1
|
Li Z, Yang W, Yang Y, Wu J, Luo P, Liu Y. The Astragaloside IV Derivative LS-102 Ameliorates Obesity-Related Nephropathy. Drug Des Devel Ther 2022; 16:647-664. [PMID: 35308255 PMCID: PMC8932932 DOI: 10.2147/dddt.s346546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
Background Astragaloside IV is the most important bioactive component of Radix Astragali. Previous studies have shown that astragaloside IV plays an important role in the control of early- and mid-stage diabetes and late diabetic nephropathy. However, it is disappointing that the in vivo solubility of astragaloside IV and its bioavailability after oral administration are very low. We recently obtained a new water-soluble derivative of astragaloside IV-astragaloside formic acid (LS-102), which has higher bioavailability than the parent compound. In our previous study, we found that there was a significant inflammatory response in the perirenal adipose tissue of mice with obesity-related nephropathy induced by a high-fat diet (HFD), which was related to macrophage infiltration. We hypothesized that in model mice with obesity-related nephropathy, LS-102 effectively regulated the inflammatory response and pathological changes in obesity-related nephropathy through macrophages in perirenal adipose tissue. If this hypothesis is true, the effects of LS-102 and astragaloside IV on TGF-β1/Smad signal transduction will be further investigated. Methods In this study, adipose stem cells and an HFD-induced obesity-related nephropathy mouse model were used to observe the regulatory effect of LS-102 on perirenal fat inflammation and the mechanism. Adipose mesenchymal stem cells were extracted from mice that were fed a normal diet and those with obesity-related nephropathy. The effects of LS-102 on the proliferation of two kinds of cells were measured by the CCK-8 method. The levels of tumor necrosis factor-α (TNF-a) and plasminogen activator inhibitor-1 (PAI-1) were measured by ELISA. Obesity-related nephropathy mice were randomly divided into five groups: the HFD group, the LAS group (HFD+low concentration of astragaloside IV [10 mg/kg], intragastrically [ig]), the HAS group (HFD+high concentration of astragaloside IV [40 mg/kg], ig), the L102 group (HFD+low concentration of LS-102 [10 mg/kg], ig) and the H102 group (HFD+high concentration of LS-102 [40 mg/kg], ig). Body weight was measured, and the levels of serum glucose, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride (TG), total cholesterol (TC), serum creatinine (Crea) and blood urea were measured. The kidneys were stained with HE, PAS and Masson's trichrome. Perirenal adipose tissue was harvested to examine the expression of CD68, LCA, CD11C, TNF-a, TGF-β1, Fn1, Smad2, Smad3, Smad4, and Smad7 by immunohistochemical staining, and F4/80 was examined by immunofluorescence staining. Results LS-102 significantly inhibited the in vitro secretion of TNF-a and PAI-1 by adipose stem cells in a concentration-dependent manner (P < 0.05). In vivo, the body weights in the LAS group, HAS group, L102 group and H102 group were significantly lower than those in the HFD group (P < 0.05). Except for that in the HFD group, the volume of perirenal adipocytes in the other groups was small and uniform (P < 0.05). Compared with the LAS, HAS, L102 and H102 groups, the HFD group had a larger glomerular cross-sectional area, proliferation of mesangial cells and the mesangial matrix, and increased matrix area/glomerular area (P < 0.05). The effect of LS-102 was better than that of astragaloside IV at the same concentration (P < 0.05). Compared with those in the HFD group, glucose, HDL-C, LDL-C and urea levels in the LAS group, HAS group, L102 group and H102 group were significantly decreased (P < 0.05). The expression of F4/80, CD68, LCA, TNF-a, CD11C, and PAI-1 in perirenal adipose tissue in the HFD group was significantly higher than that in the LAS group, HAS group, L102 group and H102 group (P < 0.05). Compared with those in the HFD group, the expression levels of TGF-β1 and Fn1 in the HAS group, L102 group and H102 group were significantly increased (P < 0.05). Compared with the HFD group, the HAS group, L102 group and H102 group had decreased immunopositive rates of Smad2, Smad3 and Smad4 (P < 0.05). At the same concentration, the effect of LS-102 was better than that of astragaloside IV (P < 0.05). There was no significant difference in the expression of Smad7 among the different experimental groups (P > 0.05). Conclusion Astragaloside IV and LS-102 improved the inflammatory reaction in perirenal adipose tissue and renal pathological changes in obesity-related nephropathy model mice and inhibited the TGF-β1/Smad signaling cascade. At the same concentration, the effect of LS-102 was better than that of astragaloside IV. These results suggest that LS-102 has a better protective effect against obesity-related nephropathy. LS-102 may be a new type of traditional Chinese medicine for the clinical treatment of obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Ziyu Li
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Wei Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yong Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Yong Liu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Medical Equipment Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
2
|
Zhang C, Li L, Hou S, Shi Z, Xu W, Wang Q, He Y, Gong Y, Fang Z, Yang Y. Astragaloside IV inhibits hepatocellular carcinoma by continually suppressing the development of fibrosis and regulating pSmad3C/3L and Nrf2/HO-1 pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114350. [PMID: 34157326 DOI: 10.1016/j.jep.2021.114350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus is a medicinal herb used in China for the prevention and treatment of diseases such as diabetes and cancer. As one of the main active ingredients of astragalus, Astragaloside IV (AS-IV) has a wide range of pharmacological effects, including anti-inflammation and anti-cancer effects. AIM OF THE STUDY Different phosphorylated forms of Smad3 differentially regulate the progression of hepatic carcinoma. The phosphorylation of the COOH-terminal of Smad3 (pSmad3C) and activation of the Nrf2/HO-1 pathway inhibits hepatic carcinoma, while phosphorylation of the linker region of Smad3 (pSmad3L) promotes progression. Thus, pSmad3C/3L and Nrf2/HO-1 pathways are potential targets for drug of anti-cancer development. AS-IV is anti-apoptotic and can inhibit hepatocellular carcinoma cell (HCC) proliferation, invasion, and tumor growth in nude mice. However, it is not clear whether AS-IV has a therapeutic effect on inhibiting the progression of primary liver cancer by regulating the pSmad3C/3L and Nrf2/HO-1 pathway. The purpose of this study is to investigate whether AS-IV inhibits hepatocellular carcinoma by regulating pSmad3C/3L and Nrf2/HO-1 pathway. MATERIALS AND METHODS primary liver cancer in mice induced by DEN/CCl4/C2H5OH (DCC) and HSC-T6/HepG2 cell models activated by TGF-β1 was investigated for the mechanisms of AS-IV. In vivo assays included liver biopsy, histopathology and post-mortem analysis included immunohistochemistry, immunofluorescent, and Western blotting analysis, and in vitro assays included immunofluorescent, and Western blotting analysis. RESULTS AS-IV significantly inhibited the development of primary liver cancer, reflecting improved liver biopsy, histopathology. The incidence and multiplicity of primary liver cancer were markedly decreased by AS-IV treatment at the 20th week. AS-IV had observable effects on the TGF-β1/Smad and Nrf2/HO-1 expression in vivo, especially up-regulated pSmad3C, pNrf2, HO-1, and NQO1, while it down-regulated pSmad2C, pSmad2L, pSmad3L, PAI-1, and α-SMA at the 12th week and the 20th week. Furthermore, in vitro analysis further confirmed that AS-IV regulated the expression of pSmad3C/3L and Nrf2/HO-1 pathway in HSC-T6 and HepG2 cells activated by TGF-β1. CONCLUSION AS-IV administration delays the occurrence of primary liver cancer by continually suppressing the development of fibrosis, the mechanism of the therapeutic effect involving the regulation of the pSmad3C/3L and Nrf2/HO-1 pathways, especially in regulation reversibility and antagonism of pSmad3C and pSmad3L and promoting the phosphorylation of Nrf2.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Lili Li
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Shu Hou
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Zhenghao Shi
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Wenjing Xu
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Qin Wang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yinghao He
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yongfang Gong
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Zhirui Fang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
3
|
Effects of Pyrrole-Imidazole Polyamides Targeting Human TGF-β1 on the Malignant Phenotypes of Liver Cancer Cells. Molecules 2020; 25:molecules25122883. [PMID: 32585841 PMCID: PMC7356887 DOI: 10.3390/molecules25122883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/12/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Synthetic pyrrole-imidazole (PI) polyamides bind to the minor groove of double-helical DNA with high affinity and specificity, and inhibit the transcription of corresponding genes. In liver cancer, transforming growth factor (TGF)-β expression is correlated with tumor grade, and high-grade liver cancer tissues express epithelial-mesenchymal transition markers. TGF-β1 was reported to be involved in cancer development by transforming precancer cells to cancer stem cells (CSCs). This study aimed to evaluate the effects of TGF-β1-targeting PI polyamide on the growth of liver cancer cells and CSCs and their TGF-β1 expression. We analyzed TGF-β1 expression level after the administration of GB1101, a PI polyamide that targets human TGF-β1 promoter, and examined its effects on cell proliferation, invasiveness, and TGF-β1 mRNA expression level. GB1101 treatment dose-dependently decreased TGF-β1 mRNA levels in HepG2 and HLF cells, and inhibited HepG2 colony formation associated with downregulation of TGF-β1 mRNA. Although GB1101 did not substantially inhibit the proliferation of HepG2 cells compared to untreated control cells, GB1101 significantly suppressed the invasion of HLF cells, which displayed high expression of CD44, a marker for CSCs. Furthermore, GB1101 significantly inhibited HLF cell sphere formation by inhibiting TGF-β1 expression, in addition to suppressing the proliferation of HLE and HLF cells. Taken together, GB1101 reduced TGF-β1 expression in liver cancer cells and suppressed cell invasion; therefore, GB1101 is a novel candidate drug for the treatment of liver cancer.
Collapse
|
4
|
Bu HQ, Shen F, Cui J. The inhibitory effect of oridonin on colon cancer was mediated by deactivation of TGF-β1/Smads-PAI-1 signaling pathway in vitro and vivo. Onco Targets Ther 2019; 12:7467-7476. [PMID: 31686852 PMCID: PMC6752205 DOI: 10.2147/ott.s220401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
Background Oridonin, the main active component of Rabdosia rubescens, has been demonstrated to have anti-tumor effect on all kinds of cancer cells through various mechanisms and it has shown antitumor activity in some tumors partially via the suppression of TGF-β/Smads signaling pathway. The aim of this study was to explore the anticancer effect of oridonin on human colon carcinoma and underlying mechanism in vitro and vivo. Methods CCK-8 assay was employed to assess cell viability. The key target genes and proteins involved in TGF-β/Smads pathway was detected by RT-PCR, Western blotting and immunohistochemistry. The orthotopic transplantation tumor model of colon cance LOVO cell was introduced to detect anti-cancer effects in vivo. Results Oridonin inhibited the proliferation of colon cancer LOVO cells in a concentration and time dependent manner. In addition, oridonin reduced the levels of Smad2, Smad3, Smad4, PAI-1 and the phosphorylation of Smad2 and Smad3 induced by TGF-β1 in vitro. Subsequently, we established an orthotopically implanted tumor model in nude mice and found that oridonin treatment significantly suppressed tumor growth, and which was accompanied by the down-regulation of Smad2, Smad3, Smad4, PAI-1 and p-Smad2, p-Smad3 expression levels. Conclusion Our present study demonstrated that the growth inhibition of colon cancer by oridonin could be partially mediated through discontinuing TGF-β1/Smads-PAI-1 signaling pathway, suggesting it as a promising agent in treating colorectal cancer.
Collapse
Affiliation(s)
- He-Qi Bu
- Department of Coloproctological Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, People's Republic of China
| | - Feng Shen
- Department of Coloproctological Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, People's Republic of China
| | - Junhui Cui
- Department of Coloproctological Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, People's Republic of China
| |
Collapse
|
5
|
Clinical and pathological significance of Homo sapiens ceramide synthase 2 (CerS-2) in diverse human cancers. Biosci Rep 2019; 39:BSR20181743. [PMID: 30988071 PMCID: PMC6504659 DOI: 10.1042/bsr20181743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/22/2019] [Accepted: 04/12/2019] [Indexed: 01/10/2023] Open
Abstract
Homo sapiens ceramide synthase 2 (CerS-2) plays an important role in inhibiting invasion and metastasis of tumor cells and has been reported as a tumor metastasis suppressor gene in diverse cancers. Thus, low level of CerS-2 protein might suggest a bad prognosis and up-regulation of CerS-2 protein might act as a promising therapeutic strategy for malignant tumors. In this review, we discussed the expression, as well as the clinical and pathological significance of CerS-2 in diverse human cancers. The pathological processes and molecular pathways regulated by CerS-2 were also summarized.
Collapse
|
6
|
Miao L, Liu Q, Lin CM, Luo C, Wang Y, Liu L, Yin W, Hu S, Kim WY, Huang L. Targeting Tumor-Associated Fibroblasts for Therapeutic Delivery in Desmoplastic Tumors. Cancer Res 2016; 77:719-731. [PMID: 27864344 DOI: 10.1158/0008-5472.can-16-0866] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/26/2016] [Accepted: 10/21/2016] [Indexed: 01/12/2023]
Abstract
The off-target distribution of anticancer nanoparticles to fibroblasts creates a barrier to the effective treatment of desmoplastic tumors. However, we hypothesized that this nanoparticle detriment might be exploited to target the expression of secreted cytotoxic proteins from tumor-associated fibroblasts (TAF) as an anticancer strategy. In addressing this hypothesis, plasmids encoding the secretable TNF-related factor sTRAIL were loaded into lipid-coated protamine DNA complexes and administered by infusion in a murine xenograft model of human desmoplastic bladder carcinoma. Three doses were sufficient to generate approximately 70% of TAFs as sTRAIL-producing cells. sTRAIL triggered apoptosis in tumor cell nests adjacent to TAFs. Furthermore, it reverted residual fibroblasts to a quiescent state due to insufficient activation, further compromising tumor growth and remodeling the microenvironment to favor second-wave nanotherapy. We confirmed the efficacy of this strategy in an orthotopic xenograft model of human pancreatic cancer, where the desmoplastic stroma is well known to be a major barrier to the delivery of therapeutic nanoparticles. Collectively, our results offer a proof of concept for the use of nanoparticles to modify TAFs as an effective strategy to treat desmoplastic cancers. Cancer Res; 77(3); 719-31. ©2016 AACR.
Collapse
Affiliation(s)
- Lei Miao
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Qi Liu
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - C Michael Lin
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cong Luo
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuhua Wang
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lina Liu
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Weiyan Yin
- UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shihao Hu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - William Y Kim
- Department of Medicine, Division of Hematology and Oncology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Leaf Huang
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Peng T, Wang J, Zhen J, Hu Z, Yang X. Effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats. Biomed Rep 2014; 2:490-494. [PMID: 24944793 DOI: 10.3892/br.2014.277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to investigate the effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats. Thirty male Sprague-Dawley rats were included in the present study. Eight of the 30 rats were randomly selected and served as the normal control group (N group), while the remaining 22 rats, injected with streptozotocin (STZ), comprised the diabetic rat model. Rats with diabetes were randomly divided into the diabetic (DM group) and benazepril (B group) groups. The total course was conducted over 12 weeks. Blood glucose, body weight, kidney/body weight, 24-h urinary protein, serum creatinine and blood urea nitrogen were measured at the start and end of the study. We observed the tubulointerstitial pathological changes, and applied immunohistochemistry and western blotting to detect the expression of α-smooth muscle actin (α-SMA) in renal tissue. The levels of blood glucose, kidney/body weight, 24-h urinary protein, serum creatinine, blood urea nitrogen and tubulointerstitial damage index (TII) in the DM group were significantly higher than that in the N group (p<0.01). Except for blood glucose and kidney/body weight, the remaining indices were lower in the B group compared with those in the DM group (p<0.01). Immunohistochemical staining results revealed the expression of α-SMA in renal tubular epithelial cells to be significantly higher in the DM and B groups compared with the control (N) group (p<0.01). Western blot analysis revealed that the expression of α-SMA in diabetic renal tissue increased 3.27-fold compared with that of the N group, while the expression of α-SMA in the B group decreased 45% compared with that in the DM group. In conclusion, benazepril significantly reduced the expression of α-SMA in renal tubular epithelial cells obtained from diabetic rats, inhibited the transdifferentiation of renal tubular epithelial cells and played an important role in kidney protection.
Collapse
Affiliation(s)
- Tao Peng
- Department of Nephrology, Shandong University, Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Jie Wang
- Department of Nephrology, Shandong University, Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Junhui Zhen
- Department of Pathology, Shandong University, Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Zhao Hu
- Department of Nephrology, Shandong University, Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Xiangdong Yang
- Department of Nephrology, Shandong University, Qilu Hospital, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
8
|
Luo Y, Wang C, Tu H. Impact of the 4G/5G polymorphism in the plasminogen activator inhibitor-1 gene on primary nephrotic syndrome. Mol Med Rep 2014; 9:894-8. [PMID: 24435552 DOI: 10.3892/mmr.2014.1903] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/02/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate whether the four guanosines (4G)/five guanosines (5G) polymorphism in the gene coding for plasminogen activator inhibitor-1 (PAI-1) affects the clinical features of primary nephrotic syndrome (PNS). A cohort of 200 biopsy-diagnosed PNS patients was studied, with 40 healthy subjects as controls. The PAI-1 gene polymorphism was detected by polymerase chain reaction and DNA sequencing. Associations between the PAI-1 4G/5G polymorphism and clinical features and pathological types of PNS were analyzed. The results indicated that the PAI-1 genotype distribution is significantly different between patients with PNS and healthy controls, with significantly higher numbers of the 4G/4G genotype and lower numbers of the 5G5G genotype detected in PNS patients compared to controls (both P<0.05). The frequency of the 4G allele was also significantly higher in PNS patients compared to healthy controls (P<0.01). Among the different pathological types of PNS, IgA nephropathy (IgAN) and membranous nephropathy (MN) were associated with significantly increased frequencies of the 4G/4G and 4G/5G genotypes, as well as of the 4G allele. The increased 4G frequency was also detected in patients with minimal change disease (MCD). Significantly increased international normalized ratio (INR) and prolonged activated partial thromboplastin time (APTT) were observed in 4G/4G compared to 5G/5G PNS subjects. The response to steroids was not significantly different among the three genotypes. In conclusion, the 4G allele of the PAI-1 gene appears to be associated with PNS, especially in MN and IgAN patients. These findings suggest that specific targeting may be required for the treatment of PNS patients with the 4G/4G genotype.
Collapse
Affiliation(s)
- Yuezhong Luo
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, P.R. China
| | - Chao Wang
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, P.R. China
| | - Haitao Tu
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, P.R. China
| |
Collapse
|
9
|
Chen L, Lu X, Zeng T, Chen Y, Chen Q, Wu W, Yan X, Cai H, Zhang Z, Shao Q, Qin W. Enhancement of DEN-induced liver tumourigenesis in hepatocyte-specific Lass2-knockout mice coincident with upregulation of the TGF-β1-Smad4-PAI-1 axis. Oncol Rep 2013; 31:885-93. [PMID: 24337404 DOI: 10.3892/or.2013.2908] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/12/2013] [Indexed: 11/05/2022] Open
Abstract
Longevity assurance homolog 2 of yeast LAG1 (Lass2) gene is capable of suppressing the proliferation and metastasis of several types of tumours including liver cancer. In the present study, hepatocyte-specific Lass2-knockout (Lass2 KO) and wild-type (WT) mice were exposed to the carcinogen, diethylnitrosamine (DEN), to induced liver tumours. At week 23 following DEN injection, tumours were produced in 100% of the Lass2 KO mice and 21.4% of the WT mice. At week 40, 100% of the Lass2 KO mice and 78.6% of the WT mice developed tumours, with no distinct significant difference in tumour occurrences between the two genotypes; yet, tumours in the Lass2 KO mouse livers were more numerous and larger in size. Hepatocellular carcinoma (HCC) was confirmed by α-fetoprotein (AFP). PCNA and EdU assays indicated more active proliferation whereas TUNEL assay revealed decreased apoptosis in Lass2 KO livers, when compared with the WT control. The expression of plasminogen activator inhibitor type-1 (PAI-1), a tumour-promoting gene, in the liver tissues of the 2 genotypes was detected using qPCR and western blotting, showing that PAI-1 levels were significantly elevated in Lass2 KO livers at week 40 following DEN introduction. Moreover, the expression of PAI-1-related TGF-β1, Smad-4 and -7 was detected, displaying an elevation in TGF-β1 and Smad-4 (not including Smad-7) in the Lass2 KO livers. Our data demonstrates that i) Lass2 is a protective gene against DEN-induced liver tumourigenesis; and ii) upregulation of the TGF-β1-Smad4-PAI-1 axis may contribute to the vulnerability of Lass2-knockout mice to DEN.
Collapse
Affiliation(s)
- Lufang Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Xiaodong Lu
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tiantian Zeng
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuanyuan Chen
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qian Chen
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Weijiang Wu
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xun Yan
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Honghua Cai
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhijian Zhang
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qixiang Shao
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
10
|
Romero JJ, Antoniazzi AQ, Smirnova NP, Webb BT, Yu F, Davis JS, Hansen TR. Pregnancy-associated genes contribute to antiluteolytic mechanisms in ovine corpus luteum. Physiol Genomics 2013; 45:1095-108. [PMID: 24046284 DOI: 10.1152/physiolgenomics.00082.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The hypothesis that ovine luteal gene expression differs due to pregnancy status and day of estrous cycle was tested. RNA was isolated from corpora lutea (CL) on days 12 and 14 of the estrous cycle (NP) or pregnancy (P) and analyzed with the Affymetrix bovine microarray. RNA also was isolated from luteal cells on day 10 of estrous cycle that were cultured for 24 h with luteolytic hormones (OXT and PGF) and secretory products of the conceptus (IFNT and PGE2). Differential gene expression (>1.5-fold, P < 0.05) was confirmed using semiquantitative real-time PCR. Serum progesterone concentrations decreased from day 12 to day 15 in NP ewes (P < 0.05) reflecting luteolysis and remained >1.7 ng/ml in P ewes reflecting rescue of the CL. Early luteolysis (days 12-14) was associated with differential expression of 683 genes in the CL, including upregulation of SERPINE1 and THBS1. Pregnancy on day 12 (55 genes) and 14 (734 genes) also was associated with differential expression of genes in the CL, many of which were ISGs (i.e., ISG15, MX1) that were induced when culturing luteal cells with IFNT, but not PGE2. Finally, many genes, such as PTX3, IL6, VEGF, and LHR, were stabilized during pregnancy and downregulated during the estrous cycle and in response to culture of luteal cells with luteolytic hormones. In conclusion, pregnancy circumvents luteolytic pathways and activates or stabilizes genes associated with interferon, chemokine, cell adhesion, cytoskeletal, and angiogenic pathways in the CL.
Collapse
Affiliation(s)
- Jared J Romero
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | | | | | | | | | | | | |
Collapse
|