1
|
Beilankouhi EAV, Maghsoodi MS, Sani MZ, Khosroshahi NS, Zarezadeh R, Nargesi MM, Safaralizadeh R, Valilo M. miRNAs that regulate apoptosis in breast cancer and cervical cancer. Cell Biochem Biophys 2024; 82:1993-2006. [PMID: 38969951 DOI: 10.1007/s12013-024-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
In today's world, one of the main problems is cancer, which still has a long way to go to cure it, and it brings a lot of financial and emotional costs to the people of society and governments. Breast cancer (BC) and cervical cancer (CC), two of the most common cancers, are caused by several genetic and environmental factors in women. These two cancers' involvement rate is higher than other cancers in women. microRNAs (miRNAs) are non-coding RNA molecules with a length of 18 to 24 nucleotides, which play an important role in post-translational changes. miRNAs themselves are divided into two categories, oncomiRs and tumor suppressors. OncomiRs have a part in tumor expansion and tumor suppressors prevent tumor development and progress. miRNAs can control cellular processes by regulating various pathways including autophagy, apoptosis, and signaling. Apoptosis is a type of programmed cell death that includes intrinsic and extrinsic pathways and is different from other cell death pathways such as necrosis and ferroptosis. Apoptosis controls the growth, differentiation, and death of cells by regulating the death of damaged and old cells, and since miRNAs are one of the factors that regulate apoptosis, and divided into two categories: pro-apoptotic and anti-apoptotic. We decided in this study to investigate the relationship between miRNAs and apoptosis in the most common women's cancers, BC and CC.
Collapse
Affiliation(s)
| | - Maral Salek Maghsoodi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Maryam Zamani Sani
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirsaed Miri Nargesi
- Molecular Virology and Covid Unit, LabPlus, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Zhu S, Gu H, Peng C, Xia F, Cao H, Cui H. Regulation of Glucose, Fatty Acid and Amino Acid Metabolism by Ubiquitination and SUMOylation for Cancer Progression. Front Cell Dev Biol 2022; 10:849625. [PMID: 35392171 PMCID: PMC8981989 DOI: 10.3389/fcell.2022.849625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination and SUMOylation, which are posttranslational modifications, play prominent roles in regulating both protein expression and function in cells, as well as various cellular signal transduction pathways. Metabolic reprogramming often occurs in various diseases, especially cancer, which has become a new entry point for understanding cancer mechanisms and developing treatment methods. Ubiquitination or SUMOylation of protein substrates determines the fate of modified proteins. Through accurate and timely degradation and stabilization of the substrate, ubiquitination and SUMOylation widely control various crucial pathways and different proteins involved in cancer metabolic reprogramming. An understanding of the regulatory mechanisms of ubiquitination and SUMOylation of cell proteins may help us elucidate the molecular mechanism underlying cancer development and provide an important theory for new treatments. In this review, we summarize the processes of ubiquitination and SUMOylation and discuss how ubiquitination and SUMOylation affect cancer metabolism by regulating the key enzymes in the metabolic pathway, including glucose, lipid and amino acid metabolism, to finally reshape cancer metabolism.
Collapse
Affiliation(s)
- Shunqin Zhu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongyu Gu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Fanwei Xia
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Huan Cao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Hongjuan Cui,
| |
Collapse
|
3
|
Li L, Yang J, Li F, Gao F, Zhu L, Hao J. FBXW7 mediates high glucose‑induced SREBP‑1 expression in renal tubular cells of diabetic nephropathy under PI3K/Akt pathway regulation. Mol Med Rep 2021; 23:233. [PMID: 33537812 PMCID: PMC7893693 DOI: 10.3892/mmr.2021.11872] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and lipid metabolism abnormality serves a key role in the pathogenesis of DN. Sterol regulatory element-binding protein 1 (SREBP-1) overexpression mediates aberrant lipid accumulation in renal tubular cells of DN. However, the exact mechanism involved in increased SREBP-1 has not been fully elucidated. The aim of the present study was to explore the mechanism involved in SREBP-1 upregulation. Diabetic mice and high glucose-cultured HKC cells were chosen to detect the expression of FBXW7 and SREBP-1 using immunohistochemistry, western blotting and PCR. The present study demonstrated that F-box and WD repeat domain containing 7 (FBXW7) expression was decreased in renal tubular cells of diabetic mice. Moreover, the co-expression of FBXW7 and SREBP-1 was observed in renal tubular cells, but not in the glomeruli. High glucose-induced the downregulation of FBXW7 expression in in vitro cultured HKC cells, which was accompanied by SREBP-1 upregulation. In addition, overexpression of FBXW7 in HKC cells led to SREBP-1 downregulation. By contrast, knockdown of FBXW7 caused SREBP-1 upregulation in HKC cells. It was found that the PI3K/Akt signaling pathway was activated in high glucose-stimulated HKC cells, and inhibition of PI3K/Akt pathway using LY294002 increased FBXW7 expression and decreased SREBP-1 expression. Taken together, the present results suggested that FBXW7 mediated high glucose-induced SREBP-1 expression in renal tubular cells of DN, under the regulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Lisha Li
- Department of Pathology, Cangzhou Hospital of Integrated TCM‑WM, Cangzhou, Hebei 061001, P.R. China
| | - Juxiang Yang
- The Office of Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Fan Gao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
4
|
Jiang YY, Shui JC, Zhang BX, Chin JW, Yue RS. The Potential Roles of Artemisinin and Its Derivatives in the Treatment of Type 2 Diabetes Mellitus. Front Pharmacol 2020; 11:585487. [PMID: 33381036 PMCID: PMC7768903 DOI: 10.3389/fphar.2020.585487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has become a global public health problem. Studies on T2DM prevention and treatment mostly focus on discovering therapeutic drugs. Artemisinin and its derivatives were originally used as antimalarial treatments. In recent years, the roles of artemisinins in T2DM have attracted much attention. Artemisinin treatments not only attenuate insulin resistance and restore islet ß-cell function in T2DM but also have potential therapeutic effects on diabetic complications, including diabetic kidney disease, cognitive impairment, diabetic retinopathy, and diabetic cardiovascular disease. Many in vitro and in vivo experiments have confirmed the therapeutic utility of artemisinin and its derivatives on T2DM, but no article has systematically demonstrated the specific role artemisinin plays in the treatment of T2DM. This review summarizes the potential therapeutic effects and mechanism of artemisinin and its derivatives in T2DM and associated complications, providing a reference for subsequent related research.
Collapse
Affiliation(s)
- Ya-Yi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Cheng Shui
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo-Xun Zhang
- Department of Endocrinology, Guang'anmen Hospital of China, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Wei Chin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren-Song Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
6
|
Heo MJ, Kang SH, Kim YS, Lee JM, Yu J, Kim HR, Lim H, Kim KM, Jung J, Jeong LS, Moon A, Kim SG. UBC12-mediated SREBP-1 neddylation worsens metastatic tumor prognosis. Int J Cancer 2020; 147:2550-2563. [PMID: 32449166 DOI: 10.1002/ijc.33113] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 12/29/2022]
Abstract
Activation of sterol regulatory element-binding protein 1 (SREBP-1), a master lipogenic transcription factor, is associated with cancer metabolism and metabolic disorders. Neddylation, the process of adding NEDD8 to its substrate, contributes to diverse biological processes. Here, we identified SREBP-1 as a substrate for neddylation by UBC12 and explored its impact on tumor aggressiveness. In cell-based assays, SREBP-1 neddylation prolonged SREBP-1 stability with a decrease in ubiquitination. Consequently, NEDD8 overexpression facilitated proliferation, migration, and invasion of SK-Hep1 liver tumor cells. MLN4924 (an inhibitor of the NEDD8-activating enzyme-E1) treatment or UBC12 knockdown prevented SREBP-1 neddylation and tumor cell phenotype change. This effect was corroborated in an in vivo xenograft model. In human specimens, SREBP-1, UBC12, and NEDD8 were all upregulated in hepatocellular carcinoma (HCC) compared to nontumorous regions. Moreover, SREBP-1 levels positively correlated with UBC12. In GEO database analyses, SREBP-1 levels were greater in metastatic HCC samples accompanying UBC12 upregulation. In HCC analysis, tumoral SREBP-1 and UBC12 levels discriminated overall patient survival rates. Additionally, MLN4924 treatment destabilized SREBP-1 in MDA-MB-231 breast cancer cells and in the tumor cell xenograft. SREBP-1 and UBC12 were also highly expressed in human breast cancer tissues. Moreover, most breast cancers with lymph node metastasis displayed predominant SREBP-1 and UBC12 expressions, which compromised overall patient survival rates. In summary, SREBP-1 is neddylated by UBC12, which may contribute to HCC and breast cancer aggressiveness through SREBP-1 stabilization, and these events can be intervented by MLN4924 therapy. Our findings may also provide potential reliable prognostic markers for tumor metastasis.
Collapse
Affiliation(s)
- Mi Jeong Heo
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sung Hyun Kang
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yun Seok Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jung Min Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jinha Yu
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hong-Rae Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyesol Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Kyoung Mee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Lak Shin Jeong
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Chen R, Chen Y, Yuan Y, Zou X, Sun Q, Lin H, Chen X, Liu M, Deng Z, Yao Y, Guo D, Zhang Y. Cx43 and AKAP95 regulate G1/S conversion by competitively binding to cyclin E1/E2 in lung cancer cells. Thorac Cancer 2020; 11:1594-1602. [PMID: 32338437 PMCID: PMC7262948 DOI: 10.1111/1759-7714.13435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/09/2023] Open
Abstract
Background This study aimed to overexpress or silence connexin 43 (Cx43) and A‐kinase anchoring protein 95 (AKAP95) in human A549 cells to explore their effects on cyclins and on G1/S conversion when the interrelationship of Cx43, AKAP95, and cyclin E1/E2 changes. Methods The study mainly used Western blot analysis and Co‐immuno precipitation to detect the target protein in Cx43/AKAP95 over expressed human A549 cells, and the relationship of proteins Cx43, AKAP95 and Cyclin E during G1‐S phase was explored with qualitative and quantitative analysis. Results The overexpression of Cx43 inhibited the expression of cyclin D1 and E1 by accelerating their degradation and reduced the Cdk2 activity that blocked the DNA transcription activity. However, the overexpression of AKAP95 increased the expression of cyclin D1 and E1 and inhibited their degradation, and enhanced the Cdk2 activity that promoted the DNA transcription activity. Cx43 and AKAP95 competitively bound to cyclin E1/E2, and the competitive binding affected the Cdk2 activity, Rb phosphorylation, DNA transcription activity, and G1/S conversion. Conclusions This study showed that the expression of ERK1/2, PKA, and PKB increased when BEAS‐2B cells were treated with PDGF‐BB, suggesting that ERK1/2, PKA, and PKB might be involved in the binding of AKAP95 with cyclin E, or the separation of AKAP95 from Cx43 from cyclin E1/E2. The specific mechanism underlying this process still needs further exploration.
Collapse
Affiliation(s)
- Renzhen Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yu Chen
- School of Medicine, Xiamen University, Xiamen, China
| | - Yangyang Yuan
- Henan provincial Clinical Research Center for Perinatal Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuan Zou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Qian Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Hongyan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xiaoyi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Mingda Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zifeng Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Youliang Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Dongbei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yongxing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Zhuang Y, Xing C, Cao H, Zhang C, Luo J, Guo X, Hu G. Insulin resistance and metabonomics analysis of fatty liver haemorrhagic syndrome in laying hens induced by a high-energy low-protein diet. Sci Rep 2019; 9:10141. [PMID: 31300671 PMCID: PMC6626135 DOI: 10.1038/s41598-019-46183-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Fatty liver haemorrhagic syndrome (FLHS) is a widespread metabolic disease in laying hens that causes a decrease in egg production and even death. Insulin resistance is a major contributor to the pathogenesis of nonalcoholic fatty liver disease. However, the relationship between FLHS and the insulin resistance mechanisms underlying FLHS is not well elucidated. Therefore, we established an FLHS model induced by feeding a high-energy low-protein diet. In the current study, we found that the fasting glucose and insulin concentrations were elevated in the FLHS group compared with the control group during the experimental period. The results of the oral glucose tolerance test (OGTT) and insulin sensitivity test (IST) showed a high level of insulin resistance in the FLHS model. InsR, 4EBP-1, Glut-1 and Glut-3 mRNA expression were decreased, and TOR, S6K1, and FOXO1 were elevated (P < 0.05). Metabolomic analysis with GC/MS identified 46 differentially expressed metabolites between these two groups, and of these, 14 kinds of metabolism molecules and 32 kinds of small metabolism molecules were decreased (P < 0.05). Further investigation showed that glucose, lipid and amino acid metabolism blocks in the progression of FLHS by GO functional and pathway analysis. Overall, these results suggest that insulin resistance participated in FLHS; comprehensively, metabolites participated in the dysregulated biological process.
Collapse
Affiliation(s)
- Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China.
| |
Collapse
|
9
|
FBXW7 suppresses HMGB1-mediated innate immune signaling to attenuate hepatic inflammation and insulin resistance in a mouse model of nonalcoholic fatty liver disease. Mol Med 2019; 25:29. [PMID: 31215394 PMCID: PMC6582600 DOI: 10.1186/s10020-019-0099-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Background Innate immune dysfunction contributes to the development and progression of nonalcoholic fatty liver disease (NAFLD), however, its pathogenesis is still incompletely understood. Identifying the key innate immune component responsible for the pathogenesis of NAFLD and clarifying the underlying mechanisms may provide therapeutic targets for NAFLD. Recently, F-box- and WD repeat domain-containing 7 (FBXW7) exhibits a regulatory role in hepatic glucose and lipid metabolism. This study aims to investigate whether FBXW7 controls high-mobility group box 1 protein (HMGB1)-mediated innate immune signaling to improve NAFLD and the mechanism underlying this action. Methods Mice were fed a high-fat diet (HFD) for 12 or 20 weeks to establish NAFLD model. Hepatic overexpression or knockdown of FBXW7 was induced by tail-vein injection of recombinant adenovirus. Some Ad-FBXW7-injected mice fed a HFD were injected intraperitoneally with recombinant mouse HMGB1 to confirm the protective role of FBXW7 in NAFLD via inhibition of HMGB1. Results FBXW7 improves NAFLD and related metabolic parameters without remarkable influence of body weight and food intake. Moreover, FBXW7 markedly ameliorated hepatic inflammation and insulin resistance in the HFD-fed mice. Furthermore, FBXW7 dramatically attenuated the expression and release of HMGB1 in the livers of HFD-fed mice, which is associated with inhibition of protein kinase R (PKR) signaling. Thereby, FBXW7 restrains Toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE) signaling in HFD-fed mouse livers. In addition, exogenous HMGB1 treatment abolished FBXW7-mediated inhibition of hepatic inflammation and insulin resistance in HFD-fed mouse livers. Conclusions Our results demonstrate a protective role of FBXW7 in NAFLD by abating HMGB1-mediated innate immune signaling to suppress inflammation and consequent insulin resistance, suggesting that FBXW7 is a potential target for therapeutic intervention in NAFLD development. Electronic supplementary material The online version of this article (10.1186/s10020-019-0099-9) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Lv Y, Gao X, Luo Y, Fan W, Shen T, Ding C, Yao M, Song S, Yan L. Apigenin ameliorates HFD-induced NAFLD through regulation of the XO/NLRP3 pathways. J Nutr Biochem 2019; 71:110-121. [PMID: 31325892 DOI: 10.1016/j.jnutbio.2019.05.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver-related morbidity and mortality disease in the world. However, no effective pharmacological treatment for NAFLD has been found. In this study, we used a high fat diet (HFD)-induced NAFLD model to investigate hepatoprotective effect of apigenin (API) against NAFLD and further explored its potential mechanism. Our results demonstrated that gavage administration of API could mitigate HFD-induced liver injury, enhance insulin sensitivity and markedly reduce lipid accumulation in HFD-fed mice livers. In addition, histological analysis showed that hepatic steatosis and macrophages recruitment in the API treatment group were recovered compared with mice fed with HFD alone. Importantly, API could reverse the HFD-induced activation of the NLRP3 inflammasome, further reduced inflammatory cytokines IL-1β and IL-18 release, accompanied with the inhibition of xanthine oxidase (XO) activity and the reduction of uric acid and reactive oxygen species (ROS) production. The pharmacological role of API was further confirmed using free fatty acid (FFA) induced cell NAFLD model. Taking together, our results demonstrated that API could protect against HFD-induced NAFLD by ameliorating hepatic lipid accumulation and inflammation. These protective effects may be partially attributed to the regulation of XO by API, which further modulated NLRP3 inflammasome activation and inflammatory cytokines IL-1β and IL-18 release. Therefore API is a potential therapeutic agent for the prevention of NAFLD.
Collapse
Affiliation(s)
- Yanan Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xiaona Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yan Luo
- Administration for Market Regulation of GuangDong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen 518000, GuangDong Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tongtong Shen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ming Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
11
|
Xia W, Zhou J, Luo H, Liu Y, Peng C, Zheng W, Ma W. MicroRNA-32 promotes cell proliferation, migration and suppresses apoptosis in breast cancer cells by targeting FBXW7. Cancer Cell Int 2017; 17:14. [PMID: 28149200 PMCID: PMC5267379 DOI: 10.1186/s12935-017-0383-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs are a class of small non-coding RNAs that are involved in many important physiological and pathological processes by regulating gene expression negatively. The purpose of this study was to investigate the effect of miR-32 on cell proliferation, migration and apoptosis and to determine the functional connection between miR-32 and FBXW7 in breast cancer. Methods In this study, quantitative RT-PCR was used to evaluate the expression levels of miR-32 in 27 breast cancer tissues, adjacent normal breast tissues and human breast cancer cell lines. The biological functions of miR-32 in MCF-7 breast cancer cells were determined by cell proliferation, apoptosis assays and wound-healing assays. In addition, the regulation of FBXW7 by miR-32 was assessed by qRT-PCR, Western blot and luciferase reporter assays. Results MiR-32 was frequently overexpressed in breast cancer tissue samples and cell lines as was demonstrated by qRT-PCR. Moreover, the up-regulation of miR-32 suppressed apoptosis and promoted proliferation and migration, whereas down-regulation of miR-32 showed an opposite effect. Dual-luciferase reporter assays showed that miR-32 binds to the 3′-untranslated region of FBXW7, suggesting that FBXW7 is a direct target of miR-32. Western blot analysis showed that over-expression of miR-32 reduced FBXW7 protein level. Furthermore, an inverse correlation was found between the expressions of miR-32 and FBXW7 mRNA levels in breast cancer tissues. Knockdown of FBXW7 promoted proliferation and motility and suppressed apoptosis in MCF-7 cells. Conclusions Taken together, the present study suggests that miR-32 promotes proliferation and motility and suppresses apoptosis of breast cancer cells through targeting FBXW7.
Collapse
Affiliation(s)
- Wei Xia
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China.,Department of Clinical Laboratory, No.421 Hospital of PLA, Guangzhou, People's Republic of China
| | - JueYu Zhou
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - HaiBo Luo
- Department of Clinical Laboratory, No.421 Hospital of PLA, Guangzhou, People's Republic of China
| | - YunZhou Liu
- Department of Clinical Laboratory, No.421 Hospital of PLA, Guangzhou, People's Republic of China
| | - CanCan Peng
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - WenLing Zheng
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - WenLi Ma
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China
| |
Collapse
|
12
|
Snijders AM, Liu Y, Su L, Huang Y, Mao JH. Expression profiling reveals transcriptional regulation by Fbxw7/mTOR pathway in radiation-induced mouse thymic lymphomas. Oncotarget 2016; 6:44794-805. [PMID: 26575021 PMCID: PMC4792592 DOI: 10.18632/oncotarget.6328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/23/2015] [Indexed: 01/12/2023] Open
Abstract
The tumor suppressor gene FBXW7 is deleted and mutated in many different types of human cancers. FBXW7 primarily exerts its tumor suppressor activity by ubiquitinating different oncoproteins including mTOR. Here we used gene transcript profiling to gain a deeper understanding of the role of FBXW7 in tumor development and to determine the influence of mTOR inhibition by rapamycin on tumor transcriptome and biological functions. In comparison to tumors from p53 single heterozygous (p53+/−) mice, we find that radiation-induced thymic lymphomas from Fbxw7/p53 double heterozygous (Fbxw7+/−p53+/−) mice show significant deregulation of cholesterol metabolic processes independent of rapamycin treatment, while cell cycle related genes were upregulated in tumors from placebo treated Fbxw7+/−p53+/− mice, but not in tumors from rapamycin treated Fbxw7+/−p53+/− mice. On the other hand, tumors from rapamycin treated Fbxw7+/−p53+/− mice were enriched for genes involved in the integrated stress response, an adaptive mechanism to survive in stressful environments. Finally, we demonstrated that the Fbxw7 gene signatures identified in mouse tumors significantly overlap with FBXW7 co-expressed genes in human cancers. Importantly these common FBXW7 gene signatures between mouse and human are predictive for disease-free survival in human colon, breast and lung adenocarcinoma cancer patients. These results provide novel insights into the role of FBXW7 in tumor development and have identified a number of potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Antoine M Snijders
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yueyong Liu
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Li Su
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yurong Huang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
13
|
Deiuliis JA, Syed R, Duggineni D, Rutsky J, Rengasamy P, Zhang J, Huang K, Needleman B, Mikami D, Perry K, Hazey J, Rajagopalan S. Visceral Adipose MicroRNA 223 Is Upregulated in Human and Murine Obesity and Modulates the Inflammatory Phenotype of Macrophages. PLoS One 2016; 11:e0165962. [PMID: 27812198 PMCID: PMC5094706 DOI: 10.1371/journal.pone.0165962] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/20/2016] [Indexed: 01/22/2023] Open
Abstract
Obesity in humans and mice is typified by an activated macrophage phenotype in the visceral adipose tissue (VAT) leading to increased macrophage-mediated inflammation. microRNAs (miRNAs) play an important role in regulating inflammatory pathways in macrophages, and in this study we compared miRNA expression in the VAT of insulin resistant morbidly obese humans to a non-obese cohort with normal glucose tolerance. miR-223-3p was found to be significantly upregulated in the whole omental tissue RNA of 12 human subjects, as were 8 additional miRNAs. We then confirmed that miR-223 upregulation was specific to the stromal vascular cells of human VAT, and found that miR-223 levels were unchanged in adipocytes and circulating monocytes of the non-obese and obese. miR-223 ablation increased basal / unstimulated TLR4 and STAT3 expression and LPS-stimulated TLR4, STAT3, and NOS2 expression in primary macrophages. Conversely, miR-223 mimics decreased TLR4 expression in primary macrophage, at the same time it negatively regulated FBXW7 expression, a well described suppressor of Toll-like receptor 4 (TLR4) signaling. We concluded that the abundance of miR-223 in macrophages significantly modulates macrophage phenotype / activation state and response to stimuli via effects on the TLR4/FBXW7 axis.
Collapse
Affiliation(s)
- Jeffrey A. Deiuliis
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland, Baltimore, Baltimore, MD 21201, United States of America
- Dorothy Davis Heart and Lung Institute, The Ohio State University College of Medicine, Columbus, OH 43210, United States of America
- * E-mail:
| | - Rafay Syed
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland, Baltimore, Baltimore, MD 21201, United States of America
| | - Dheeraj Duggineni
- Dorothy Davis Heart and Lung Institute, The Ohio State University College of Medicine, Columbus, OH 43210, United States of America
| | - Jessica Rutsky
- Dorothy Davis Heart and Lung Institute, The Ohio State University College of Medicine, Columbus, OH 43210, United States of America
| | - Palanivel Rengasamy
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland, Baltimore, Baltimore, MD 21201, United States of America
| | - Jie Zhang
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH 43210, United States of America
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH 43210, United States of America
| | - Bradley Needleman
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, United States of America
| | - Dean Mikami
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, United States of America
| | - Kyle Perry
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, United States of America
| | - Jeffrey Hazey
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, United States of America
| | - Sanjay Rajagopalan
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland, Baltimore, Baltimore, MD 21201, United States of America
- Dorothy Davis Heart and Lung Institute, The Ohio State University College of Medicine, Columbus, OH 43210, United States of America
| |
Collapse
|
14
|
Matz-Soja M, Rennert C, Schönefeld K, Aleithe S, Boettger J, Schmidt-Heck W, Weiss TS, Hovhannisyan A, Zellmer S, Klöting N, Schulz A, Kratzsch J, Guthke R, Gebhardt R. Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis. eLife 2016; 5. [PMID: 27185526 PMCID: PMC4869931 DOI: 10.7554/elife.13308] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/13/2016] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in industrialized countries and is increasing in prevalence. The pathomechanisms, however, are poorly understood. This study assessed the unexpected role of the Hedgehog pathway in adult liver lipid metabolism. Using transgenic mice with conditional hepatocyte-specific deletion of Smoothened in adult mice, we showed that hepatocellular inhibition of Hedgehog signaling leads to steatosis by altering the abundance of the transcription factors GLI1 and GLI3. This steatotic 'Gli-code' caused the modulation of a complex network of lipogenic transcription factors and enzymes, including SREBP1 and PNPLA3, as demonstrated by microarray analysis and siRNA experiments and could be confirmed in other steatotic mouse models as well as in steatotic human livers. Conversely, activation of the Hedgehog pathway reversed the "Gli-code" and mitigated hepatic steatosis. Collectively, our results reveal that dysfunctions in the Hedgehog pathway play an important role in hepatic steatosis and beyond. DOI:http://dx.doi.org/10.7554/eLife.13308.001 The liver is one of the main organs responsible for processing everything that mammals eat and drink. Nutrients absorbed by the gut like sugars and lipids (fats) are processed by the liver and are stored or distributed to provide energy to other organs. Sometimes these metabolic processes become unbalanced. This can lead to lipids accumulating in the liver – a process known as steatosis, which is a feature of human non-alcoholic fatty liver disease. In organs like the liver, cells are instructed how to behave via signaling pathways. A protein outside the cell signals to specific proteins inside, which switch on a set of target genes. One such pathway is the Hedgehog pathway, which primarily regulates tissue regeneration and the development of embryos. A component of this pathway is the Smoothened gene, which indirectly switches on proteins called GLI factors that regulate metabolic genes, including those involved in lipid metabolism. The Hedgehog pathway has been found to control the metabolism of lipids in fat tissue but it is not known whether it is important for lipid metabolism in the liver. Matz-Soja et al. investigated this possible role of the Hedgehog pathway in the liver using mice with a Smoothened gene that could be deleted specifically in that organ. This deletion disrupted Hedgehog signaling and led to lipids accumulating in the liver and eventually to steatosis. These changes were associated with an increase in the amounts and activityof several enzymes (and the proteins that regulate these enzymes) that help to synthesize lipids. Steatosis was also associated with low amounts of two of the three GLI factors; indeed, this seems to be key for triggering problems with lipid metabolism. Human livers with steatosis showed the same changes in levels of the GLI factors. Increasing the amount of GLI factors in liver cells taken from mice with steatosis reduced the accumulation of lipids and brought lipid metabolism back to its normal balance. A focus of future studies will be to understand how the Hedgehog signaling pathway interacts with other signaling pathways known to regulate liver lipid metabolism, such as insulin signaling. This knowledge will help clinicians to design new treatments for lipid-associated diseases like non-alcoholic fatty liver disease. DOI:http://dx.doi.org/10.7554/eLife.13308.002
Collapse
Affiliation(s)
- Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Christiane Rennert
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Kristin Schönefeld
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Susanne Aleithe
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Jan Boettger
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Thomas S Weiss
- University Children Hospital, Regensburg University Hospital, Regensburg, Germany
| | - Amalya Hovhannisyan
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Sebastian Zellmer
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Nora Klöting
- Integrated Research and Treatment Centre Adiposity Diseases, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Angela Schulz
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
| | - Reinhardt Guthke
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
15
|
Xu Y, Yu J, Liu T, Meng F, Kong D, Lou G. Loss of FBXW7 is related to the susceptibility and poor prognosis of cervical squamous carcinoma. Biomarkers 2016; 21:379-85. [PMID: 26954701 DOI: 10.3109/1354750x.2016.1148778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the relationship between F box/WD-40 domain protein 7 (FBXW7) and cervical squamous cancer. METHODS We investigated the FBXW7 expression in 136 cervical squamous carcinoma cases through immunohistochemistry and Western-blot analysis to evaluate the clinical significance of FBXW7 and to elucidate the relationship of FBXW7 expression with progression-free survival (PFS) and overall survival (OS). RESULTS Low FBXW7 expression was associated with high histologic grade, lymphovascular space invasion and lymph node metastasis, among other parameters. Patients with low FBXW7 expression exhibited poor OS and PFS. CONCLUSIONS FBXW7 is related to the susceptibility and prognosis of cervical squamous carcinoma, indicating FBXW7 may be a potentially important target for the prediction of prognosis.
Collapse
Affiliation(s)
- Ye Xu
- a Department of Gynecology and
| | - Jiawei Yu
- b Department of Head and Neck Surgery , Harbin Medical University Cancer Hospital , Harbin , China
| | | | | | | | - Ge Lou
- a Department of Gynecology and
| |
Collapse
|
16
|
Uddin S, Bhat AA, Krishnankutty R, Mir F, Kulinski M, Mohammad RM. Involvement of F-BOX proteins in progression and development of human malignancies. Semin Cancer Biol 2016; 36:18-32. [PMID: 26410033 DOI: 10.1016/j.semcancer.2015.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
|
17
|
Abstract
Rapidly accumulating data indicate that F-box/WD repeat-containing protein 7 (Fbxw7) is one of the most frequently mutated genes in human cancers and regulates a network of crucial oncoproteins. These studies have generated important new insights into tumorigenesis and may soon enable therapies targeting the Fbxw7 pathway. We searched PubMed, Embase, and ISI Web of Science databases (1973-2015, especially recent 5 years) for articles published in the English language using the key words "Fbxw7," "Fbw7," "hCDC4," and "Sel-10," and we reviewed recent developments in the search for Fbxw7. Fbxw7 coordinates the ubiquitin-dependent proteolysis of several critical cellular regulators, thereby controlling essential processes, such as cell cycle, differentiation, and apoptosis. Fbxw7 contains 3 isoforms (Fbxw7α, Fbxw7β, and Fbxw7γ), and they are differently regulated in subtract recognition. Besides those, Fbxw7 activity is controlled at different levels, resulting in specific and tunable regulation of the abundance and activity of its substrates in a variety of human solid tumor types, including glioma malignancy, nasopharyngeal carcinoma, osteosarcoma, melanoma as well as colorectal, lung, breast, gastric, liver, pancreatic, renal, prostate, endometrial, and esophageal cancers. Fbxw7 is strongly associated with tumorigenesis, and the mechanisms and consequences of Fbxw7 deregulation in cancers may soon enable the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Jun Cao
- From the Zhejiang Cancer Research Institute (JC, Z-QL); and Department of Surgical Oncology, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China (JC, M-HG)
| | | | | |
Collapse
|
18
|
Kim KE, Ko KH, Heo RW, Yi CO, Shin HJ, Kim JY, Park JH, Nam S, Kim H, Roh GS. Artemisia annua Leaf Extract Attenuates Hepatic Steatosis and Inflammation in High-Fat Diet-Fed Mice. J Med Food 2016; 19:290-9. [PMID: 26741655 PMCID: PMC4799707 DOI: 10.1089/jmf.2015.3527] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Artemisia annua L. (AA) is a well-known source of the antimalarial drug artemisinin. AA also has an antibacterial and antioxidant activity. However, the effect of AA extract on hepatic steatosis induced by obesity is unclear. We investigated whether AA extract prevents obesity-induced insulin resistance and hepatic steatosis in high-fat diet (HFD)-fed mice. Mice were randomly divided into groups that received a normal chow diet or HFD with or without AA for 12 weeks. We found that AA extract reduced insulin resistance and hepatic steatosis in HFD-fed mice. Western blot analysis showed that HFD-induced expression of nuclear sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein in the livers was decreased by AA extract. In particular, dietary administration of AA extract decreased hepatic high-mobility group box 1 and cyclooxygenase-2 expression in HFD-fed mice. AA extract also attenuated HFD-induced collagen deposition and fibrosis-related transforming growth factor-β1 and connective tissue growth factor. These data indicate that dietary AA extract has beneficial effects on hepatic steatosis and inflammation in HFD-fed mice.
Collapse
Affiliation(s)
- Kyung Eun Kim
- 1 Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine , Gyeongnam, Republic of Korea
| | - Keon-Hee Ko
- 2 Gyeongnam Oriental Medicinal Herb Institute , Gyeongnam, Republic of Korea.,3 Division of Food Science, Gyeongnam National University of Science and Technology , Gyeongnam, Republic of Korea
| | - Rok Won Heo
- 1 Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine , Gyeongnam, Republic of Korea
| | - Chin-ok Yi
- 1 Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine , Gyeongnam, Republic of Korea
| | - Hyun Joo Shin
- 1 Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine , Gyeongnam, Republic of Korea
| | - Jun Young Kim
- 4 Busan Regional Korea Food and Drug Administration , Ministry of Food and Drug Safety, Busan, Republic of Korea
| | - Jae-Ho Park
- 5 Shinseon F&V Co., Ltd. , Gyeongnam, Republic of Korea
| | - Sanghae Nam
- 3 Division of Food Science, Gyeongnam National University of Science and Technology , Gyeongnam, Republic of Korea
| | - Hwajin Kim
- 1 Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine , Gyeongnam, Republic of Korea
| | - Gu Seob Roh
- 1 Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine , Gyeongnam, Republic of Korea
| |
Collapse
|
19
|
Li H, Wang Z, Zhang W, Qian K, Xu W, Zhang S. Fbxw7 regulates tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition in part through the RhoA signaling pathway in gastric cancer. Cancer Lett 2015; 370:39-55. [PMID: 26458995 DOI: 10.1016/j.canlet.2015.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/12/2015] [Accepted: 10/03/2015] [Indexed: 11/30/2022]
Abstract
F-box and WD repeat domain-containing7 (Fbxw7), a member of the F-box family of proteins, which are components of an E3 ubiquitin ligase complex, plays an important role as a general tumor suppressor in regulating the effects of various oncoproteins. Recently, accumulating studies have shown that Fbxw7 plays an important role in tumor cell motility, invasion and cancer metastasis. However, little is known about the signaling mechanisms that regulate tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition (EMT) in gastric cancer. In our study, we confirmed that Fbxw7 expression was decreased in gastric cancer tissues, and that Fbxw7 inhibited gastric cancer progression by inducing apoptosis and growth arrest. Furthermore, gastric cancer migration and invasion were decreased or increased following Fbxw7 overexpression or knockdown, respectively, and the expressions of various EMT markers, such as E-cadherin, N-cadherin and vimentin, were altered after Fbxw7 inhibition or overexpression. Furthermore, we demonstrated that Fbxw7 inhibits the EMT via the down-regulation of Snail 1 and ZEB 1, which are upstream transcription factors that promote this process. Additionally, RhoA showed higher expression in the same gastric cancer tissues than in normal tumor-adjacent samples. We found that Fbxw7 expression was negatively correlated with RhoA protein expression in gastric cancer tissues based on Pearson's correlation coefficient analysis. Moreover, we found that RhoA protein abundance was regulated by Fbxw7 via ubiquitination and proteasomal degradation in gastric cancer. We further demonstrated the effects of RhoA re-expression or inhibition on stable Fbxw7-overexpressing or Fbxw7-silenced cell lines in vitro and in vivo. These results suggest that Fbxw7 induces apoptosis and growth arrest and inhibits the EMT in part by down-regulating the RhoA signaling pathway.
Collapse
Affiliation(s)
- Hui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Wei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kun Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wei Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Shouru Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
20
|
Zhou Z, He C, Wang J. Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncol Rep 2015; 34:2215-24. [PMID: 26324296 DOI: 10.3892/or.2015.4227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/29/2015] [Indexed: 11/05/2022] Open
Abstract
F-box and WD repeat domain-containing 7 (Fbxw7), the substrate-recognition component of SCFFbxw7 complex, is thought to be a tumor suppressor involved in cell growth, proliferation, differentiation and survival. Although an increasing number of ubiquitin substrates of Fbxw7 have been identified, the best characterized substrates are cyclin E and c-Myc. Fbxw7/cyclin E and Fbxw7/c-Myc pathways are tightly regulated by multiple regulators. Fbxw7 has been identified as a tumor suppressor in hepatocellular carcinoma. This review focused on the regulation of Fbxw7/cyclin E and Fbxw7/c-Myc pathways and discussed findings to gain a better understanding of the role of Fbxw7 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
21
|
WANG XING, ZHANG JUAN, ZHOU LIANG, SUN WEI, ZHENG ZHIGANG, LU PENG, GAO YUAN, YANG XISHENG, ZHANG ZHUOCHAO, TAO KAISHAN, DOU KEFENG. Fbxw7 regulates hepatocellular carcinoma migration and invasion via Notch1 signaling pathway. Int J Oncol 2015; 47:231-43. [DOI: 10.3892/ijo.2015.2981] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/09/2015] [Indexed: 11/05/2022] Open
|
22
|
Wang H, Yang Z, Liu C, Huang S, Wang H, Chen Y, Chen G. RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53-Fbxw7 pathway. Biochem Biophys Res Commun 2014; 454:71-7. [PMID: 25445601 DOI: 10.1016/j.bbrc.2014.10.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 11/17/2022]
Abstract
Aberrant Notch signaling is observed in human hepatocellular carcinoma (HCC) and has been associated with the modulation of cell growth. However, the role of Notch signaling in HCC and its underlying mechanism remain elusive. RBP-J-interacting and tubulin-associated (RITA) mediates the nuclear export of RBP-J to tubulin fibers and downregulates Notch-mediated transcription. In this study, we found that RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. These changes led to growth inhibition and induced G0/G1 cell cycle arrest and apoptosis in SMMC7721 and HepG2 cells. Our findings indicate that RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC.
Collapse
Affiliation(s)
- Haihe Wang
- The Key Laboratory of Molecular Diagnosis in Laboratory Medicine, Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing 163319, China
| | - Zhanchun Yang
- Department of General Surgery of Fifth Clinical Hospital of Harbin Medical University, Daqing 163319, China
| | - Chunbo Liu
- The Key Laboratory of Molecular Diagnosis in Laboratory Medicine, Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing 163319, China
| | - Shishun Huang
- The Key Laboratory of Molecular Diagnosis in Laboratory Medicine, Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing 163319, China
| | - Hongzhi Wang
- The Key Laboratory of Molecular Diagnosis in Laboratory Medicine, Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing 163319, China
| | - Yingli Chen
- The Key Laboratory of Molecular Diagnosis in Laboratory Medicine, Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing 163319, China
| | - Guofu Chen
- Department of General Surgery of Fifth Clinical Hospital of Harbin Medical University, Daqing 163319, China.
| |
Collapse
|
23
|
Tu K, Li C, Zheng X, Yang W, Yao Y, Liu Q. Prognostic significance of miR-218 in human hepatocellular carcinoma and its role in cell growth. Oncol Rep 2014; 32:1571-7. [PMID: 25110121 DOI: 10.3892/or.2014.3386] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/16/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNA-218 (miR-218) is considered a tumor suppressor in human cancer. In the present study, miR-218 expression was found to be significantly lower in human hepatocellular carcinoma (HCC) than in normal tumor-adjacent tissues. miR-218 was clearly silenced or downregulated in five HCC cells (HepG2, Hep3B, SMMC-7721, Huh7 and Bel-7402) compared with normal hepatocytes (LO2). The low expression of miR-218 conferred a poor 5-year survival in HCC patients. Multivariate Cox regression analysis indicated that miR-218 was an independent prognostic factor in HCC. Ectopic expression of miR-218 inhibited proliferation and promoted apoptosis in HepG2 and SMMC-7721 cells. In tumor bearing mice, miR-218 slowed down tumor growth by inducing apoptosis and growth arrest. Restoring miR-218 expression resulted in downregulation of B lymphoma Mo-MLV insertion region 1 homolog (BMI-1) mRNA and protein level in HepG2 and SMMC-7721 cells. In addition, BMI-1 mRNA expression in HCC was significantly higher than that in non-cancerous tissues. BMI-1 mRNA was inversely correlated with miR-218 expression in HCC tissues. In conclusion, miR-218 may serve as a prognostic biomarker and induce apoptosis and growth arrest by downregulating BMI-1 in HCC.
Collapse
Affiliation(s)
- Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yingmin Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
24
|
Tu K, Yang W, Li C, Zheng X, Lu Z, Guo C, Yao Y, Liu Q. Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma. Mol Cancer 2014; 13:110. [PMID: 24884509 PMCID: PMC4035898 DOI: 10.1186/1476-4598-13-110] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The E3 ubiquitin ligase Fbxw7 functions as a general tumor suppressor by targeting several well-known oncoproteins for ubiquitination and proteasomal degradation. However, the clinical significance of Fbxw7 and the mechanisms involved in the anti-cancer effect of Fbxw7 in HCC are not clear. METHOD The Fbxw7 and YAP expression in 60 samples of surgical resected HCC and matched normal tumor-adjacent tissues were assessed using IHC or immunoblotting. Flow cytometry, caspase 3/7 activity assay, BrdU cell proliferation assay and MTT assay were used to detect proliferation and apoptosis of HCC cells. The regulatory effect of Fbxw7 on YAP in HCC cells was confirmed by qRT-PCR, immunoblotting and immunofluorescence. Co-immunoprecipitation was used to analyze interaction between YAP and Fbxw7. Nude mice subcutaneous injection, Ki-67 staining and TUNEL assay were used to evaluate tumor growth and apoptosis in vivo. RESULTS In this study, we found that Fbxw7 expression was impaired in HCC tissues and loss of Fbxw7 expression was correlated with poor clinicopathological features including large tumor size, venous infiltration, high pathological grading and advanced TNM stage. Additionally, we demonstrated that patients with positive Fbxw7 expression had a better 5-year survival and Fbxw7 was an independent factor for predicting the prognosis of HCC patients. We confirmed that Fbxw7 inhibited HCC by inducing both apoptosis and growth arrest. Elevated YAP expression was observed in the same cohort of HCC tissues. Pearson's correlation coefficient analysis indicated that Fbxw7 was inversely associated with YAP protein expression in HCC tissues. We also found that Fbxw7 regulated YAP protein abundance by targeting YAP for ubiquitination and proteasomal degradation in HCC. Furthermore, restoring YAP expression partially abrogated Fbxw7 induced HCC cell apoptosis and growth arrest in vitro and in vivo. CONCLUSION These results indicate that Fbxw7 may serve as a prognostic marker and that YAP may be a potential target of Fbxw7 in HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
25
|
SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma. Int J Mol Sci 2014; 15:7124-38. [PMID: 24776759 PMCID: PMC4057663 DOI: 10.3390/ijms15057124] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/16/2014] [Accepted: 04/10/2014] [Indexed: 01/18/2023] Open
Abstract
Sterol regulatory element-binding protein 1 (SREBP-1) is a well-known nuclear transcription factor involved in lipid synthesis. Recent studies have focused on its functions in tumor cell proliferation and apoptosis, but its role in cell migration and invasion, especially in hepatocellular carcinoma (HCC), is still unclear. In this study, we found that the expression of SREBP-1 in HCC tissues was significantly higher than those in matched tumor-adjacent tissues (p < 0.05). SREBP-1 was expressed at significantly higher levels in patients with large tumor size, high histological grade and advanced tumor-node-metastasis (TNM) stage (p < 0.05). The positive expression of SREBP-1 correlated with a worse 3-year overall and disease-free survival of HCC patients (p < 0.05). Additionally, SREBP-1 was an independent factor for predicting both 3-year overall and disease-free survival of HCC patients (p < 0.05). In vitro studies revealed that downregulation of SREBP-1 inhibited cell proliferation and induced apoptosis in both HepG2 and MHCC97L cells (p < 0.05). Furthermore, wound healing and transwell assays showed that SREBP-1 knockdown prominently inhibited cell migration and invasion in both HepG2 and MHCC97L cells (p < 0.05). These results suggest that SREBP-1 may serve as a prognostic marker in HCC and may promote tumor progression by promoting cell growth and metastasis.
Collapse
|
26
|
Recombinant human adenovirus-p53 injection induced apoptosis in hepatocellular carcinoma cell lines mediated by p53-Fbxw7 pathway, which controls c-Myc and cyclin E. PLoS One 2013; 8:e68574. [PMID: 23840897 PMCID: PMC3698167 DOI: 10.1371/journal.pone.0068574] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/29/2013] [Indexed: 01/25/2023] Open
Abstract
F-box and WD repeat domain-containing 7 (Fbxw7/hAgo/hCdc4/Fbw7) is a p53-dependent tumor suppressor and leads to ubiquitination-mediated suppression of several oncoproteins including c-Myc, cyclin E, Notch, c-Jun and others. Our previous study has indicated that low expression of Fbxw7 was negatively correlated with c-Myc, cyclin E and mutant-p53 in hepatocellular carcinoma (HCC) tissues. But the role and mechanisms of Fbxw7 in HCC are still unknown. Here, we investigated the function of Fbxw7 in HCC cell lines and the anti-tumor activity of recombinant human adenovirus-p53 injection (rAd-p53, Gendicine) administration in vitro and in vivo. Fbxw7-specific siRNA enhanced expression of c-Myc and cyclin E proteins and increased proliferation in cell culture. rAd-p53 inhibited tumor cell growth with Fbxw7 upregulation and c-Myc and cyclin E downregulation in vitro and a murine HCC model. This effect could be partially reverted using Fbxw7-specific siRNA. Here, we suggest that the activation of Fbxw7 by adenoviral delivery of p53 leads to increased proteasomal degradation of c-Myc and cyclin E enabling growth arrest and apoptosis. Addressing this pathway, we identified that rAd-p53 could be a potential therapeutic agent for HCC.
Collapse
|
27
|
Fredericks WJ, Yin H, Lal P, Puthiyaveettil R, Malkowicz SB, Fredericks NJ, Tomaszewski J, Rauscher FJ, Malkowicz SB. Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism. Int J Oncol 2013; 43:638-52. [PMID: 23759948 DOI: 10.3892/ijo.2013.1985] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/21/2013] [Indexed: 11/05/2022] Open
Abstract
Current studies of the TERE1 (UBIAD1) protein emphasize its multifactorial influence on the cell, in part due to its broad sub-cellular distribution to mitochondria, endoplasmic reticulum and golgi. However, the profound effects of TERE1 relate to its prenyltransferase activity for synthesis of the bioactive quinones menaquinone and COQ10. Menaquinone (aka, vitamin K-2) serves multiple roles: as a carrier in mitochondrial electron transport, as a ligand for SXR nuclear hormone receptor activation, as a redox modulator, and as an alkylator of cellular targets. We initially described the TERE1 (UBIAD1) protein as a tumor suppressor based upon reduced expression in urological cancer specimens and the inhibition of growth of tumor cell lines/xenografts upon ectopic expression. To extend this potential tumor suppressor role for the TERE1 protein to renal cell carcinoma (RCC), we applied TERE1 immunohistochemistry to a TMA panel of 28 RCC lesions and determined that in 57% of RCC lesions, TERE1 expression was reduced (36%) or absent (21%). Ectopic TERE1 expression caused an 80% decrease in growth of Caki-1 and Caki-2 cell lines, a significantly decreased colony formation, and increased caspase 3/7 activity in a panel of RCC cell lines. Furthermore, TERE1 expression increased mitochondrial oxygen consumption and hydrogen production, oxidative stress and NO production. Based on the elevated cholesterol and altered metabolic phenotype of RCC, we also examined the effects of TERE1 and the interacting protein TBL2 on cellular cholesterol. Ectopic TERE1 or TBL2 expression in Caki-1, Caki-2 and HEK 293 cells reduced cholesterol by up to 40%. RT-PCR analysis determined that TERE1 activated several SXR targets known to regulate lipid metabolism, consistent with predictions based on its role in menaquinone synthesis. Loss of TERE1 may contribute to the altered lipid metabolic phenotype associated with progression in RCC via an uncoupling of ROS/RNS and SXR signaling from apoptosis by elevation of cholesterol.
Collapse
Affiliation(s)
- William J Fredericks
- Division of Urology, Department of Surgery, University of Pennsylvania and Veterans Affairs Medical Center Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|