1
|
Oo Y, Nealiga JQL, Suwanborirux K, Chamni S, Ecoy GAU, Pongrakhananon V, Chanvorachote P, Chaotham C. 22-O-(N-Boc-L-glycine) ester of renieramycin M inhibits migratory activity and suppresses epithelial-mesenchymal transition in human lung cancer cells. J Nat Med 2021; 75:949-966. [PMID: 34287745 DOI: 10.1007/s11418-021-01549-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The incidence of metastasis stage crucially contributes to high recurrence and mortality rate in lung cancer patients. Unfortunately, no available treatment inhibits migration, a key metastasis process in lung cancer. In this study, the effect of 22-O-(N-Boc-L-glycine) ester of renieramycin M (22-Boc-Gly-RM), a semi-synthetic amino ester derivative of bistetrahydroisoquinolinequinone alkaloid isolated from Xestospongia sp., on migratory behavior of human lung cancer cells was investigated. Following 24 h of treatment, 22-Boc-Gly-RM at non-toxic concentrations (0.5-1 μM) effectively restrained motility of human lung cancer H460 cells assessed through wound healing, transwell migration, and multicellular spheroid models. The capability to invade through matrix component was also repressed in H460 cells cultured with 0.1-1 µM 22-Boc-Gly-RM. The dose-dependent reduction of phalloidin-stained actin stress fibers corresponded with the downregulated Rac1-GTP level presented via western blot analysis in 22-Boc-Gly-RM-treated cells. Treatment with 0.1-1 μM of 22-Boc-Gly-RM obviously caused suppression of p-FAK/p-Akt signal and consequent inhibition of epithelial-to-mesenchymal transition (EMT), which was evidenced with augmented level of E-cadherin and reduction of N-cadherin expression. The alteration of invasion-related proteins in 22-Boc-Gly-RM-treated H460 cells was indicated by the diminution of matrix metalloproteinases (MT1-MMP, MMP-2, MMP-7, and MMP-9), as well as the upregulation of tissue inhibitors of metalloproteinases (TIMP), TIMP2, and TIMP3. Thus, 22-Boc-Gly-RM is a promising candidate for anti-metastasis treatment in lung cancer through inhibition of migratory features associated with suppression on EMT.
Collapse
Affiliation(s)
- Yamin Oo
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Justin Quiel Lasam Nealiga
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khanit Suwanborirux
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Gea Abigail Uy Ecoy
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Pharmacy, School of Health Care Professions, University of San Carlos, 6000, Cebu, Philippines
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Kumar S, Behera A, Saha P, Kumar Srivastava A. The role of Krüppel-like factor 8 in cancer biology: Current research and its clinical relevance. Biochem Pharmacol 2020; 183:114351. [PMID: 33253644 DOI: 10.1016/j.bcp.2020.114351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide, ranked second after heart disease. Despite recent advancements in diagnosis and treatment, there are still numerous problems associated with cancer progression, disease recurrence, and therapeutic resistance that are partially explored. Several studies have recently revealed that Krüppel-like factor 8 (KLF8) regulates transcription of genes linked with diverse biological processes, including proliferation, epithelial to mesenchymal transition (EMT), migration, invasion, and inflammation. KLF8 is expressed ubiquitously in mammalian cells, and its aberrant expression has been manifested with several cancer types. Earlier studies demonstrated the crucial role of KLF8 in DNA repair and resistance to apoptosis in numerous cancer types. Hence, studying the function of KLF8 from the perspective of cancer progression and therapy resistance would help develop a new therapeutic avenue. In this review, we summarize the clinical relevance of KLF8 expression in various malignancies, focusing on recent updates in EMT, cellular signaling, and cancer stem cells. We also address the contribution of KLF8 in development, DNA repair, chemoresistance, and its clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, AP, India.
| | - Abhijeet Behera
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, AP, India.
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
| |
Collapse
|
3
|
Wang MD, Xing H, Li C, Liang L, Wu H, Xu XF, Sun LY, Wu MC, Shen F, Yang T. A novel role of Krüppel-like factor 8 as an apoptosis repressor in hepatocellular carcinoma. Cancer Cell Int 2020; 20:422. [PMID: 32874135 PMCID: PMC7456055 DOI: 10.1186/s12935-020-01513-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023] Open
Abstract
Background Krüppel-like factor 8 (KLF8), a cancer-promoting factor that regulates critical gene transcription and cellular cancer-related events, has been implicated in tumor development and progression. However, the functional role of KLF8 in the pathogenesis of hepatocellular carcinoma (HCC) remains largely unknown. Methods The gene expression patterns and genome-wide regulatory profiles of HCC cells after KLF8 knockout were analyzed by using RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) of histone H3 lysine 27 acetylation (H3K27ac) combined with bioinformatics analysis. Transcription factor-binding motifs that recognized by KLF8 were evaluated by motif analysis. For the predicted target genes, transcriptional changes were examined by ChIP, and loss of function experiments were conducted by siRNA transfection. Results KLF8 functioned as a transcription repressor in HCC and mainly regulated apoptotic-related genes directly. A total of 1,816 differentially expressed genes after KLF8 knockout were identified and significantly corresponded to global changes in H3K27ac status. Furthermore, two predicted target genes, high-mobility group AT-hook 2 (HMGA2) and matrix metalloproteinase 7 (MMP7), were identified as important participants in KLF8-mediated anti-apoptotic effect in HCC. Knockout of KLF8 enhanced cell apoptosis process and caused increase in the associated H3K27ac, whereas suppression HMGA2 or MMP7 attenuated these biological effects. Conclusions Our work suggests a novel role and mechanism for KLF8 in the regulation of cell apoptosis in HCC and facilitates the discovery of potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Hao Xing
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Lei Liang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Han Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Xin-Fei Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Li-Yang Sun
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China.,Department of Clinical Medicine, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Meng-Chao Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| |
Collapse
|
4
|
Malik V, Garg S, Afzal S, Dhanjal JK, Yun CO, Kaul SC, Sundar D, Wadhwa R. Bioinformatics and Molecular Insights to Anti-Metastasis Activity of Triethylene Glycol Derivatives. Int J Mol Sci 2020; 21:ijms21155463. [PMID: 32751717 PMCID: PMC7432423 DOI: 10.3390/ijms21155463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The anti-metastatic and anti-angiogenic activities of triethylene glycol derivatives have been reported. In this study, we investigated their molecular mechanism(s) using bioinformatics and experimental tools. By molecular dynamics analysis, we found that (i) triethylene glycol dimethacrylate (TD-10) and tetraethylene glycol dimethacrylate (TD-11) can act as inhibitors of the catalytic domain of matrix metalloproteinases (MMP-2, MMP-7 and MMP-9) by binding to the S1’ pocket of MMP-2 and MMP-9 and the catalytic Zn ion binding site of MMP-7, and that (ii) TD-11 can cause local disruption of the secondary structure of vascular endothelial growth factor A (VEGFA) dimer and exhibit stable interaction at the binding interface of VEGFA receptor R1 complex. Cell-culture-based in vitro experiments showed anti-metastatic phenotypes as seen in migration and invasion assays in cancer cells by both TD-10 and TD-11. Underlying biochemical evidence revealed downregulation of VEGF and MMPs at the protein level; MMP-9 was also downregulated at the transcriptional level. By molecular analyses, we demonstrate that TD-10 and TD-11 target stress chaperone mortalin at the transcription and translational level, yielding decreased expression of vimentin, fibronectin and hnRNP-K, and increase in extracellular matrix (ECM) proteins (collagen IV and E-cadherin) endorsing reversal of epithelial–mesenchymal transition (EMT) signaling.
Collapse
Affiliation(s)
- Vidhi Malik
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India;
| | - Sukant Garg
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305 8565, Japan; (S.G.); (S.A.); (J.K.D.); (S.C.K.)
| | - Sajal Afzal
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305 8565, Japan; (S.G.); (S.A.); (J.K.D.); (S.C.K.)
| | - Jaspreet Kaur Dhanjal
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305 8565, Japan; (S.G.); (S.A.); (J.K.D.); (S.C.K.)
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Korea;
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305 8565, Japan; (S.G.); (S.A.); (J.K.D.); (S.C.K.)
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India;
- Correspondence: (D.S.); (R.W.); Tel.: +91-11-2659-1066 (D.S.); +81-29-861-9464 (R.W.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305 8565, Japan; (S.G.); (S.A.); (J.K.D.); (S.C.K.)
- Correspondence: (D.S.); (R.W.); Tel.: +91-11-2659-1066 (D.S.); +81-29-861-9464 (R.W.)
| |
Collapse
|
5
|
FABP4 and MMP9 levels identified as predictive factors for poor prognosis in patients with nonalcoholic fatty liver using data mining approaches and gene expression analysis. Sci Rep 2019; 9:19785. [PMID: 31874999 PMCID: PMC6930227 DOI: 10.1038/s41598-019-56235-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver (NAFLD) may progress to nonalcoholic steatohepatitis (NASH) and ultimately to cirrhosis and hepatocellular carcinoma (HCC). Prognostic markers for these conditions are poorly defined. The aim of this study was to identify predictive gene markers for the transition from NAFL to NASH and then to poorer conditions. Gene expression omnibus datasets associated with a prediction analysis algorithm were used to create a matrix composed of control subject (n = 52), healthy obese (n = 51), obese with NAFL (n = 42) and NASH patients (n = 37) and 19,085 genes in order to identify specific genes predictive of the transition from steatosis to NASH and from NASH to cirrhosis and HCC and thus patients at high risk of complications. A validation cohort was used to validate these results. We identified two genes, fatty acid binding protein-4 (FABP4) and matrix metalloproteinase-9 (MMP9), which respectively allowed distinguishing patients at risk of progression from NAFL to NASH and from NASH to cirrhosis and HCC. Thus, NAFL patients expressing high hepatic levels of FABP4 and NASH patients expressing high hepatic levels of MMP9 are likely to experience disease progression. Therefore, using FABP4 and MMP9 as blood markers could help to predict poor outcomes and/or progression of NAFL during clinical trial follow-up.
Collapse
|
6
|
Yi X, Zai H, Long X, Wang X, Li W, Li Y. Krüppel-like factor 8 induces epithelial-to-mesenchymal transition and promotes invasion of pancreatic cancer cells through transcriptional activation of four and a half LIM-only protein 2. Oncol Lett 2017; 14:4883-4889. [PMID: 28943967 DOI: 10.3892/ol.2017.6734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive types of cancer with an extremely poor prognosis. Invasive growth and early metastasis is one of the greatest challenges to overcome for the treatment of PC. Numerous previous studies have indicated that the transcription factor Krüppel-like factor 8 (KLF8) and nuclear cofactor four and a half LIM-only protein 2 (FHL2) serve important roles in tumorigenesis and tumor progression; however, their roles in PC remain elusive. The present study revealed that KLF8 and FHL2 expression is aberrantly co-overexpressed in PC tissue samples and associated with tumor metastasis. Furthermore, a positive correlation between the expression levels of KLF8 and FHL2 was observed. Subsequently, the present study identified KLF8 as a critical inducer of epithelial-to-mesenchymal transition (EMT) and invasion. Of note, the present study demonstrated that KLF8 overexpression induced a strong increase in FHL2 expression, and subsequent promoter reporter assays determined that KLF8 directly bound and activated the FHL2 gene promoter. Furthermore, FHL2 knockdown in KLF8-overexpressing cells partially reversed the EMT and invasive phenotypes. The present study identified KLF8-induced FHL2 activation as a novel and critical signaling mechanism underlying human PC invasion.
Collapse
Affiliation(s)
- Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Postdoctoral Research Workstation of Pathology and Pathophysiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongyan Zai
- Department of General Surgery, Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xueying Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoyi Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yixiong Li
- Department of General Surgery, Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
7
|
Kim CK, He P, Bialkowska AB, Yang VW. SP and KLF Transcription Factors in Digestive Physiology and Diseases. Gastroenterology 2017; 152:1845-1875. [PMID: 28366734 PMCID: PMC5815166 DOI: 10.1053/j.gastro.2017.03.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022]
Abstract
Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies have shown that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Ping He
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Agnieszka B. Bialkowska
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| | - Vincent W. Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| |
Collapse
|
8
|
Yi X, Li Y, Zai H, Long X, Li W. KLF8 knockdown triggered growth inhibition and induced cell phase arrest in human pancreatic cancer cells. Gene 2016; 585:22-27. [DOI: 10.1016/j.gene.2016.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 02/07/2023]
|
9
|
Liang K, Liu T, Chu N, Kang J, Zhang R, Yu Y, Li D, Lu D. KLF8 is required for bladder cancer cell proliferation and migration. Biotechnol Appl Biochem 2015; 62:628-33. [PMID: 25323066 DOI: 10.1002/bab.1310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/13/2014] [Indexed: 12/31/2022]
Abstract
Krüppel-like factor 8 (KLF8) belongs to the Sp/KLF family of transcription factors. Recently, it is affirmed that KLF8 plays an important role in the regulation of epithelial-mesenchymal transition, which is a key process that occurs during cancer metastasis. Although the overexpression of KLF8 has been observed in several types of human cancers, the functional role of KLF8 in human bladder cancer remains unknown. Here, we investigated the effects of KLF8 knockdown on bladder cancer cell proliferation and migration in vitro. Lentivirus-mediated small interfering RNA (siRNA) targeting KLF8 specifically downregulated its expression in T24 and BT5637 bladder cancer cells. Knockdown of KLF8 significantly inhibit cell proliferation and colony formation. Cell cycle analysis showed that knockdown of KLF8 arrested T24 cells in the G0/G1 phase. Moreover, cell migration was attenuated in T24 cells after KLF8 knockdown. Furthermore, knockdown of KLF8 resulted in a reduction in vimentin and N-cadherin expression and an increase in β-catenin expression. These results indicate that KLF8 plays a crucial role in proliferation and migration of bladder cancer cells, and inhibition of KLF8 by siRNA may provide a potential therapeutic approach for gene therapy in bladder cancer.
Collapse
Affiliation(s)
- Kai Liang
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Tao Liu
- Department of Urology, the First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Ning Chu
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Jian Kang
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Rui Zhang
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Yong Yu
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Dongqi Li
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Dexiang Lu
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| |
Collapse
|