1
|
Petta D, D'Arrigo D, Salehi S, Talò G, Bonetti L, Vanoni M, Deabate L, De Nardo L, Dubini G, Candrian C, Moretti M, Lopa S, Arrigoni C. A personalized osteoarthritic joint-on-a-chip as a screening platform for biological treatments. Mater Today Bio 2024; 26:101072. [PMID: 38757057 PMCID: PMC11097088 DOI: 10.1016/j.mtbio.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Osteoarthritis (OA) is a highly disabling pathology, characterized by synovial inflammation and cartilage degeneration. Orthobiologics have shown promising results in OA treatment thanks to their ability to influence articular cells and modulate the inflammatory OA environment. Considering their complex mechanism of action, the development of reliable and relevant joint models appears as crucial to select the best orthobiologics for each patient. The aim of this study was to establish a microfluidic OA model to test therapies in a personalized human setting. The joint-on-a-chip model included cartilage and synovial compartments, containing hydrogel-embedded chondrocytes and synovial fibroblasts, separated by a channel for synovial fluid. For the cartilage compartment, a Hyaluronic Acid-based matrix was selected to preserve chondrocyte phenotype. Adding OA synovial fluid induced the production of inflammatory cytokines and degradative enzymes, generating an OA microenvironment. Personalized models were generated using patient-matched cells and synovial fluid to test the efficacy of mesenchymal stem cells on OA signatures. The patient-specific models allowed monitoring changes induced by cell injection, highlighting different individual responses to the treatment. Altogether, these results support the use of this joint-on-a-chip model as a prognostic tool to screen the patient-specific efficacy of orthobiologics.
Collapse
Affiliation(s)
- Dalila Petta
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Via Chiesa, 5, 6500, Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland
| | - Daniele D'Arrigo
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Via Chiesa, 5, 6500, Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland
- ISBE-SYSBIO Centre of Systems Biology, Milan, Italy at Department of Biotechnology and Biosciences, Università Degli Studi di Milano Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Shima Salehi
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, 20157, Milan, Italy
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, 20157, Milan, Italy
| | - Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering G.Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Marco Vanoni
- ISBE-SYSBIO Centre of Systems Biology, Milan, Italy at Department of Biotechnology and Biosciences, Università Degli Studi di Milano Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Luca Deabate
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering G.Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Gabriele Dubini
- Department of Chemistry, Materials and Chemical Engineering G.Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Christian Candrian
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland
- Euler Institute, Biomedical Sciences Faculty, Università Della Svizzera Italiana (USI), Via Buffi 13, 6900, Lugano, Switzerland
| | - Matteo Moretti
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Via Chiesa, 5, 6500, Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, 20157, Milan, Italy
- Euler Institute, Biomedical Sciences Faculty, Università Della Svizzera Italiana (USI), Via Buffi 13, 6900, Lugano, Switzerland
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, 20157, Milan, Italy
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Via Chiesa, 5, 6500, Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland
- Euler Institute, Biomedical Sciences Faculty, Università Della Svizzera Italiana (USI), Via Buffi 13, 6900, Lugano, Switzerland
| |
Collapse
|
2
|
Ahn SS, Kim HM, Park Y. Assessment of disease activity in patients with rheumatoid arthritis using plasma tumour M2-pyruvate kinase test. Front Immunol 2022; 13:901555. [PMID: 36059477 PMCID: PMC9433835 DOI: 10.3389/fimmu.2022.901555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Pyruvate kinase M2 (PKM2) is an enzyme that regulates the final process of glycolysis and exists in tetrameric and dimeric forms. The dimeric form of PKM2, also known as tumour M2-PK, increases when aerobic glycolysis is augmented, a feature observed in rheumatoid arthritis (RA). We investigated whether plasma tumour M2-PK is elevated in patients with RA and whether its levels correlate with disease activity. Methods Plasma levels of tumour M2-PK were measured for patients with RA (n=151), those with osteoarthritis (OA) (n=37), and controls (n=37). We evaluated the association between plasma tumour M2-PK and continuous variables using Pearson’s correlation analysis, and multivariate logistic regression analysis to determine the association between plasma tumour M2-PK and disease activity status. Knee synovial tissue blocks from patients with RA and OA were subjected to real-time quantitative PCR (qPCR) using two different primers for PKM2 and tumour M2-PK immunohistochemical (IHC) staining. Results The tumour M2-PK level significantly correlated with the disease activity score in 28 joints (DAS28)-erythrocyte sedimentation rate (ESR) (r=0.546, p<0.001) and DAS28-C-reactive protein (CRP) (r=0.589, p<0.001). Moreover, repeat testing of tumour M2-PK levels in 20 patients revealed a significant decline in tumour M2-PK levels after reduction in inflammation (p<0.001). Area under the receiver operating characteristic curve (AUROC) analysis demonstrated that upon incorporation of tumour M2-PK, ESR, and CRP, the area under the curve was 0.962 for distinguishing moderate/high from remission/low disease activity. Adjusted logistic regression also revealed that a tumour M2-PK >43.9 U/mL (OR 3.672, p=0.042) independently predicted moderate/high disease activity status. Furthermore, tumour M2-PK levels in patients with RA were significantly higher than in those with OA and controls (all p<0.001). However, no differences were found in PKM2 expression in RA and OA synovial tissues as assessed by qPCR, and IHC analysis revealed negligible tumour M2-PK expression in the synovial tissues. Conclusion Circulating plasma tumour M2-PK levels may be a clinically useful indicator for evaluating disease activity and RA diagnosis.
Collapse
Affiliation(s)
- Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Hye Min Kim
- Department of Pathology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Younhee Park
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Younhee Park,
| |
Collapse
|
3
|
Revisiting Epithelial Carcinogenesis. Int J Mol Sci 2022; 23:ijms23137437. [PMID: 35806442 PMCID: PMC9267463 DOI: 10.3390/ijms23137437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
The origin of cancer remains one of the most important enigmas in modern biology. This paper presents a hypothesis for the origin of carcinomas in which cellular aging and inflammation enable the recovery of cellular plasticity, which may ultimately result in cancer. The hypothesis describes carcinogenesis as the result of the dedifferentiation undergone by epithelial cells in hyperplasia due to replicative senescence towards a mesenchymal cell state with potentially cancerous behavior. In support of this hypothesis, the molecular, cellular, and histopathological evidence was critically reviewed and reinterpreted when necessary to postulate a plausible generic series of mechanisms for the origin and progression of carcinomas. In addition, the implications of this theoretical framework for the current strategies of cancer treatment are discussed considering recent evidence of the molecular events underlying the epigenetic switches involved in the resistance of breast carcinomas. The hypothesis also proposes an epigenetic landscape for their progression and a potential mechanism for restraining the degree of dedifferentiation and malignant behavior. In addition, the manuscript revisits the gradual degeneration of the nonalcoholic fatty liver disease to propose an integrative generalized mechanistic explanation for the involution and carcinogenesis of tissues associated with aging. The presented hypothesis might serve to understand and structure new findings into a more encompassing view of the genesis of degenerative diseases and may inspire novel approaches for their study and therapy.
Collapse
|
4
|
Tsai CY, Hsieh SC, Liu CW, Lu CH, Liao HT, Chen MH, Li KJ, Wu CH, Shen CY, Kuo YM, Yu CL. The Expression of Non-Coding RNAs and Their Target Molecules in Rheumatoid Arthritis: A Molecular Basis for Rheumatoid Pathogenesis and Its Potential Clinical Applications. Int J Mol Sci 2021; 22:ijms22115689. [PMID: 34073629 PMCID: PMC8198764 DOI: 10.3390/ijms22115689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a typical autoimmune-mediated rheumatic disease presenting as a chronic synovitis in the joint. The chronic synovial inflammation is characterized by hyper-vascularity and extravasation of various immune-related cells to form lymphoid aggregates where an intimate cross-talk among innate and adaptive immune cells takes place. These interactions facilitate production of abundant proinflammatory cytokines, chemokines and growth factors for the proliferation/maturation/differentiation of B lymphocytes to become plasma cells. Finally, the autoantibodies against denatured immunoglobulin G (rheumatoid factors), EB virus nuclear antigens (EBNAs) and citrullinated protein (ACPAs) are produced to trigger the development of RA. Furthermore, it is documented that gene mutations, abnormal epigenetic regulation of peptidylarginine deiminase genes 2 and 4 (PADI2 and PADI4), and thereby the induced autoantibodies against PAD2 and PAD4 are implicated in ACPA production in RA patients. The aberrant expressions of non-coding RNAs (ncRNAs) including microRNAs (miRs) and long non-coding RNAs (lncRNAs) in the immune system undoubtedly derange the mRNA expressions of cytokines/chemokines/growth factors. In the present review, we will discuss in detail the expression of these ncRNAs and their target molecules participating in developing RA, and the potential biomarkers for the disease, its diagnosis, cardiovascular complications and therapeutic response. Finally, we propose some prospective investigations for unraveling the conundrums of rheumatoid pathogenesis.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Ming-Han Chen
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Cheih-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
5
|
Targeting of chondrocyte plasticity via connexin43 modulation attenuates cellular senescence and fosters a pro-regenerative environment in osteoarthritis. Cell Death Dis 2018; 9:1166. [PMID: 30518918 PMCID: PMC6281585 DOI: 10.1038/s41419-018-1225-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA), a chronic disease characterized by articular cartilage degeneration, is a leading cause of disability and pain worldwide. In OA, chondrocytes in cartilage undergo phenotypic changes and senescence, restricting cartilage regeneration and favouring disease progression. Similar to other wound-healing disorders, chondrocytes from OA patients show a chronic increase in the gap junction channel protein connexin43 (Cx43), which regulates signal transduction through the exchange of elements or recruitment/release of signalling factors. Although immature or stem-like cells are present in cartilage from OA patients, their origin and role in disease progression are unknown. In this study, we found that Cx43 acts as a positive regulator of chondrocyte-mesenchymal transition. Overactive Cx43 largely maintains the immature phenotype by increasing nuclear translocation of Twist-1 and tissue remodelling and proinflammatory agents, such as MMPs and IL-1β, which in turn cause cellular senescence through upregulation of p53, p16INK4a and NF-κB, contributing to the senescence-associated secretory phenotype (SASP). Downregulation of either Cx43 by CRISPR/Cas9 or Cx43-mediated gap junctional intercellular communication (GJIC) by carbenoxolone treatment triggered rediferentiation of osteoarthritic chondrocytes into a more differentiated state, associated with decreased synthesis of MMPs and proinflammatory factors, and reduced senescence. We have identified causal Cx43-sensitive circuit in chondrocytes that regulates dedifferentiation, redifferentiation and senescence. We propose that chondrocytes undergo chondrocyte-mesenchymal transition where increased Cx43-mediated GJIC during OA facilitates Twist-1 nuclear translocation as a novel mechanism involved in OA progression. These findings support the use of Cx43 as an appropriate therapeutic target to halt OA progression and to promote cartilage regeneration.
Collapse
|
6
|
Zou L, Liu J, Lu H. Correlation of concentrations of activin A with occurrence and severity of knee osteoarthritis. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2018; 18:320-322. [PMID: 30179208 PMCID: PMC6146188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Activin A plays as an anticatabolic autocrine cytokine in articular cartilage. Thus, this study aims to evaluate whether activin Aconcentration is correlated with the occurrence and severity of knee osteoarthritis (OA). METHODS A total of 210 knee OA patients and 150 healthy controls were enrolled in this cross-sectional study, to evaluate the severity of OA by Kellgren-Lawrence (KL) grading method. RESULTS It was found that the concentration of activin A in knee OA group was higher than that in healthy subjects. Furthermore, results of of activin A concentration in serum and synovial fluid (SF) suggested that activin A concentration was the highest in Kellgren-Lawrence (KL) grade 4, and the lowest in KL grade 2. Concentrations of activin A in serum and SF showed significant correlation with disease severity measured by KL grading criteria. CONCLUSIONS It was indicated that concentrations of activin A in serum and SF showed a positive correlation with the occurrence and severity of knee OA.
Collapse
Affiliation(s)
- Lixue Zou
- Department of Orthopaedic Surgery, Jingzhou Central Hospital, Jingzhou 434020, Hubei Province, China,Corresponding author: Lixue Zou, M.D. Department of Orthopaedic Surgery, Jingzhou Central Hospital, 60 Jingzhong Road, Jingzhou District, Jingzhou 434020, Hubei Province, China E-mail:
| | - Jun Liu
- Department of Orthopaedic Surgery, Jingzhou Central Hospital, Jingzhou 434020, Hubei Province, China
| | - Hougen Lu
- Department of Orthopaedic Surgery, Jingzhou Central Hospital, Jingzhou 434020, Hubei Province, China
| |
Collapse
|
7
|
Iwamoto N, Fukui S, Takatani A, Shimizu T, Umeda M, Nishino A, Igawa T, Koga T, Kawashiri SY, Ichinose K, Tmai M, Nakamura H, Origuchi T, Chiba K, Osaki M, Jüngel A, Gay S, Kawakami A. Osteogenic differentiation of fibroblast-like synovial cells in rheumatoid arthritis is induced by microRNA-218 through a ROBO/Slit pathway. Arthritis Res Ther 2018; 20:189. [PMID: 30157923 PMCID: PMC6116572 DOI: 10.1186/s13075-018-1703-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 08/16/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Fibroblast-like synovial cells (FLS) have multilineage differentiation potential including osteoblasts. We aimed to investigate the role of microRNAs during the osteogenic differentiation of rheumatoid arthritis (RA)-FLS. METHODS RA-FLS were differentiated in osteogenic medium for 21 days. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) staining and Alizarin Red staining. MicroRNA (miRNA) array analysis was performed to investigate the differentially expressed miRNAs during osteogenic differentiation. Expression of miR-218-5p (miR-218) during the osteogenic differentiation was determined by quantitative real-time PCR. Transfections with an miR-218 precursor and inhibitor were used to confirm the targets of miR-218 and to analyze the ability of miR-218 to induce osteogenic differentiation. Secreted Dickkopf-1 (DKK1) from FLS transfected with miR-218 precursor/inhibitor or roundabout 1 (ROBO1) knockdown FLS established using ROBO1-small interfering RNA (siRNA) were measured by ELISA. RESULTS The miRNA array revealed that 12 miRNAs were upregulated and 24 miRNAs were downregulated after osteogenic differentiation. We observed that the level of miR-218 rose in the early phase of osteogenic differentiation and then decreased. Pro-inflammatory cytokines modified the expression of miR-218. The induction of miR-218 in RA-FLS decreased ROBO1 expression, and promoted osteogenic differentiation. Both the overexpression of miR-218 and the knockdown of ROBO1 in RA-FLS decreased DKK1 secretion. CONCLUSION We identified miR-218 as a crucial inducer of the osteogenic differentiation of RA-FLS. MiR-218 modulates the osteogenic differentiation of RA-FLS through the ROBO1/DKK-1 axis. The induction of the osteogenic differentiation of proliferating RA-FLS through the provision of miR-218 into RA-FLS or by boosting the cellular reservoir of miR-218 might thus become a therapeutic strategy for RA.
Collapse
Affiliation(s)
- Naoki Iwamoto
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Shoichi Fukui
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Ayuko Takatani
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
- Medical Education Development Center, Nagasaki University School Hospital, Nagasaki, Japan
| | - Ayako Nishino
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
- Center for Comprehensive Community Care Education, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Igawa
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
- Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shin-ya Kawashiri
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
- Departments of Community Medicine, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Mami Tmai
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Hideki Nakamura
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Tomoki Origuchi
- Department of Physical Therapy, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Astrid Jüngel
- Center of Experimental Rheumatology, University Hospital Zurich and University of Zurich, Schlieren, Zurich, Switzerland
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich and University of Zurich, Schlieren, Zurich, Switzerland
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| |
Collapse
|
8
|
Namba S, Nakano R, Kitanaka T, Kitanaka N, Nakayama T, Sugiya H. ERK2 and JNK1 contribute to TNF-α-induced IL-8 expression in synovial fibroblasts. PLoS One 2017; 12:e0182923. [PMID: 28806729 PMCID: PMC5555573 DOI: 10.1371/journal.pone.0182923] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Tumor necrosis factor α (TNF-α) induces the expression and secretion of interleukin 8 (IL-8), which contributes to synovitis in rheumatoid arthritis (RA). To elucidate the mechanism of the onset of RA, we used synovial fibroblasts without autoimmune inflammatory diseases and investigated MAPK signaling pathways in TNF-α-induced IL-8 expression. Synovial fibroblasts isolated from healthy dogs were characterized by flow cytometry, which were positive for the fibroblast markers CD29, CD44, and CD90 but negative for the hematopoietic cell markers CD14, CD34, CD45, and HLA-DR. TNF-α stimulated the secretion and mRNA expression of IL-8 in a time- and dose-dependent manner. ERK and JNK inhibitors attenuated TNF-α-induced IL-8 expression and secretion. TNF-α induced the phosphorylation of ERK1/2 and JNK1/2. TNF-α-induced IL-8 expression was attenuated both in ERK2- and JNK1-knockdown cells. TNF-α-induced ERK1/2 or JNK1/2 was observed in ERK2- or JNK1-knockdown cells, respectively, showing that there is no crosstalk between ERK2 and JNK1 pathways. These observations indicate that the individual activation of ERK2 and JNK1 pathways contributes to TNF-α-induced IL-8 expression in synovial fibroblasts, which appears to be involved in the progress in RA.
Collapse
Affiliation(s)
- Shinichi Namba
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Nanako Kitanaka
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
9
|
Liu L, Huang R, Ma D, Cheng W, Feng W, Xing D, Kan W, Xiao Z. Correlation of Adrenomedullin Concentrations with Knee Osteoarthritis Grade. Med Sci Monit 2016; 22:2775-8. [PMID: 27495944 PMCID: PMC4978210 DOI: 10.12659/msm.896987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Adrenomedullin, a recently identified myokine, has an anti-inflammatory effect. Therefore, we aimed to assess the correlation of adrenomedullin concentrations with the presence and grade of severity of knee osteoarthritis (OA). MATERIAL AND METHODS We recruited 187 knee OA patients and 109 healthy subjects. The severity of OA was evaluated using the Kellgren-Lawrence grading system. RESULTS Compared with the control group, the knee OA group revealed markedly higher adrenomedullin concentrations. Serum and synovial fluid (SF) adrenomedullin concentrations increased with increased KL grades. CONCLUSIONS Serum and SF adrenomedullin concentrations show a correlation with the severity of knee OA.
Collapse
Affiliation(s)
- Linghua Liu
- Department of Nursing, Hubei College of Chinese Medicine, Jingzhou, Hubei, China (mainland)
| | - Ruokun Huang
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Dezhang Ma
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Wenjun Cheng
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Wei Feng
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Danmou Xing
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Wusheng Kan
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Zhihong Xiao
- Department of Orthopaedics, Pu'ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
10
|
Shekhani MT, Forde TS, Adilbayeva A, Ramez M, Myngbay A, Bexeitov Y, Lindner V, Adarichev VA. Collagen triple helix repeat containing 1 is a new promigratory marker of arthritic pannus. Arthritis Res Ther 2016; 18:171. [PMID: 27430622 PMCID: PMC4950773 DOI: 10.1186/s13075-016-1067-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/28/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The formation of destructive hypercellular pannus is critical to joint damage in rheumatoid arthritis (RA). The collagen triple helix repeat containing 1 (CTHRC1) protein expressed by activated stromal cells of diverse origin has previously been implicated in tissue remodeling and carcinogenesis. We recently discovered that the synovial Cthrc1 mRNA directly correlates with arthritis severity in mice. This study characterizes the role of CTHRC1 in arthritic pannus formation. METHODS Synovial joints of mice with collagen antibody-induced arthritis (CAIA) and human RA-fibroblast-like synoviocytes (FLS) were immunostained for CTHRC1, FLS and macrophage-specific markers. CTHRC1 levels in plasma from patients with RA were measured using sandwich ELISA. The migratory response of fibroblasts was studied with a transwell migration assay and time-lapse microscopy. Velocity and directness of cell migration was analyzed by recording the trajectories of cells treated with rhCTHRC1. RESULTS Immunohistochemical analysis of normal and inflamed synovium revealed highly inducible expression of CTHRC1 in arthritis (10.9-fold). At the tissue level, CTHRC1-expressing cells occupied the same niche as large fibroblast-like cells positive for α-smooth muscle actin (α-SMA) and cadherin 11 (CDH11). CTHRC1 was produced by activated FLS predominantly located at the synovial intimal lining and at the bone-pannus interface. Cultured RA-FLS expressed CDH11, α-SMA, and CTHRC1. Upon treatment with exogenous rhCTHRC1, embryonic fibroblasts and RA-FLS significantly increased migration velocity, directness, and cell length along the front-tail axis (1.4-fold, p < 0.01). CONCLUSION CTHRC1 was established as a novel marker of activated synoviocytes in murine experimental arthritis and RA. The pro-migratory effect of CTHRC1 on synoviocytes is considered one of the mechanisms promoting hypercellularity of the arthritic pannus.
Collapse
Affiliation(s)
- Mohammed Talha Shekhani
- />Albert Einstein College of Medicine, Departments of Medicine (Division of Rheumatology) and Microbiology & Immunology, Bronx, NY 10461 USA
| | - Toni S. Forde
- />Albert Einstein College of Medicine, Departments of Medicine (Division of Rheumatology) and Microbiology & Immunology, Bronx, NY 10461 USA
| | | | - Mohamed Ramez
- />Albert Einstein College of Medicine, Departments of Medicine (Division of Rheumatology) and Microbiology & Immunology, Bronx, NY 10461 USA
| | | | | | - Volkhard Lindner
- />Maine Medical Center Research Institute, Scarborough, ME 04704 USA
| | - Vyacheslav A. Adarichev
- />Albert Einstein College of Medicine, Departments of Medicine (Division of Rheumatology) and Microbiology & Immunology, Bronx, NY 10461 USA
- />National Laboratory Astana, Astana, 010000 Kazakhstan
- />Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000 Kazakhstan
| |
Collapse
|
11
|
Gierloff M, Petersen L, Oberg HH, Quabius ES, Wiltfang J, Açil Y. Adipogenic differentiation potential of rat adipose tissue-derived subpopulations of stromal cells. J Plast Reconstr Aesthet Surg 2014; 67:1427-35. [PMID: 24947082 DOI: 10.1016/j.bjps.2014.05.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/20/2014] [Indexed: 01/23/2023]
Abstract
Adipose-derived stromal cells (ASCs) are mostly isolated by enzymatic digestion, centrifugation and adherent growth resulting in a very heterogeneous cell population. Therefore, other cell types in the cell culture can comprise the differentiation and proliferation potential of the ASC population. Recent studies indicated that an antibody-aided isolation of distinct ASC subpopulations provides advantages over the conventional method of ASC isolation. The aim of this study was to investigate the adipogenic differentiation potential of CD29-, CD71-, CD73- and CD90-selected ASCs in vitro. The stromal vascular fraction (SVF) was obtained from rat adipose tissue by enzymatic digestion and centrifugation. Subsequently, CD29(+)-, CD71(+)-, CD73(+)- and CD90(+) cells were isolated by magnetic activated cell sorting (MACS), seeded into culture plates and differentiated into the adipogenic lineage. ASCs isolated by adherent growth only served as controls. Adipogenic differentiation was assessed by Oil Red O staining and quantification of the adiponectin and leptin concentrations in the cell culture supernatants. Statistical analysis was carried out using one-way analysis of variance (ANOVA) followed by the Scheffe's post hoc procedure. The results showed that different subpopulations with different adipogenic differentiation potentials can be isolated by the MACS procedure. The highest adipogenic differentiation potential was determined in the CD29-selected ASC population followed by the unsorted ASC population. The CD71-, CD73- and CD90-selected cells exhibited significantly the lowest adipogenic differentiation potential. In conclusion, the CD29-selected ASCs and the unsorted ASCs exhibited a similar adipogenic differentiation potential. Therefore, we do not see a clear advantage in the application of an anti-CD29-based isolation of ASCs over the conventional technique using adherent growth. However, the research on isolation/purification methods of adipogenic ASCs should continue in order to make this stem cell source even more attractive for future adipose tissue engineering applications.
Collapse
Affiliation(s)
- M Gierloff
- Department of Oral & Maxillofacial Surgery, Christian-Albrechts-University, Kiel, Germany.
| | - L Petersen
- Department of Oral & Maxillofacial Surgery, Christian-Albrechts-University, Kiel, Germany
| | - H-H Oberg
- Department of Immunology, Christian-Albrechts-University, Kiel, Germany
| | - E S Quabius
- Department of Immunology, Christian-Albrechts-University, Kiel, Germany; Department of Othorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University, Kiel, Germany
| | - J Wiltfang
- Department of Oral & Maxillofacial Surgery, Christian-Albrechts-University, Kiel, Germany
| | - Y Açil
- Department of Oral & Maxillofacial Surgery, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|