zamfir-Chiru-Anton
- ENT Department, Grigore Alexandrescu Children's Emergency Hospital and Coltea Clinical Hospital, Bucharest 011743, Romania
| | - Marcel Marian Stanciu
- Electrical Engineering Faculty, Politehnica University of Bucharest, Bucharest 060042, Romania
| | - Anca Pantea-Stoian
- Department of Hygiene, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Cornelia Nitipir
- Department of Medical Oncology, Elias University Emergency Hospital, Bucharest 011461, Romania
| | - Dan Cristian Gheorghe
- ENT Department, Maria Sklodowska Curie Children's Emergency Hospital, Bucharest 077120, Romania
| |
Collapse
|
10
|
Landauer MR, Harvey AJ, Kaytor MD, Day RM. Mechanism and therapeutic window of a genistein nanosuspension to protect against hematopoietic-acute radiation syndrome. JOURNAL OF RADIATION RESEARCH 2019; 60:308-317. [PMID: 31038675 PMCID: PMC6530628 DOI: 10.1093/jrr/rrz014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Indexed: 05/17/2023]
Abstract
There are no FDA-approved drugs that can be administered prior to ionizing radiation exposure to prevent hematopoietic-acute radiation syndrome (H-ARS). A suspension of synthetic genistein nanoparticles was previously shown to be an effective radioprotectant against H-ARS when administered prior to exposure to a lethal dose of total body radiation. Here we aimed to determine the time to protection and the duration of protection when the genistein nanosuspension was administered by intramuscular injection, and we also investigated the drug's mechanism of action. A single intramuscular injection of the genistein nanosuspension was an effective radioprotectant when given prophylactically 48 h to 12 h before irradiation, with maximum effectiveness occurring when administered 24 h before. No survival advantage was observed in animals administered only a single dose of drug after irradiation. The dose reduction factor of the genistein nanosuspension was determined by comparing the survival of treated and untreated animals following different doses of total body irradiation. As genistein is a selective estrogen receptor beta agonist, we also explored whether this was a central component of its radioprotective mechanism of action. Mice that received an intramuscular injection of an estrogen receptor antagonist (ICI 182,780) prior to administration of the genistein nanosuspension had significantly lower survival following total body irradiation compared with animals only receiving the nanosuspension (P < 0.01). These data define the time to and duration of radioprotection following a single intramuscular injection of the genistein nanosuspension and identify its likely mechanism of action.
Collapse
Affiliation(s)
- Michael R Landauer
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4555 South Palmer Road, Building 42, Bethesda, MD, USA
| | - Adam J Harvey
- Humanetics Corporation, 7650 Edinborough Way, Suite 620, Edina, MN, USA
| | - Michael D Kaytor
- Humanetics Corporation, 7650 Edinborough Way, Suite 620, Edina, MN, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Building C, Roomm 2023, 4301 Jones Bridge Road, Bethesda, MD, USA
- Corresponding author. Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Building C, Room 2023, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA. Tel: +301-295-3236; fax: +301-295-3220;
| |
Collapse
|
11
|
Changizi V, Haeri SA, Abbasi S, Rajabi Z, Mirdoraghi M. Radioprotective effects of vitamin A against gamma radiation in mouse bone marrow cells. MethodsX 2019; 6:714-717. [PMID: 31008064 PMCID: PMC6458447 DOI: 10.1016/j.mex.2019.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 03/18/2019] [Indexed: 11/27/2022] Open
Abstract
Radioprotectors by neutralizing the effects of free radicals, reduce the destructive effects of radiation. In this protocol article, the radioprotectory effect of vitamin A on micronuclei induced by gamma radiation was evaluated using micronucleus test. Vitamin A was injected intraperitoneally at 100 and 400 mg/kg two hours before 2 Gray (Gy) of gamma radiation. Animals were sacrificed after 24 h, and then specimens of the bone marrow were smeared and stained. The number of micronuclei were counted in polychromatic cells. Both dosage of vitamin A reduced the micronucleus in bone marrow polychromatic erythrocytes (MnPCE) level, which is statistically significant. The appropriate amount of vitamin A for protection in mice is 100 mg/kg, which protect the bone marrow of mice against clastogenic effects of radiation. The results of the study showed that vitamin A, possibly with an antioxidant mechanism, eliminates the effects of free radicals from ionizing radiation on bone marrow cells and reduces genetic damage. •The data of radioprotective effects of vitamin A showed that administration of 100 mg/kg vitamin A to mice prior to 2 Gy of gamma radiation has reduced the micronucleus levels in PCE cells by a factor of 2.62.•Administration of 100 mg/kg vitamin A, which is much smaller than LD50 of vitamin A (LD50 for intraperitoneal injection = 1510 ± 240 mg/kg) can protect mice.•Vitamin A reduces the harmful effects of ionizing radiation on DNA, due to the antioxidant activity and the trapping of free radicals produced by radiation, and diminish the genetic damage caused by radiation.•Vitamin A has no effect on the proliferation and differentiation rate of bone marrow cells.
Collapse
Affiliation(s)
- Vahid Changizi
- Department of Radiology and Radiotherapy Technology, School of Allied Health Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sakineh Abbasi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Iran
| | - Zahra Rajabi
- Zoonosis Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mirdoraghi
- Department of Radiology and Radiotherapy Technology, School of Allied Health Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|