1
|
Genc S, Yagci T, Vageli DP, Dundar R, Doukas PG, Doukas SG, Tolia M, Chatzakis N, Tsatsakis A, Taghizadehghalehjoughi A. Exosomal MicroRNA-223, MicroRNA-146, and MicroRNA-21 Profiles and Biochemical Changes in Laryngeal Cancer. ACS Pharmacol Transl Sci 2023; 6:820-828. [PMID: 37200807 PMCID: PMC10186621 DOI: 10.1021/acsptsci.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 05/20/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the most aggressive cancers, and its early diagnosis is urgent. Exosomes are believed to have diagnostic significance in cancer. However, the role of serum exosomal microRNAs, miR-223, miR-146, and miR-21, and phosphatase and tensin homologue (PTEN) and hemoglobin subunit delta (HBD) mRNAs in LSCC is unclear. Exosomes were isolated from the blood serum of 10 LSCC patients and 10 healthy controls to perform scanning electron microscopy and liquid chromatography quadrupole time-of-flight mass spectrometry analyses to characterize them and to undergo reverse transcription polymerase chain reaction to identify miR-223, miR-146, miR-21, and PTEN and HBD mRNA expression phenotypes. Biochemical parameters, including serum C-reactive protein (CRP) and vitamin B12, were also obtained. Serum exosomes of 10-140 nm were isolated from LSCC and controls. Serum exosomal miR-223, miR-146, and PTEN were found to be significantly decreased (p < 0.05), in contrast to serum exosomal miRNA-21 (p < 0.01), and serum vitamin B12 and CRP (p < 0.05) were found to be significantly increased, in LSCC vs controls. Our novel data show that the combination of reduced serum exosomal miR-223, miR-146, and miR-21 profiles and biochemical alterations in CRP and vitamin B12 levels may be useful indicators of LSCC that could be validated by large studies. Our findings also suggest a possible negative regulatory effect of miR-21 on PTEN in LSCC, encouraging a more extensive investigation of its role.
Collapse
Affiliation(s)
- Sidika Genc
- Faculty
of Medicine, Department of Medical Pharmacology, Bilecik Seyh Edebali University, Bilecik 11230, Turkey
| | - Tarik Yagci
- Faculty
of Medicine, Department of ENT, Bilecik
Seyh Edebali University, Bilecik 11230, Turkey
| | - Dimitra P. Vageli
- Yale
Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Riza Dundar
- Faculty
of Medicine, Department of ENT, Bilecik
Seyh Edebali University, Bilecik 11230, Turkey
| | - Panagiotis G. Doukas
- Yale
Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Sotirios G. Doukas
- Department
of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Peter University Hospital, New Brunswick New Jersey 08901-1780, United States
- Department
of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Maria Tolia
- Department
of Radiology, Faculty of Medicine, University
of Crete, 71003 Heraklion, Greece
| | - Nikolaos Chatzakis
- Otorhinolaryngologist
Consultant, ENT Department of University
Hospital of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department
of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ali Taghizadehghalehjoughi
- Faculty
of Medicine, Department of Medical Pharmacology, Bilecik Seyh Edebali University, Bilecik 11230, Turkey
| |
Collapse
|
2
|
Stefanou IK, Dovrolis N, Gazouli M, Theodorou D, Zografos GK, Toutouzas KG. miRNAs expression pattern and machine learning models elucidate risk for gastric GIST. Cancer Biomark 2022; 33:237-247. [PMID: 35213356 DOI: 10.3233/cbm-210173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Gatrointestinal stromal tumors (GISTs) are the main mesenchymal tumors found in the gastrointestinal system. GISTs clinical phenotypes differ significantly and their molecular basis is not yet completely known. microRNAs (miRNAs) have been involved in carcinogenesis pathways by regulating gene expression at post-transcriptional level. OBJECTIVE The aim of the present study was to elucidate the expression profiles of miRNAs relevant to gastric GIST carcinogenesis, and to identify miRNA signatures that can discriminate the GIST from normal cases. METHODS miRNA expression was tested by miScript™miRNA PCR Array Human Cancer PathwayFinder kit and then we used machine learning in order to find a miRNA profile that can predict the risk for GIST development. RESULTS A number of miRNAs were found to be differentially expressed in GIST cases compared to healthy controls. Among them the hsa-miR-218-5p was found to be the best predictor for GIST development in our cohort. Additionally, hsa-miR-146a-5p, hsa-miR-222-3p, and hsa-miR-126-3p exhibit significantly lower expression in GIST cases compared to controls and were among the top predictors in all our predictive models. CONCLUSIONS A machine learning classification approach may be accurate in determining the risk for GIST development in patients. Our findings indicate that a small number of miRNAs, with hsa-miR218-5p as a focus, may strongly affect the prognosis of GISTs.
Collapse
Affiliation(s)
- Ioannis K Stefanou
- 1st Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece.,1st Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,1st Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, National and Kapodistrian University of Athens, Athens, Greece.,School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Dimitrios Theodorou
- 1st Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios K Zografos
- 1st Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos G Toutouzas
- 1st Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Lee RH, Oh JD, Hwang JS, Lee HK, Shin D. Antitumorigenic effect of insect-derived peptide poecilocorisin-1 in human skin cancer cells through regulation of Sp1 transcription factor. Sci Rep 2021; 11:18445. [PMID: 34531430 PMCID: PMC8446052 DOI: 10.1038/s41598-021-97581-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Malignant melanoma is highly resistant to conventional treatments and is one of the most aggressive types of skin cancers. Conventional cancer treatments are limited due to drug resistance, tumor selectivity, and solubility. Therefore, new treatments with fewer side effects and excellent effects should be developed. In previous studies, we have analyzed antimicrobial peptides (AMPs), which showed antibacterial and anti-inflammatory effects in insects, and some AMPs also exhibited anticancer efficacy. Anticancer peptides (ACPs) are known to have fewer side effects and high anticancer efficacy. In this study, the insect-derived peptide poecilocorisin-1 (PCC-1) did not induce toxicity in the human epithelial cell line HaCaT, but its potential as an anticancer agent was confirmed through specific effects of antiproliferation, apoptosis, and cell cycle arrest in two melanoma cell lines, SK-MEL-28 and G361. Additionally, we discovered a novel anticancer mechanism of insect-derived peptides in melanoma through the regulation of transcription factor Sp1 protein, which is overexpressed in cancer, apoptosis, and cell cycle-related proteins. Taken together, this study aims to clarify the anticancer efficacy and safety of insect-derived peptides and to present their potential as future therapeutic agents.
Collapse
Affiliation(s)
- Ra Ham Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
4
|
Dräger O, Metz K, Busch M, Dünker N. Role of L1CAM in retinoblastoma tumorigenesis: identification of novel therapeutic targets. Mol Oncol 2021; 16:957-981. [PMID: 34228897 PMCID: PMC8847994 DOI: 10.1002/1878-0261.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
The study presented focuses on the role of the neuronal cell adhesion molecule L1 cell adhesion molecule (L1CAM) in retinoblastoma (RB), the most common malignant intraocular childhood tumor. L1CAM is differentially expressed in a variety of human cancers and has been suggested as a promising therapeutic target. We likewise observed differential expression patterns for L1CAM in RB cell lines and patient samples. The two proteases involved in ectodomain shedding of L1CAM (L1CAM sheddases: ADAM10 and ADAM17) were likewise differentially expressed in the RB cell lines investigated, and an involvement in L1CAM processing in RB cells could be verified. We also identified ezrin, galectin-3, and fibroblast growth factor basic as L1CAM signaling target genes in RB cells. Lentiviral L1CAM knockdown induced apoptosis and reduced cell viability, proliferation, growth, and colony formation capacity of RB cells, whereas L1CAM-overexpressing RB cells displayed the opposite effects. Chicken chorioallantoic membrane assays revealed that L1CAM depletion decreases the tumorigenic and migration potential of RB cells in vivo. Moreover, L1CAM depletion decreased viability and tumor growth of etoposide-resistant RB cell lines upon etoposide treatment in vitro and in vivo. Thus, L1CAM and its processing sheddases are potential novel targets for future therapeutic RB approaches.
Collapse
Affiliation(s)
- Oliver Dräger
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Klaus Metz
- Institute of Pathology, University of Duisburg-Essen, Medical Faculty, Germany
| | - Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| |
Collapse
|
5
|
Slavik H, Balik V, Vrbkova J, Rehulkova A, Vaverka M, Hrabalek L, Ehrmann J, Vidlarova M, Gurska S, Hajduch M, Srovnal J. Identification of Meningioma Patients at High Risk of Tumor Recurrence Using MicroRNA Profiling. Neurosurgery 2021; 87:1055-1063. [PMID: 32125436 PMCID: PMC7566524 DOI: 10.1093/neuros/nyaa009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Meningioma growth rates are highly variable, even within benign subgroups, with some remaining stable, whereas others grow rapidly. OBJECTIVE To identify molecular-genetic markers for more accurate prediction of meningioma recurrence and better-targeted therapy. METHODS Microarrays identified microRNA (miRNA) expression in primary and recurrent meningiomas of all World Health Organization (WHO) grades. Those found to be deregulated were further validated by quantitative real-time polymerase chain reaction in a cohort of 172 patients. Statistical analysis of the resulting dataset revealed predictors of meningioma recurrence. RESULTS Adjusted and nonadjusted models of time to relapse identified the most significant prognosticators to be miR-15a-5p, miR-146a-5p, and miR-331-3p. The final validation phase proved the crucial significance of miR-146a-5p and miR-331-3p, and clinical factors such as type of resection (total or partial) and WHO grade in some selected models. Following stepwise selection in a multivariate model on an expanded cohort, the most predictive model was identified to be that which included lower miR-331-3p expression (hazard ratio [HR] 1.44; P < .001) and partial tumor resection (HR 3.90; P < .001). Moreover, in the subgroup of total resections, both miRNAs remained prognosticators in univariate models adjusted to the clinical factors. CONCLUSION The proposed models might enable more accurate prediction of time to meningioma recurrence and thus determine optimal postoperative management. Moreover, combining this model with current knowledge of molecular processes underpinning recurrence could permit the identification of distinct meningioma subtypes and enable better-targeted therapies.
Collapse
Affiliation(s)
- Hanus Slavik
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Vladimir Balik
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic.,Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Jana Vrbkova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Alona Rehulkova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Miroslav Vaverka
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Lumir Hrabalek
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Jiri Ehrmann
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic.,Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic, Czech Republic
| | - Monika Vidlarova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Sona Gurska
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Marian Hajduch
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Josef Srovnal
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| |
Collapse
|
6
|
Wang L, Chen Y, Yan Y, Guo X, Fang Y, Su Y, Wang L, Pathak JL, Ge L. miR-146a Overexpression in Oral Squamous Cell Carcinoma Potentiates Cancer Cell Migration and Invasion Possibly via Targeting HTT. Front Oncol 2020; 10:585976. [PMID: 33282738 DOI: 10.3389/fonc.2020.585976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
Huntingtin (HTT) is one of the target genes of miR-146-a and regulates various cancer cell activities. This study aims to explore the miR-146a expression pattern in oral squamous cell carcinoma (OSCC) and its role and mechanism in OSCC progression and metastasis via targeting the HTT gene. OSCC tissue and non-cancerous matched tissue (NCMT) were obtained from 14 patients. OSCC cell lines and normal HOK cells were used to analyze migration and invasion assay. OSCC-induced miR-146a knockout mice (B6.Cg-Mir146tm1.1Bal) model was developed. Transwell cell migration/invasion and scratch wound assays were used to investigate the OSCC cell migration and invasion in vitro. Kaplan-Meier survival analysis was used to investigate the association of HTT expression patterns in cancer tissue with patient survival percentage and duration. Pearson's correlation analysis tested the association between miR-146a and HTT expression in OSCC tissues. miR-146a mimic and inhibitor transfection were performed to overexpress and knockdown the miR-146a in OSCC cells, respectively. miR-146a expression was highly upregulated in OSCC tissues and OSCC cell lines. Cancer cell migration/invasion was enhanced in miR-146a overexpressed cells and reduced in mi-R146a knockdowned cells. HTT expression was reduced in OSCC tissues and cell lines compared to NCMT and HOK cells, respectively. HTT expression was downregulated in miR-146a overexpressed OSCC cells and upregulated in miR-146a knockdowned OSCC cells. The expression pattern of miR-146a in OSCC cell lines and tissues was inversely correlated with HTT expression. Prediction of miRNA target analysis showed that HTT possesses the binding sites for miR-146a. HTT overexpression in OSCC tissues was associated with patients' higher survival percentage and duration. HTT knockdown in OSCC cells enhanced miR-146a expression and cell migration/invasion. Inducing OSCC in miR-146a knockout mice increased the HTT expression in tongue tissue and alleviated the cancer aggressiveness and epithelial damage. Overexpressed miR-146a in OSCC targets the HTT gene and enhances cancer cell migration/invasion unraveling the possible role of HTT in miR146a-mediated OSCC cell migration and invasion.
Collapse
Affiliation(s)
- Liping Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yunxin Chen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yongyong Yan
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Xueqi Guo
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ying Fang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yucheng Su
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lijing Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School of Life Science and Biopharmaceutics, Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Linhu Ge
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Xiao C, Rui Y, Zhou S, Huang Y, Wei Y, Wang Z. TNF-related apoptosis-inducing ligand (TRAIL) promotes trophoblast cell invasion via miR-146a-EGFR/CXCR4 axis: A novel mechanism for preeclampsia? Placenta 2020; 93:8-16. [DOI: 10.1016/j.placenta.2020.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/02/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
|
8
|
Iacona JR, Lutz CS. miR-146a-5p: Expression, regulation, and functions in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1533. [PMID: 30895717 DOI: 10.1002/wrna.1533] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Cancer as we know it is actually an umbrella term for over 100 very unique malignancies in various tissues throughout the human body. Each type, and even subtype of cancer, has different genetic, epigenetic, and other cellular events responsible for malignant development and metastasis. Recent work has indicated that microRNAs (miRNAs) play a major role in these processes, sometimes by promoting cancer growth and other times by suppressing tumorigenesis. miRNAs are small, noncoding RNAs that negatively regulate expression of specific target genes. This review goes into an in-depth look at the most recent finding regarding the significance of one particular miRNA, miR-146a-5p, and its involvement in cancer. Target gene validation and pathway analysis have provided mechanistic insight into this miRNA's purpose in assorted tissues. Additionally, this review outlines novel findings that suggest miR-146a-5p may be useful as a noninvasive biomarker and as a targeted therapeutic in several cancers. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Joseph R Iacona
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, New Jersey
| | - Carol S Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, New Jersey
| |
Collapse
|
9
|
Khawaled S, Suh SS, Abdeen SK, Monin J, Distefano R, Nigita G, Croce CM, Aqeilan RI. WWOX Inhibits Metastasis of Triple-Negative Breast Cancer Cells via Modulation of miRNAs. Cancer Res 2019; 79:1784-1798. [PMID: 30622118 DOI: 10.1158/0008-5472.can-18-0614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/30/2018] [Accepted: 01/03/2019] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous, highly aggressive, and difficult to treat tumor type. The tumor suppressor WWOX spans FRA16D, a common fragile site that is commonly altered in breast cancer. Despite recent progress, the role of WWOX in TNBC metastasis is unknown. Here we report that WWOX inactivation correlates with advanced stages of TNBC and that its levels are frequently altered in TNBC cells. Ectopic restoration of WWOX in WWOX-negative TNBC cells inhibited metastasis while its depletion in WWOX-positive TNBC cells promoted metastasis. WWOX was a negative regulator of c-MYC, which regulated miR-146a expression and consequently fibronectin levels, contributing to an epithelial status of the cell. Treatment of TNBC cells with anti-miR-146a rescued the WWOX antimetastatic phenotype. Moreover, overexpression of MYC in WWOX-expressing TNBC cells overrode WWOX effects on miR-146a and fibronectin levels. Altogether, our data uncover an essential role for WWOX in antagonizing TNBC progression and highlight its potential use as a biomarker for metastasis. SIGNIFICANCE: These findings highlight the mechanism by which the tumor suppressor WWOX regulates metastasis of triple-negative breast cancer.See related commentary by Sharma, p. 1746.
Collapse
Affiliation(s)
- Saleh Khawaled
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Sung Suk Suh
- Department of Bioscience, Mokpo National University, Muan, Republic of Korea
| | - Suhaib K Abdeen
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Jonathan Monin
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Rami I Aqeilan
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel. .,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Shomali N, Shirafkan N, Duijf PHG, Ghasabi M, Babaloo Z, Yousefi M, Mansoori B, Asadi M, Shanehbandi D, Baghbani E, Mohammadi A, Baradaran B. Downregulation of miR-146a promotes cell migration in Helicobacter pylori-negative gastric cancer. J Cell Biochem 2018; 120:9495-9505. [PMID: 30537266 DOI: 10.1002/jcb.28225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
microRNAs (miRs) are short noncoding RNAs that post-transcriptionally suppress gene expression. miR-146a acts as an oncogene or a tumor suppressor in various cancers, including gastric cancer, but it is unclear what determines whether miR-146a is oncogenic or tumor suppressive and the molecular mechanisms are still largely unknown. The aim of this study was to investigate the role of miR-146a in gastric cancer, by focusing on its expression in patients who were negative for Helicobacter pylori and its reduced and increased expression effect in vitro. Twenty gastric cancer patients who were negative for H. pylori infection were selected and the expression levels of miRNA-146a in these gastric tumors, in their matched normal gastric tissues and in gastric cancer cell lines with varying tumorigenic potential was measured. Further, the impact of increased and decreased miR-146a expression levels on the expression of predicted target genes, cell migration, viability, proliferation, and apoptosis was examined, respectively. Our results for the first time indicated that miR-146a is downregulated in H. pylori-negative gastric cancers and suggests that H. pylori infection determines whether miR-146a acts as an oncogene or tumor suppressor. The level of miR-146a expression inversely correlates with the tumorigenicity of three gastric cancer cell lines and low miR-146a expression predicts poor recurrence-free survival. It was also found that miR-146a reduces the expression levels of the prometastatic genes and suppresses MKN-45 cell migration. Functional studies showed that miR-146a acts as a tumor suppressor miR and identifies miR-146a as a candidate for antimetastatic miRNA replacement therapy for gastric cancer patients.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naghmeh Shirafkan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Translational Research Institute, University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Mehri Ghasabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Comprehensive assessment for miRNA polymorphisms in hepatocellular cancer risk: a systematic review and meta-analysis. Biosci Rep 2018; 38:BSR20180712. [PMID: 29976775 PMCID: PMC6153371 DOI: 10.1042/bsr20180712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/23/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023] Open
Abstract
MiRNA polymorphisms had potential to be biomarkers for hepatocellular cancer (HCC) susceptibility. Recently, miRNA single nucleotide polymorphisms (SNPs) were reported to be associated with HCC risk, but the results were inconsistent. We performed a systematic review with a meta-analysis for the association of miRNA SNPs with HCC risk. Thirty-seven studies were included with a total of 11821 HCC patients and 15359 controls in this meta-analysis. We found hsa-mir-146a rs2910164 was associated with a decreased HCC risk in the recessive model (P=0.017, OR = 0.90, 95% confidence interval (CI) = 0.83–0.98). While hsa-mir-34b/c rs4938723 was related with an increased HCC risk in the co-dominant model (P=0.016, odds ratio (OR) = 1.19, 95%CI = 1.03–1.37). When analyzing the Hepatitis B virus (HBV)-related HCC risk, hsa-mir-196a-2 rs11614913 was associated with a decreased HBV-related HCC risk in the co-dominant and allelic models. And hsa-mir-149 rs2292832 was found to be associated with a decreased HBV-related HCC risk in the dominant and recessive models. In conclusion, hsa-mir-146a rs2910164 and hsa-mir-34b/c rs4938723 could be biomarkers for the HCC risk while hsa-mir-196a-2 rs11614913 and hsa-mir-149 rs2292832 had potential to be biomarkers for HBV-related HCC risk.
Collapse
|
12
|
Li YL, Wang J, Zhang CY, Shen YQ, Wang HM, Ding L, Gu YC, Lou JT, Zhao XT, Ma ZL, Jin YX. MiR-146a-5p inhibits cell proliferation and cell cycle progression in NSCLC cell lines by targeting CCND1 and CCND2. Oncotarget 2018; 7:59287-59298. [PMID: 27494902 PMCID: PMC5312312 DOI: 10.18632/oncotarget.11040] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022] Open
Abstract
Previous studies have indicated that miR-146a-5p acts as an oncogene in several types of cancer, yet a tumor suppressor gene in others. In non-small cell lung cancer (NSCLC), one report showed that it was downregulated and played the role of tumor suppressor. However, another study showed that miR-146a-5p was overexpressed in the serum of NSCLC patients compared to healthy controls. Therefore, it is obvious that further study of the function of miR-146a-5p in NSCLC is necessary to fully understand its importance. Herein, we have verified that miR- 146a- 5p acts as a tumor suppressor in NSCLC. Our data revealed that the expression level of miR-146a-5p was significantly decreased in several human NSCLC cell lines, and also less abundant in human NSCLC tissues, when compared with controls. Moreover, we observed that miR-146a-5p could suppress cell proliferation, both in vitro and in vivo. Our results also showed that miR-146a-5p directly targeted the 3′-UTR of CCND1 and CCND2 mRNAs as well as decreased their expression at both mRNA and protein levels, causing cell cycle arrest at the G0/G1 phase. Furthermore, siRNA-mediated downregulation of CCND1 or CCND2 yielded the same effects on proliferation and cell cycle arrest as miR-146a-5p upregulation did in the NSCLC cell lines. We confirmed that the expression of miR-146a-5p had negative relationship with CCND1 or CCND2. Besides, we also found that miR-146a-5p could inhibit tumor growth in xengroft mouse models, and CCND1 and CCND2 were downregulated in miR-146a-5p overexpressed xengroft tumor tissues. In summary, our results demonstrated that miR-146a-5p could suppress the proliferation and cell cycle progression in NSCLC cells by inhibiting the expression of CCND1 and CCND2.
Collapse
Affiliation(s)
- Yan-Li Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ju Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Cai-Yan Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu-Qing Shen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hui-Min Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Ding
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu-Chen Gu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jia-Tao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200030, China
| | - Xin-Tai Zhao
- Shanghai Shines Pharmaceuticals Co., Ltd., Shanghai 200032, China
| | - Zhong-Liang Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - You-Xin Jin
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Sandiford OA, Moore CA, Du J, Boulad M, Gergues M, Eltouky H, Rameshwar P. Human Aging and Cancer: Role of miRNA in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:137-152. [PMID: 29754179 DOI: 10.1007/978-3-319-74470-4_9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human aging is an inevitable and complex phenomenon characterized by a progressive, gradual degradation of physiological and cellular processes that leads from vulnerability to death. Mammalian somatic cells display limited proliferative properties in vitro that results in a process of permanent cell cycle arrest commonly known as senescence. Events leading to cellular senescence are complex but may be due to the increase in tumor suppressor genes, caused by lifetime somatic mutations. Cumulative mutation leaves an imprint on the genome of the cell, an important risk factor for the occurrence of cancer. Adults over the age of 65+ are vulnerable to age related diseases such as cancers but such changes may begin at middle age. MicroRNAs (miRNAs), which are small non-coding RNA, can regulate cancer progression, recurrence and metastasis. This chapter discusses the role of miRNA in tumor microenvironment, consequent to aging.
Collapse
Affiliation(s)
- Oleta A Sandiford
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Caitlyn A Moore
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Jun Du
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Mathieu Boulad
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Marina Gergues
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Hussam Eltouky
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Pranela Rameshwar
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA.
| |
Collapse
|
14
|
MiR-146a functions as a small silent player in gastric cancer. Biomed Pharmacother 2017; 96:238-245. [DOI: 10.1016/j.biopha.2017.09.138] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/16/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
|
15
|
Huang WT, Cen WL, He RQ, Xie Y, Zhang Y, Li P, Gan TQ, Chen G, Hu XH. Effect of miR‑146a‑5p on tumor growth in NSCLC using chick chorioallantoic membrane assay and bioinformatics investigation. Mol Med Rep 2017; 16:8781-8792. [PMID: 28990079 PMCID: PMC5779957 DOI: 10.3892/mmr.2017.7713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Our previous study demonstrated that the expression of miR-146a-5p was downregulated in non-small cell lung cancer (NSCLC) tissue, which affected the progression and prognosis of patients with NSCLC. Thus, the present study was conducted to investigate the functional mechanism of miR-146a-5p in tumorigenesis and angiogenesis in NSCLC. Following the construction of a H460 NSCLC cell line in which miR-146a-5p was overexpressed via lentivirus transduction, the NSCLC chick embryo chorioallantoic membrane (CAM) model was established by transplanting miR-146a-5p-overexpressing NSCLC cells into the CAM. Then, the size of the neoplasms within the CAM was measured, the vessel ratio was calculated, and the cellular morphology, metastasis and inflammation of tumor cell was observed using hematoxylin and eosin staining. The target genes of miR-146a-5p were predicted by 12 online software programs; these genes were then subjected to Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway annotations using the Database for Annotation, Visualization and Integrated Discovery 6.7 as well as constructed into a protein interaction network using protein-protein interaction from Search Tool for the Retrieval of Interacting Genes/Proteins. The xenograft tumor size and angiogenesis conditions of the miR-146a-5p-overexpressing group (volume 6.340±0.066 mm3, vessel ratio 9.326±0.083) was obviously restricted (P<0.001) when compared with the low expression group (volume 30.13±0.06 mm3, vessel ratio 16.94±0.11). In addition, marked necrosis along with inflammatory cell infiltration was observed with the HE-stained slices from the miR-146a-5p low expression group. Regarding the results of the target gene prediction, cancer and toll-like receptor signaling were the two most significant pathways represented among the target genes, while JUN, EGFR and RAC1 were the most relevant proteins among the selected potential targets of miR-146a-5p. In a CAM xenograft tumor model, overexpression of miR-146a-5p inhibited the tumorigenesis and angiogenesis of an NSCLC cell line. miR-146a-5p may act as a tumor suppressor gene in NSCLC and have moderate prognostic value in lung cancer.
Collapse
Affiliation(s)
- Wen-Ting Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wei-Luan Cen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - You Xie
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ping Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ting-Qing Gan
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
16
|
Chen Y, Zhou B, Xu L, Fan H, Xie J, Wang D. MicroRNA-146a promotes gastric cancer cell apoptosis by targeting transforming growth factor β-activated kinase 1. Mol Med Rep 2017; 16:755-763. [PMID: 28560435 PMCID: PMC5482191 DOI: 10.3892/mmr.2017.6640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 03/17/2017] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence suggests that microRNA (miR)-146a functions as an oncogene or tumor suppressor in various cancers. However, the role of miR-146a in gastric cancer (GC) remains to be elucidated. The present study investigated the function of miR-146a in GC cells. The results of the present study revealed that miR-146a modulates GC cell apoptosis. Overexpression of miR-146a significantly increased apoptosis of SGC-7901 cells, whereas inhibition of miR-146a protected cells from apoptosis. miR-146a expression in GC cells was inversely correlated with transforming growth factor β-activated kinase 1 (TAK1) expression, at the mRNA and protein levels. Furthermore, small interfering RNA-mediated silencing of TAK1 enhanced GC cell apoptosis, whereas overexpression of TAK1 promoted survival of GC cells. Overexpression of miR-146a or knockdown of TAK1 led to a marked increase in inhibitor of κBα (IκBα) and a decrease in B-cell lymphoma 2 (Bcl-2) expression levels in SGC-7901 cells. By contrast, silencing of miR-146a or TAK1 overexpression downregulated IκBα and upregulated Bcl-2 expression levels. Therefore, the results of the present study demonstrated a novel negative feedback mechanism to promote GC cell apoptosis involving the miR-146a/TAK1/nuclear factor-κB axis.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bin Zhou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lubai Xu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hengwei Fan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Junqin Xie
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
17
|
Han D, Cho JH, Lee RH, Bang W, Park K, Kim MS, Shim JH, Chae JI, Moon SY. Antitumorigenic effect of atmospheric-pressure dielectric barrier discharge on human colorectal cancer cells via regulation of Sp1 transcription factor. Sci Rep 2017; 7:43081. [PMID: 28225083 PMCID: PMC5320527 DOI: 10.1038/srep43081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 01/19/2017] [Indexed: 02/03/2023] Open
Abstract
Human colorectal cancer cell lines (HT29 and HCT116) were exposed to dielectric barrier discharge (DBD) plasma at atmospheric pressure to investigate the anticancer capacity of the plasma. The dose- and time-dependent effects of DBDP on cell viability, regulation of transcription factor Sp1, cell-cycle analysis, and colony formation were investigated by means of MTS assay, DAPI staining, propidium iodide staining, annexin V-FITC staining, Western blot analysis, RT-PCR analysis, fluorescence microscopy, and anchorage-independent cell transformation assay. By increasing the duration of plasma dose times, significant reductions in the levels of both Sp1 protein and Sp1 mRNA were observed in both cell lines. Also, expression of negative regulators related to the cell cycle (such as p53, p21, and p27) was increased and of the positive regulator cyclin D1 was decreased, indicating that the plasma treatment led to apoptosis and cell-cycle arrest. In addition, the sizes and quantities of colony formation were significantly suppressed even though two cancer promoters, such as TPA and epidermal growth factor, accompanied the plasma treatment. Thus, plasma treatment inhibited cell viability and colony formation by suppressing Sp1, which induced apoptosis and cell-cycle arrest in these two human colorectal cancer cell lines.
Collapse
Affiliation(s)
- Duksun Han
- Department of Applied Plasma Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK 21 Plus, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeollabuk-do, Republic of Korea
| | - Ra Ham Lee
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK 21 Plus, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeollabuk-do, Republic of Korea
| | - Woong Bang
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK 21 Plus, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeollabuk-do, Republic of Korea
| | - Kyungho Park
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK 21 Plus, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeollabuk-do, Republic of Korea
| | - Minseok S. Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, 1666 Yeongsan-ro, Muan-gun, Jeonnam, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK 21 Plus, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeollabuk-do, Republic of Korea
| | - Se Youn Moon
- Department of Applied Plasma Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeollabuk-do, Republic of Korea
- Department of Quantum System Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
18
|
Shift of microRNA profile upon glioma cell migration using patient-derived spheroids and serum-free conditions. J Neurooncol 2017; 132:45-54. [PMID: 28091986 PMCID: PMC5352785 DOI: 10.1007/s11060-016-2356-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 12/23/2016] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent malignant primary brain tumor. A major reason for the overall median survival being only 14.6 months is migrating tumor cells left behind after surgery. Another major reason is tumor cells having a so-called cancer stem cell phenotype being therefore resistant towards traditional chemo- and radiotherapy. A group of novel molecular targets are microRNAs (miRNAs). MiRNAs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. The aim of this study was to identify differentially expressed miRNAs in migrating GBM cells using serum-free stem cell conditions. We used patient-derived GBM spheroid cultures for a novel serum-free migration assay. MiRNA expression of migrating tumor cells isolated at maximum migration speed was compared with corresponding spheroids using an OpenArray Real-Time PCR System. The miRNA profiling revealed 30 miRNAs to be differentially expressed. In total 13 miRNAs were upregulated and 17 downregulated in migrating cells compared to corresponding spheroids. The three most deregulated miRNAs, miR-1227 (up-regulated), miR-32 (down-regulated) and miR-222 (down-regulated), were experimentally overexpressed. A non-significantly increased migration rate was observed after miR-1227 overexpression. A significantly reduced migration rate was observed after miR-32 and miR-222 overexpression. In conclusion a shift in microRNA profile upon glioma cell migration was identified using an assay avoiding serum-induced migration. Both the miRNA profiling and the functional validation suggested that miR-1227 may be associated with increased migration and miR-32 and miR-222 with decreased migration. These miRNAs may represent potential novel targets in migrating glioma cells.
Collapse
|
19
|
Lee T, Son HY, Choi Y, Shin Y, Oh S, Kim J, Huh YM, Haam S. Minimum hyaluronic acid (HA) modified magnetic nanocrystals with less facilitated cancer migration and drug resistance for targeting CD44 abundant cancer cells by MR imaging. J Mater Chem B 2017; 5:1400-1407. [DOI: 10.1039/c6tb02306a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report minimal amount of hyaluronic acid (HA) conjugated magnetic nanocrystals (mHMs) for targeted imaging of CD44 abundant breast cancer cells with less side effects via MRI.
Collapse
Affiliation(s)
- Taeksu Lee
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Hye Young Son
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Yuna Choi
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Youngmin Shin
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Seungjae Oh
- YUHS-KRIBB Medical Convergence Research Institute
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Yong-Min Huh
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| |
Collapse
|
20
|
da Silva Oliveira KC, Thomaz Araújo TM, Albuquerque CI, Barata GA, Gigek CO, Leal MF, Wisnieski F, Rodrigues Mello Junior FA, Khayat AS, de Assumpção PP, Rodriguez Burbano RM, Smith MC, Calcagno DQ. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J Gastroenterol 2016; 22:7951-7962. [PMID: 27672290 PMCID: PMC5028809 DOI: 10.3748/wjg.v22.i35.7951] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/14/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Alterations in epigenetic control of gene expression play an important role in many diseases, including gastric cancer. Many studies have identified a large number of upregulated oncogenic miRNAs and downregulated tumour-suppressor miRNAs in this type of cancer. In this review, we provide an overview of the role of miRNAs, pointing to their potential to be useful as diagnostic and/or prognostic biomarkers in gastric cancer. Moreover, we discuss the influence of polymorphisms and epigenetic modifications on miRNA activity.
Collapse
|
21
|
Samatov TR, Wicklein D, Tonevitsky AG. L1CAM: Cell adhesion and more. ACTA ACUST UNITED AC 2016; 51:25-32. [DOI: 10.1016/j.proghi.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
|
22
|
Characterization of miR-146a and miR-155 in blood, tissue and cell lines of head and neck squamous cell carcinoma patients and their impact on cell proliferation and migration. J Cancer Res Clin Oncol 2015; 142:757-66. [PMID: 26621153 DOI: 10.1007/s00432-015-2087-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies worldwide with an unchanged 5-year survival rate during the last decade. To detect reliable prognostic markers and improve patients' outcome in future, the aim of our study was to detect differences in microRNA (miRNA; miR) expression profile and further on to analyze the functional role of selected miRNAs. METHODS Blood samples from HNSCC patients and sex- and age-matched healthy volunteers were analyzed by microarrays and validated by quantitative real-time PCR. Data were compared with tumor tissue results and all findings were correlated with clinical parameters. Additionally, the proliferation and migration potential of two cell lines transfected with miRNA mimics and inhibitors for miR-146a and miR-155 were examined. RESULTS Initial analysis of blood samples showed no significant differences between the miRNA profile of HNSCC patients and healthy controls (p > 0.05). Interestingly, down-regulation of miR-146a and miR-155 in blood of patients correlated with the occurrence of distant metastasis regarding tumor patients only (p = 0.023 and p = 0.028, respectively). Additionally, our investigations in tissue samples revealed a lower expression of miR-155 in tumor cells (p = 0.003) and a correlation with higher cT-classification for down-regulation of miR-146a (p = 0.005). Moreover, functional assays demonstrated that inhibition of miR-146a and miR-155 promoted dramatically proliferation and migration potential, whereas transfection of both mimics had an inhibitory effect. CONCLUSIONS Characterizing the expression of miR-146a and miR-155 and their functional role in tumor biology underlined significantly their proliferation and migration potential suggesting relevance as potential prognostic markers in HNSCC.
Collapse
|
23
|
Colombo F, Meldolesi J. L1-CAM and N-CAM: From Adhesion Proteins to Pharmacological Targets. Trends Pharmacol Sci 2015; 36:769-781. [PMID: 26478212 DOI: 10.1016/j.tips.2015.08.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 12/14/2022]
Abstract
L1 cell adhesion molecule (L1-CAM) and neural cell adhesion molecule (N-CAM), key members of the immunoglobulin-like CAM (Ig-CAM) family, were first recognized to play critical roles in surface interactions of neurons, by binding with each other and with extracellular matrix (ECM) proteins. Subsequently, adhesion was recognized to include signaling due to both activation of β-integrin, with the generation of intracellular cascades, and integration with the surface cytoskeleton. The importance of the two Ig-CAMs was revealed by their activation of the tyrosine kinase receptors of fibroblast growth factor (FGF), epidermal growth factor (EGF), and nerve growth factor (NGF). Based on these complex signaling properties, L1-CAM and N-CAM have become of great potential pharmacological interest in neurons and cancers. Treatment of neurodegenerative disorders and cognitive deficits of neurons is aimed to increase the cell Ig-CAM tone, possibly provided by synthetic/mimetic peptides. In cancer cells, where Ig-CAMs are often overexpressed, the proteins are employed for prognosis. The approaches to therapy are based on protein downregulation, antibodies, and adoptive immunotherapy.
Collapse
Affiliation(s)
- Federico Colombo
- Vita-Salute San Raffaele University and S. Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Jacopo Meldolesi
- Vita-Salute San Raffaele University and S. Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
24
|
Libânio D, Dinis-Ribeiro M, Pimentel-Nunes P. Helicobacter pylori and microRNAs: Relation with innate immunity and progression of preneoplastic conditions. World J Clin Oncol 2015; 6:111-132. [PMID: 26468448 PMCID: PMC4600186 DOI: 10.5306/wjco.v6.i5.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/22/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023] Open
Abstract
The accepted paradigm for intestinal-type gastric cancer pathogenesis is a multistep progression from chronic gastritis induced by Helicobacter pylori (H. pylori) to gastric atrophy, intestinal metaplasia, dysplasia and ultimately gastric cancer. The genetic and molecular mechanisms underlying disease progression are still not completely understood as only a fraction of colonized individuals ever develop neoplasia suggesting that bacterial, host and environmental factors are involved. MicroRNAs are noncoding RNAs that may influence H. pylori-related pathology through the regulation of the transcription and expression of various genes, playing an important role in inflammation, cell proliferation, apoptosis and differentiation. Indeed, H. pylori have been shown to modify microRNA expression in the gastric mucosa and microRNAs are involved in the immune host response to the bacteria and in the regulation of the inflammatory response. MicroRNAs have a key role in the regulation of inflammatory pathways and H. pylori may influence inflammation-mediated gastric carcinogenesis possibly through DNA methylation and epigenetic silencing of tumor suppressor microRNAs. Furthermore, microRNAs influenced by H. pylori also have been found to be involved in cell cycle regulation, apoptosis and epithelial-mesenchymal transition. Altogether, microRNAs seem to have an important role in the progression from gastritis to preneoplastic conditions and neoplastic lesions and since each microRNA can control the expression of hundreds to thousands of genes, knowledge of microRNAs target genes and their functions are of paramount importance. In this article we present a comprehensive review about the role of microRNAs in H. pylori gastric carcinogenesis, identifying the microRNAs downregulated and upregulated in the infection and clarifying their biological role in the link between immune host response, inflammation, DNA methylation and gastric carcinogenesis.
Collapse
|
25
|
Altevogt P, Doberstein K, Fogel M. L1CAM in human cancer. Int J Cancer 2015; 138:1565-76. [DOI: 10.1002/ijc.29658] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology; University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg; Mannheim Germany
| | - Kai Doberstein
- Ovarian Cancer Research Center, Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA
| | - Mina Fogel
- Central Laboratories; Kaplan Medical Center; Rehovot Israel
| |
Collapse
|
26
|
Calcagno DQ, de Arruda Cardoso Smith M, Burbano RR. Cancer type-specific epigenetic changes: gastric cancer. Methods Mol Biol 2015; 1238:79-101. [PMID: 25421656 DOI: 10.1007/978-1-4939-1804-1_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gastric cancer (GC) remains a major cause of mortality despite declining rate in the world. Epigenetic alterations contribute significantly to the development and progression of gastric tumors. Epigenetic refers to the number of modifications of the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Over the years, the study of epigenetic processes has increased, and novel therapeutic approaches have emerged. This chapter summarizes the main epigenomic mechanisms described recently involved in gastric carcinogenesis, focusing on the roles that aberrant DNA methylation, histone modifications (histone acetylation and methylation), and miRNAs (oncogenic and tumor suppressor function of miRNA) play in the onset and progression of gastric tumors. Clinical implications of these epigenetic alterations in GC are also discussed.
Collapse
Affiliation(s)
- Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Guamá, CEP 66073-000 Belém, PA, Brazil,
| | | | | |
Collapse
|
27
|
Xu Q, Liu JW, Yuan Y. Comprehensive assessment of the association between miRNA polymorphisms and gastric cancer risk. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:148-60. [PMID: 25795117 DOI: 10.1016/j.mrrev.2014.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 08/12/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023]
Abstract
Single nucleotide polymorphisms (SNPs) in pri- or pre-microRNAs (miRNAs) were found to be associated with gastric cancer risk. The aim of this study was to systematically review with update meta-analysis for the association of miRNA SNPs with gastric cancer risk. We systematically reviewed a total of 31 SNPs in the precursor genes of 29 miRNAs associated with overall cancer risk. Meanwhile, 13 case-control studies with a total of 9044 gastric cancer cases and 11,762 controls were included in a meta-analysis of five highly studied pre-miRNA SNPs (miR-146a rs2910164, miR-196a2 rs11614913, miR-499 rs3746444, miR-149 rs2292832 and miR-27a rs895819). Our results show both the homozygous miR-27a rs895819 and the miR-149 rs2292832 heterozygote genotype were associated with a decreased risk of gastric cancer when compared with wild type. In the stratified analysis, in some subgroup, heterozygous miR-146a rs2910164 was associated with a decreased risk of gastric cancer; and the variant genotype of miR-196a-2 rs11614913 was associated with an increased risk. No association was found between miR-499 rs3746444 and gastric cancer risk. In summary, miR-27a rs895819 and miR-149 rs2292832 are of potential forewarning ability for gastric cancer risk.
Collapse
Affiliation(s)
- Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Jing-wei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.
| |
Collapse
|
28
|
Antal O, Hackler L, Shen J, Mán I, Hideghéty K, Kitajka K, Puskás LG. Combination of unsaturated fatty acids and ionizing radiation on human glioma cells: cellular, biochemical and gene expression analysis. Lipids Health Dis 2014; 13:142. [PMID: 25182732 PMCID: PMC4176829 DOI: 10.1186/1476-511x-13-142] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/18/2014] [Indexed: 12/13/2022] Open
Abstract
Background Based on previous observations a potential resort in the therapy of the particularly radioresistant glioma would be its treatment with unsaturated fatty acids (UFAs) combined with irradiation. Methods We evaluated the effect of different UFAs (arachidonic acid (AA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA) and oleic acid (OA)) on human U87 MG glioma cell line by classical biochemical end-point assays, impedance-based, real-time cellular and holographic microscopic analysis. We further analyzed AA, DHA, and GLA at morphological, gene and miRNA expression level. Results Corresponding to LDH-, MTS assays and real-time cytoxicity profiles AA, DHA, and GLA enhanced the radio sensitivity of glioma cells. The collective application of polyunsaturated fatty acids (PUFAs) and irradiation significantly changed the expression of EGR1, TNF-α, NOTCH1, c-MYC, TP53, HMOX1, AKR1C1, NQO1, while up-regulation of GADD45A, EGR1, GRP78, DDIT3, c-MYC, FOSL1 were recorded both in response to PUFA treatment or irradiation alone. Among the analyzed miRNAs miR-146 and miR-181a were induced by DHA treatment. Overexpression of miR-146 was also detected by combined treatment of GLA and irradiation. Conclusions Because PUFAs increased the radio responsiveness of glioma cells as assessed by biochemical and cellular assays, they might increase the therapeutic efficacy of radiation in treatment of gliomas. We demonstrated that treatment with DHA, AA and GLA as adjunct to irradiation up-regulated the expression of oxidative-stress and endoplasmic reticulum stress related genes, and affected NOTCH1 expression, which could explain their additive effects. Electronic supplementary material The online version of this article (doi:10.1186/1476-511X-13-142) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - László G Puskás
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary.
| |
Collapse
|
29
|
MicroRNA and signaling pathways in gastric cancer. Cancer Gene Ther 2014; 21:305-16. [PMID: 25060632 DOI: 10.1038/cgt.2014.37] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors by inhibiting the expression of target genes, some of which are either directly or indirectly involved with canonical signaling pathways. The relationship between miRNAs and signaling pathways in gastric cancer is extremely complicated. In this paper, we determined the pathogenic mechanism of gastric cancer related to miRNA expression based on recent high-quality studies and then clarified the regulation network of miRNA expression and the correlated functions of these miRNAs during the progression of gastric cancer. We try to illustrate the correlation between the expression of miRNAs and outcomes of patients with gastric cancer. Understanding this will allow us to take a big step forward in the treatment of gastric cancer.
Collapse
|
30
|
Rau CS, Yang JCS, Chen YC, Wu CJ, Lu TH, Tzeng SL, Wu YC, Hsieh CH. Lipopolysaccharide-induced microRNA-146a targets CARD10 and regulates angiogenesis in human umbilical vein endothelial cells. Toxicol Sci 2014; 140:315-26. [PMID: 24863965 DOI: 10.1093/toxsci/kfu097] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This aim of this study was to explore the role of miRNA-146a (miR-146a) and its target genes in endothelial cells. We demonstrated that lipopolysaccharide (LPS) induced the upregulation of miR-146a in human umbilical vein endothelial cells (HUVECs), and that the induction was blocked by silencing toll-like receptors, the adaptor molecule MyD88, and the nonspecific NF-κB inhibitor BAY 11-7082. In addition, knockdown of miR-146a by transfection of the locked nucleic acid antimiR-146a significantly inhibited LPS-induced cell migration and tube formation. A combined analysis of bioinformatics miRanda algorithms and a whole genome expression microarray of immunoprecipitated Ago2 ribonucleoprotein complexes identified 14 potential target genes. Subsequent transfection with the miR-146a precursor pre-miR-146a into HUVECs validated that CARD10 was the target gene of the miR-146a, both at the mRNA and protein levels. Silencing CARD10 inhibited p65 nuclear translocation in the cells receiving LPS stimulation and increased angiogenesis. Therefore, miR-146a may play a role in regulating the angiogenesis in HUVECs by downregulating CARD10, which acts in a negative feedback regulation loop to inhibit the activation of NF-κB that normally impairs angiogenesis.
Collapse
Affiliation(s)
| | - Johnson Chia-Shen Yang
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Yi-Chun Chen
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Chia-Jung Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Tsu-Hsiang Lu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Siou-Ling Tzeng
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Yi-Chan Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| |
Collapse
|
31
|
Li H, Xie S, Liu M, Chen Z, Liu X, Wang L, Li D, Zhou Y. The clinical significance of downregulation of mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p in gastric cancer tumorigenesis. Int J Oncol 2014; 45:197-208. [PMID: 24805774 DOI: 10.3892/ijo.2014.2415] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/31/2014] [Indexed: 12/26/2022] Open
Abstract
Dysregulated miRNAs in gastric cancer are usually screened by miRNA microarray from clinical samples, however, reports have indicated that results of each miRNA microarray screening are considerably different, and dysregulated miRNAs, especially downregulated miRNAs were contradictory. In view of this, the Human Cancer Pathway Finder miRNA PCR array was applied to compare 7 gastric cancer cell lines AGS, SGC-7901, MKN-45, MKN-28, MGC-803, BCG-823, and HGC-27 with an immortalized normal gastric cell line, GES-1 in cancer pathway-related miRNA expression profile, followed by qPCR verification, the clinical significance of downregulated miRNAs and the Enriched KEGG pathways and GO terms of their target genes were analyzed. Thirty-eight miRNAs were upregulated, and four miRNAs were downregulated in gastric cancer cell lines. Clinical significance of 4 miRNAs including mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p in gastric cancer tissue compared with adjacent non-tumor tissues of 58 patients indicated that the low-expression group of mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p showed more extensive lymph node metastasis, lymphatic invasion, venous invasion, high-stage Borrmann type, lymphatic invasion and poor differentiation than that of the high-expression groups, respectively (P<0.05; χ² test). Enriched KEGG pathway analyses showed that most of the targeted genes of the 4 miRNAs concentrated on 37 signaling pathways, and were involved in the same pathways related to cancer. Enriched GO terms showed that targeted genes of the 4 miRNAs concentrated on 339 terms, 24 of 339 terms are associated with cancer tumorigenesis. The Human Cancer Pathway Finder miRNA PCR array could be used to screen dysregulated miRNAs effectively, and 4 screened miRNAs, mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p were found to be downregulated in gastric cancer. Clinical significance and bioinformatic analysis on the target genes of these 4 miRNAs indicated that they were deeply involved in tumorigenesis, suggesting roles such as miRNA tumor suppressors in gastric cancer tumorigenesis which could be applied in gastric cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Hailong Li
- Division of Gastroenterology and Hepatology, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shoupin Xie
- First People's Hospital of Lanzhou, Lanzhou, Gansu 730050, P.R. China
| | - Min Liu
- Division of Gastroenterology and Hepatology, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhaofeng Chen
- Division of Gastroenterology and Hepatology, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiaojun Liu
- Division of Gastroenterology and Hepatology, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li Wang
- Division of Gastroenterology and Hepatology, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Dayan Li
- Division of Gastroenterology and Hepatology, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yongning Zhou
- Division of Gastroenterology and Hepatology, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
32
|
Abstract
BACKGROUND Aberrant expression of microRNA-146a (miR-146a) has been found in several classes of cancers. However, its expression and clinicopathological contribution in hepatocellular carcinoma (HCC) has not been fully elucidated. OBJECTIVE To explore the clinicopathological significance of the miR-146a level in HCC formalin-fixed paraffin-embedded (FFPE) tissue. METHODS Eighty-five HCC samples and their para-cancerous normal liver tissues were collected. Total mRNA including miRNA was extracted, and miR-146a expression was determined using real-time RT-PCR. Furthermore, the correlation between the miR-146a expression and clinicopathological parameters was investigated. RESULTS MicroRNA-146a expression in HCC tissues was lower compared with that in adjacent non-cancerous hepatic tissues. MicroRNA-146a expression was also related to clinical TNM stage, metastasis, portal vein tumor embolus, and number of tumor nodes. CONCLUSIONS Down-regulation of miR-146a is related to HCC carcinogenesis and deterioration of HCC. MicroRNA-146a may act as a suppressor miRNA of HCC, and it is therefore a potential prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Minhua Rong
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Rongquan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
33
|
Bouyssou JMC, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM. Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta Rev Cancer 2014; 1845:255-65. [PMID: 24569228 DOI: 10.1016/j.bbcan.2014.02.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/15/2014] [Accepted: 02/12/2014] [Indexed: 12/13/2022]
Abstract
Metastasis is a phenomenon of crucial importance in defining prognosis in patients with cancer and is often responsible for cancer-related mortality. It is known that several steps are necessary for clonal cells to disseminate from their primary tumor site and colonize distant tissues, thus originating metastatic lesions. Therefore, investigating the molecular actors regulating this process may provide helpful insights in the development of efficient therapeutic responses. Recent evidences have indicated the role of microRNAs (miRNAs) in modulating the metastatic process in solid tumors. miRNAs are small regulatory non-coding RNAs that bind to specific target mRNAs, leading to translational repression. miRNAs are known to act as negative regulators of gene expression and are involved in the regulation of biological processes, including cell growth, differentiation and apoptosis, both in physiological conditions and during diseases, such as tumors. In the specific field of tumorigenesis, miRNAs play an important role in mediating oncogenesis and favoring tumor progression, as a result of their ability to modulate epithelial-to-mesenchymal transition (EMT) and other series of events facilitating the formation of metastasis. The role of miRNAs in cancer development has been widely studied and has helped elucidate events such as the change in expression of oncogenes, tumor-suppressors and cancer-related proteins. This review focuses on the mechanisms underlying the role of miRNAs as part of the metastatic process.
Collapse
Affiliation(s)
- Juliette M C Bouyssou
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA; Ecole de Biologie Industrielle, 32 Boulevard du port, 95094 Cergy-Pontoise cedex, France
| | - Salomon Manier
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Daisy Huynh
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Samar Issa
- Ecole de Biologie Industrielle, 32 Boulevard du port, 95094 Cergy-Pontoise cedex, France
| | - Aldo M Roccaro
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Huang GL, Chen ML, Li YZ, Lu Y, Pu XX, He YX, Tang SY, Che H, Zou Y, Ding C, He Z. Association of miR-146a gene polymorphism with risk of nasopharyngeal carcinoma in the central-southern Chinese population. J Hum Genet 2014; 59:141-4. [PMID: 24430575 DOI: 10.1038/jhg.2013.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/16/2022]
Abstract
This case-control study focused on estimating the association between miR-146a polymorphism and risk of nasopharyngeal carcinoma (NPC) in central-south China. In total, 160 patients with NPC and 200 healthy controls in central-south China were genotyped using polymerase chain reaction-restriction fragment length polymorphism assay. Chi-square test was used to assess the different distribution of miR-146a polymorphism between NPC patients and controls; and logistic regression analysis was applied to analyze the associations between miR-146a polymorphism with cancer risk in different contrast models. Significant differences between NPC patients and controls were found in genotype (P=0.033 for GG versus CG versus CC; and odds ratio (OR)=0.568, 95% confidence interval (CI)=0.354-0.912, P=0.019 for CG versus CC; and OR=0.503, 95% CI=0.261-0.971, P=0.041 for CG versus CC; and OR=0.564, 95% CI=0.360-0.884, P=0.012 for GG+CG versus CC, respectively) and allelic analysis (P=0.025 for G versus C). Our findings suggested that polymorphism of mir-146a was associated with NPC in the central-southern Chinese population.
Collapse
Affiliation(s)
- Guo-Liang Huang
- 1] Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China [2] Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Mei-Ling Chen
- Institute Of Laboratory Medicine, Guangdong Medical College, Dongguan, China
| | - Ya-Zhen Li
- Institute Of Laboratory Medicine, Guangdong Medical College, Dongguan, China
| | - Yan Lu
- 1] Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China [2] Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Xing-Xiang Pu
- Department of Medical Oncology, Hunan Tumor Hospital, Changsha, China
| | - Yu-Xiang He
- Department of Oncology, Central South University Xiangya Hospital, Changsha, China
| | - Shu-Yin Tang
- Institute Of Laboratory Medicine, Guangdong Medical College, Dongguan, China
| | - Hua Che
- Institute Of Laboratory Medicine, Guangdong Medical College, Dongguan, China
| | - Ying Zou
- 1] Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China [2] Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Congcong Ding
- 1] Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China [2] Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Zhiwei He
- 1] Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China [2] Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| |
Collapse
|
35
|
Hung PS, Liu CJ, Chou CS, Kao SY, Yang CC, Chang KW, Chiu TH, Lin SC. miR-146a enhances the oncogenicity of oral carcinoma by concomitant targeting of the IRAK1, TRAF6 and NUMB genes. PLoS One 2013; 8:e79926. [PMID: 24302991 PMCID: PMC3841223 DOI: 10.1371/journal.pone.0079926] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 09/30/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs are short non-coding RNAs that regulate gene expression and are crucial to tumorigenesis. Oral squamous cell carcinoma (OSCC) is a prevalent malignancy worldwide. Up-regulation of miR-146 has been identified in OSCC tissues. However, the roles of miR-146 in carcinogenesis are controversial as it is suppressive in many other malignancies. The present study investigated the pathogenic implications of miR-146a in oral carcinogenesis. Microdissected OSCC exhibits higher levels of miR-146a expression than matched adjacent mucosal cells. The plasma miR-146a levels of patients are significantly higher than those of control subjects; these levels decrease drastically after tumor resection. miR-146a levels in tumors and in patients' plasma can be used to classify OSCC and non-disease status (sensitivity: >0.72). Exogenous miR-146a expression is significantly increased in vitro oncogenic phenotypes as well as during xenograft tumorigenesis and OSCC metastasis. The plasma miR-146a levels of these mice parallel the xenograft tumor burdens of the mice. A miR-146a blocker abrogates the growth of xenograft tumors. miR-146a oncogenic activity is associated with down-regulation of IRAK1, TRAF6 and NUMB expression. Furthermore, miR-146a directly targets the 3'UTR of NUMB and a region within the NUMB coding sequence when suppressing NUMB expression. Exogenous NUMB expression attenuates OSCC oncogenicity. Double knockdown of IRAK1 and TRAF6, and of TRAF6 and NUMB, enhance the oncogenic phenotypes of OSCC cells. Oncogenic enhancement modulated by miR-146a expression is attenuated by exogenous IRAK1 or NUMB expression. This study shows that miR-146a expression contributes to oral carcinogenesis by targeting the IRAK1, TRAF6 and NUMB genes.
Collapse
Affiliation(s)
- Pei-Shi Hung
- Department of Surgery National Yang-Ming University Hospital, Yi-Lan, Taiwan
- Department of Medical Research, National Yang-Ming University Hospital, Yi-Lan, Taiwan
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Chung-Shan Chou
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shou-Yen Kao
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Hui Chiu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
36
|
Olivieri F, Rippo MR, Monsurrò V, Salvioli S, Capri M, Procopio AD, Franceschi C. MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Res Rev 2013; 12:1056-68. [PMID: 23688930 DOI: 10.1016/j.arr.2013.05.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 01/01/2023]
Abstract
Epidemiological and experimental data demonstrate a strong correlation between age-related chronic inflammation (inflamm-aging) and cancer development. However, a comprehensive approach is needed to clarify the underlying molecular mechanisms. Chronic inflammation has mainly been attributed to continuous immune cells activation, but the cellular senescence process, which may involve acquisition of a senescence-associated secretory phenotype (SASP), can be another important contributor, especially in the elderly. MicroRNAs (miRs), a class of molecules involved in gene expression regulation, are emerging as modulators of some pathways, including NF-κB, mTOR, sirtuins, TGF-β and Wnt, that may be related to inflammation, cellular senescence and age-related diseases, cancer included. Interestingly, cancer development is largely avoided or delayed in centenarians, where changes in some miRs are found in plasma and leukocytes. We identified miRs that can be considered as senescence-associated (SA-miRs), inflammation-associated (inflamma-miRs) and cancer-associated (onco-miRs). Here we review recent findings concerning three of them, miR-21, -126 and -146a, which target mRNAs belonging to the NF-κB pathway; we discuss their ability to link cellular senescence, inflamm-aging and cancer and their changes in centenarians, and provide an update on the possibility of using miRs to block accumulation of senescent cells to prevent formation of a microenvironment favoring cancer development and progression.
Collapse
|
37
|
Zhou L, Zhao X, Han Y, Lu Y, Shang Y, Liu C, Li T, Jin Z, Fan D, Wu K. Regulation of UHRF1 by miR-146a/b modulates gastric cancer invasion and metastasis. FASEB J 2013; 27:4929-39. [PMID: 23982143 DOI: 10.1096/fj.13-233387] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetic changes play significant roles in the development of cancer. UHRF1, as an epigenetic regulator, has been shown to be overexpressed and to coordinate tumor suppressor gene silencing in several cancers. However, the role and underlying mechanism of UHRF1 in gastric cancer (GC) progression remain largely unknown. In this study, we investigated the expression and function of UHRF1 in GC metastasis and explored its upstream regulatory mechanisms at the microRNA level. UHRF1 was overexpressed in GC tissues, especially in metastatic ones, and a high level of UHRF1 expression predicted poor survival. The down-regulation of UHRF1 suppressed GC invasion and metastasis in vitro and in vivo. We identified and verified miR-146a and miR-146b as direct upstream regulators of UHRF1. Furthermore, the restoration of miR-146a/b dramatically reduced the expression of UHRF1 through the direct targeting of its 3'-UTR, and this effect in turn reactivated the slit homologue 3 (Slit3), cadherin 4 (CDH4), and runt-related transcription factor 3 (RUNX3) genes via promoter demethylation. Finally, analyses of miR-146a/b and UHRF1 levels in human GC tissues revealed that miR-146a/b correlated inversely with UHRF1 expression. These findings describe a new mechanism for the regulation of UHRF1 and aberrant DNA hypermethylation in GC. The newly identified miR-146a/b/UHRF1 axis provides insight into the GC metastasis process, and targeting this novel axis represents a therapeutic approach to blocking GC metastasis.
Collapse
Affiliation(s)
- Lin Zhou
- 3Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology, West Changle Road, Xi'an 710032, China. K. W.,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xie H, Lee L, Caramuta S, Höög A, Browaldh N, Björnhagen V, Larsson C, Lui WO. MicroRNA expression patterns related to merkel cell polyomavirus infection in human merkel cell carcinoma. J Invest Dermatol 2013; 134:507-517. [PMID: 23962809 PMCID: PMC3898110 DOI: 10.1038/jid.2013.355] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 07/04/2013] [Accepted: 07/18/2013] [Indexed: 01/09/2023]
Abstract
Merkel cell carcinoma (MCC) is an aggressive and lethal type of neuroendocrine skin cancer. Mutated Merkel cell polyomavirus (MCV) is commonly found in MCC, and leads to upregulation of the survivin oncogene. However, ∼20% of MCC tumors do not have detectable MCV, suggesting alternative etiologies for this tumor type. In this study, our aim was to evaluate microRNA (miRNA) expression profiles and their associations with MCV status and clinical outcomes in MCC. We showed that miRNA expression profiles were distinct between MCV-positive (MCV+) and MCV-negative (MCV−) MCCs and further validated that miR-203, miR-30a-3p, miR-769-5p, miR-34a, miR-30a-5p, and miR-375 were significantly different. We also identified a subset of miRNAs associated with tumor metastasis and MCC-specific survival. Functionally, overexpression of miR-203 was found to inhibit cell growth, induce cell cycle arrest, and regulate survivin expression in MCV− MCC cells, but not in MCV+ MCC cells. Our findings reveal a mechanism of survivin expression regulation in MCC cells, and provide insights into the role of miRNAs in MCC tumorigenesis.
Collapse
Affiliation(s)
- Hong Xie
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Cancer Center Karolinska, Karolinska University Hospital, Stockholm, Sweden.
| | - Linkiat Lee
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Cancer Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Stefano Caramuta
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Cancer Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Höög
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Nanna Browaldh
- Department of Ear, Nose and Throat, Karolinska University Hospital, Stockholm, Sweden
| | - Viveca Björnhagen
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Cancer Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Cancer Center Karolinska, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
39
|
Olivieri F, Rippo MR, Procopio AD, Fazioli F. Circulating inflamma-miRs in aging and age-related diseases. Front Genet 2013; 4:121. [PMID: 23805154 PMCID: PMC3693036 DOI: 10.3389/fgene.2013.00121] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022] Open
Abstract
Evidence on circulating microRNAs (miRNAs) is indisputably opening a new era in systemic and tissue-specific biomarker research, highlighting new inter-cellular and inter-organ communication mechanisms. Circulating miRNAs might be active messengers eliciting a systemic response as well as non-specific "by-products" of cell activity and even of cell death; in either case they have the potential to be clinically relevant biomarkers for a number of physiopathological processes, including inflammatory responses and inflammation-related conditions. A large amount of evidence indicates that miRNAs can exert two opposite roles, activating as well as inhibiting inflammatory pathways. The inhibitory action probably relates to the need for activating anti-inflammatory mechanisms to counter potent proinflammatory signals, like the nuclear factor kappaB (NF-κB) pathway, to prevent cell and tissue destruction. MiRNA-based anti-inflammatory mechanisms may acquire a crucial role during aging, where a chronic, low-level proinflammatory status is likely sustained by the cell senescence secretome and by progressive activation of immune cells over time. This process entails age-related changes, especially in extremely old age, in those circulating miRNAs that are capable of modulating the inflammatory status (inflamma-miRs). Interestingly, a number of such circulating miRNAs seem to be promising biomarkers for the major age-related diseases that share a common chronic, low-level proinflammatory status, such as cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), Alzheimer Disease (AD), rheumatoid arthritis (RA), and cancers.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche Ancona, Italy ; Center of Clinical Pathology and Innovative Therapy, I.N.R.C.A. National Institute Ancona, Italy
| | | | | | | |
Collapse
|
40
|
Fang XF, Hou ZB, Dai XZ, Chen C, Ge J, Shen H, Li XF, Yu LK, Yuan Y. Special AT-rich sequence-binding protein 1 promotes cell growth and metastasis in colorectal cancer. World J Gastroenterol 2013; 19:2331-2339. [PMID: 23613626 PMCID: PMC3631984 DOI: 10.3748/wjg.v19.i15.2331] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/13/2013] [Accepted: 02/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the expression of special AT-rich sequence-binding protein 1 (SATB1) gene in colorectal cancer and its role in colorectal cancer cell proliferation and invasion.
METHODS: Immunohistochemistry was used to detect the protein expression of SATB1 in 30 colorectal cancer (CRC) tissue samples and pair-matched adjacent non-tumor samples. Cell growth was investigated after enhancing expression of SATB1. Wound-healing assay and Transwell assay were used to investigate the impact of SATB1 on migratory and invasive abilities of SW480 cells in vitro. Nude mice that received subcutaneous implantation or lateral tail vein were used to study the effects of SATB1 on tumor growth or metastasis in vivo.
RESULTS: SATB1 was over-expressed in CRC tissues and CRC cell lines. SATB1 promotes cell proliferation and cell cycle progression in CRC SW480 cells. SATB1 overexpression could promote cell growth in vivo. In addition, SATB1 could significantly raise the ability of cell migration and invasion in vitro and promote the ability of tumor metastasis in vivo. SATB1 could up-regulate matrix metalloproteases 2, 9, cyclin D1 and vimentin, meanwhile SATB1 could down-regulate E-cadherin in CRC.
CONCLUSION: SATB1 acts as a potential growth and metastasis promoter in CRC. SATB1 may be useful as a therapeutic target for CRC.
Collapse
|