1
|
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem 2023; 90:117368. [PMID: 37331175 DOI: 10.1016/j.bmc.2023.117368] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, caused by a physical insult damaging the brain. Growth factor-based therapies have the potential to reduce the effects of secondary injury and improve outcomes by providing neuroprotection against glutamate excitotoxicity, oxidative damage, hypoxia, and ischemia, as well as promoting neurite outgrowth and the formation of new blood vessels. Despite promising evidence in preclinical studies, few neurotrophic factors have been tested in clinical trials for TBI. Translation to the clinic is not trivial and is limited by the short in vivo half-life of the protein, the inability to cross the blood-brain barrier and human delivery systems. Synthetic peptide mimetics have the potential to be used in place of recombinant growth factors, activating the same downstream signalling pathways, with a decrease in size and more favourable pharmacokinetic properties. In this review, we will discuss growth factors with the potential to modulate damage caused by secondary injury mechanisms following a traumatic brain injury that have been trialled in other indications including spinal cord injury, stroke and neurodegenerative diseases. Peptide mimetics of nerve growth factor (NGF), hepatocyte growth factor (HGF), glial cell line-derived growth factor (GDNF), brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) will be highlighted, most of which have not yet been tested in preclinical or clinical models of TBI.
Collapse
Affiliation(s)
- Emily Atkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Rachael Dickman
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
2
|
Wieder R. Awakening of Dormant Breast Cancer Cells in the Bone Marrow. Cancers (Basel) 2023; 15:cancers15113021. [PMID: 37296983 DOI: 10.3390/cancers15113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Up to 40% of patients with breast cancer (BC) have metastatic cells in the bone marrow (BM) at the initial diagnosis of localized disease. Despite definitive systemic adjuvant therapy, these cells survive in the BM microenvironment, enter a dormant state and recur stochastically for more than 20 years. Once they begin to proliferate, recurrent macrometastases are not curable, and patients generally succumb to their disease. Many potential mechanisms for initiating recurrence have been proposed, but no definitive predictive data have been generated. This manuscript reviews the proposed mechanisms that maintain BC cell dormancy in the BM microenvironment and discusses the data supporting specific mechanisms for recurrence. It addresses the well-described mechanisms of secretory senescence, inflammation, aging, adipogenic BM conversion, autophagy, systemic effects of trauma and surgery, sympathetic signaling, transient angiogenic bursts, hypercoagulable states, osteoclast activation, and epigenetic modifications of dormant cells. This review addresses proposed approaches for either eliminating micrometastases or maintaining a dormant state.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, 185 South Orange Avenue, MSB F671, Newark, NJ 07103, USA
| |
Collapse
|
3
|
Huang W, Qiu W, Chen K, Ye S, Wang D, Hu J, Xu H, Lin L, Li X. Research progress of fibroblast growth factor in nervous system diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:738-749. [PMID: 36915973 PMCID: PMC10262007 DOI: 10.3724/zdxbyxb-2022-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Fibroblast growth factors (FGF) are a group of structurally related polypeptides which constitute an elaborate signaling system with their receptors. Evidence accumulated in the years suggests that the FGF family plays a key role in the repair of central nervous system injury. The main protective mechanisms include activating the expression of PI3K-Akt, peroxisome proliferator-activated receptor (PPARγ) and other signals; inhibiting NF-κB-mediated inflammatory response, oxidative stress and apoptosis; regulating neuronal differentiation and neuronal excitability as well as participating in protection of neurovascular units and nerve function repair. This paper comprehensively summarizes the latest research progress in FGF signaling related to diseases of the central nervous system such as cerebral infarction, cerebral hemorrhage, traumatic brain injury, Alzheimer's disease, Parkinson's disease, epilepsy and depression, aiming to provide scientific basis and reference for the development of innovative FGF drugs for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenting Huang
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Wanhua Qiu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Kun Chen
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Shasha Ye
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Dongxue Wang
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jian Hu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Huiqin Xu
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Li Lin
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xiaokun Li
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
4
|
Safrole oxide induced 5-HT neuron-like cell differentiation of bone marrow mesenchymal stem cells by elevating G9a. In Vitro Cell Dev Biol Anim 2022; 58:513-520. [PMID: 35913528 DOI: 10.1007/s11626-021-00594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 11/05/2022]
Abstract
In our previous study, we found that safrole oxide (SFO) could induce bone marrow mesenchymal stem cell differentiation into neuron-like cells. However, which kind of neuron cells was induced by SFO was unknown. Here, we found that SFO could induce BMSC differentiation into 5-hydroxytryptamine (5-HT) neuron-like cells. Microarray analysis of BMSCs treated with SFO for 6 h revealed a total of 35 genes changed more than twice. We selected G9a, a histone methyltransferase for further study. The upregulation of G9a was confirmed by RT-PCR and Western blot analysis. Small interfering RNA knockdown of G9a blocked SFO-induced BMSC differentiation. These results demonstrated that G9a was the pivotal factor in SFO-medicated 5-HT neuronal differentiation of BMSCs. Our findings provide a new clue for further investigating the gene control of BMSC differentiation into 5-HT neuron-like cells and provide a putative strategy for depression diseases therapies.
Collapse
|
5
|
Pischiutta F, Caruso E, Lugo A, Cavaleiro H, Stocchetti N, Citerio G, Salgado A, Gallus S, Zanier ER. Systematic review and meta-analysis of preclinical studies testing mesenchymal stromal cells for traumatic brain injury. NPJ Regen Med 2021; 6:71. [PMID: 34716332 PMCID: PMC8556393 DOI: 10.1038/s41536-021-00182-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are widely used in preclinical models of traumatic brain injury (TBI). Results are promising in terms of neurological improvement but are hampered by wide variability in treatment responses. We made a systematic review and meta-analysis: (1) to assess the quality of evidence for MSC treatment in TBI rodent models; (2) to determine the effect size of MSCs on sensorimotor function, cognitive function, and anatomical damage; (3) to identify MSC-related and protocol-related variables associated with greater efficacy; (4) to understand whether MSC manipulations boost therapeutic efficacy. The meta-analysis included 80 studies. After TBI, MSCs improved sensorimotor and cognitive deficits and reduced anatomical damage. Stratified meta-analysis on sensorimotor outcome showed similar efficacy for different MSC sources and for syngeneic or xenogenic transplants. Efficacy was greater when MSCs were delivered in the first-week post-injury, and when implanted directly into the lesion cavity. The greatest effect size was for cells embedded in matrices or for MSC-derivatives. MSC therapy is effective in preclinical TBI models, improving sensorimotor, cognitive, and anatomical outcomes, with large effect sizes. These findings support clinical studies in TBI.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Enrico Caruso
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Lugo
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Helena Cavaleiro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Stemmatters, Biotechnology and Regenerative Medicine, Guimarães, Portugal
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - António Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Silvano Gallus
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
6
|
UPLC-Q-TOF/MS-based plasma metabolome to identify biomarkers and time of injury in traumatic brain injured rats. Neuroreport 2021; 32:415-422. [PMID: 33788810 DOI: 10.1097/wnr.0000000000001576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To identify the potent metabolic biomarkers and time of injury of traumatic brain injured (TBI). METHODS A total of 70 Sprague-Dawley rats were used to establish the TBI model in this study. The serum was collected at 3 h, 6 h, 12 h, 24 h, 3 days and 7 days after surgery. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was performed to analyze metabolic changes in the serum of the TBI rats from different groups. The differences between the metabolic profiles of the rats in seven groups were analyzed using partial least squares discriminant analysis. RESULTS Metabolic profiling revealed significant differences between the sham-operated and other groups. A total of 49 potential TBI metabolite biomarkers were identified between the sham-operated group and the model groups at different time points. Among them, six metabolites (methionine sulfone, kynurenine, 3-hydroxyanthranilic acid, 3-Indolepropionic acid, citric acid and glycocholic acid) were identified as biomarkers of TBI to estimate the injury time. CONCLUSION Using metabolomic analysis, we identified new TBI serum biomarkers for accurate detection and determination of the timing of TBI injury.
Collapse
|
7
|
Gene Profiles in the Early Stage of Neuronal Differentiation of Mouse Bone Marrow Stromal Cells Induced by Basic Fibroblast Growth Factor. Stem Cells Int 2021; 2020:8857057. [PMID: 33424980 PMCID: PMC7775150 DOI: 10.1155/2020/8857057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022] Open
Abstract
A stably established population of mouse bone marrow stromal cells (BMSCs) with self-renewal and multilineage differentiation potential was expanded in vitro for more than 50 passages. These cells express high levels of mesenchymal stem cell markers and can be differentiated into adipogenic, chondrogenic, and osteogenic lineages in vitro. Subjected to basic fibroblast growth factor (bFGF) treatment, a typical neuronal phenotype was induced in these cells, as supported by neuronal morphology, induction of neuronal markers, and relevant electrophysiological excitability. To identify the genes regulating neuronal differentiation, cDNA microarray analysis was conducted using mRNAs isolated from cells differentiated for different time periods (0, 4, 24, and 72 h) after bFGF treatment. Various expression patterns of neuronal genes were stimulated by bFGF. These gene profiles were shown to be involved in developmental, functional, and structural integration of the nervous system. The expression of representative genes stimulated by bFGF in each group was verified by RT-PCR. Amongst proneural genes, the mammalian achate-schute homolog 1 (Mash-1), a basic helix-loop-helix transcriptional factor, was further demonstrated to be significantly upregulated. Overexpression of Mash-1 in mouse BMSCs was shown to induce the expression of neuronal specific enolase (NSE) and terminal neuronal morphology, suggesting that Mash-1 plays an important role in the induction of neuronal differentiation of mouse BMSCs.
Collapse
|
8
|
Willing AE, Das M, Howell M, Mohapatra SS, Mohapatra S. Potential of mesenchymal stem cells alone, or in combination, to treat traumatic brain injury. CNS Neurosci Ther 2020; 26:616-627. [PMID: 32157822 PMCID: PMC7248546 DOI: 10.1111/cns.13300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes death and disability in the United States and around the world. The traumatic insult causes the mechanical injury of the brain and primary cellular death. While a comprehensive pathological mechanism of TBI is still lacking, the focus of the TBI research is concentrated on understanding the pathophysiology and developing suitable therapeutic approaches. Given the complexities in pathophysiology involving interconnected immunologic, inflammatory, and neurological cascades occurring after TBI, the therapies directed to a single mechanism fail in the clinical trials. This has led to the development of the paradigm of a combination therapeutic approach against TBI. While there are no drugs available for the treatment of TBI, stem cell therapy has shown promising results in preclinical studies. But, the success of the therapy depends on the survival of the stem cells, which are limited by several factors including route of administration, health of the administered cells, and inflammatory microenvironment of the injured brain. Reducing the inflammation prior to cell administration may provide a better outcome of cell therapy following TBI. This review is focused on different therapeutic approaches of TBI and the present status of the clinical trials.
Collapse
Affiliation(s)
- Alison E Willing
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Mahasweta Das
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Mark Howell
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
9
|
Hernández R, Jiménez-Luna C, Perales-Adán J, Perazzoli G, Melguizo C, Prados J. Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders. Biomol Ther (Seoul) 2020; 28:34-44. [PMID: 31649208 PMCID: PMC6939692 DOI: 10.4062/biomolther.2019.065] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been proposed as an alternative therapy to be applied into several pathologies of the nervous system. These cells can be obtained from adipose tissue, umbilical cord blood and bone marrow, among other tissues, and have remarkable therapeutic properties. MSCs can be isolated with high yield, which adds to their ability to differentiate into non-mesodermal cell types including neuronal lineage both in vivo and in vitro. They are able to restore damaged neural tissue, thus being suitable for the treatment of neural injuries, and possess immunosuppressive activity, which may be useful for the treatment of neurological disorders of inflammatory etiology. Although the long-term safety of MSC-based therapies remains unclear, a large amount of both pre-clinical and clinical trials have shown functional improvements in animal models of nervous system diseases following transplantation of MSCs. In fact, there are several ongoing clinical trials evaluating the possible benefits this cell-based therapy could provide to patients with neurological damage, as well as their clinical limitations. In this review we focus on the potential of MSCs as a therapeutic tool to treat neurological disorders, summarizing the state of the art of this topic and the most recent clinical studies.
Collapse
Affiliation(s)
- Rosa Hernández
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges 1066, Switzerland
| | - Jesús Perales-Adán
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| |
Collapse
|
10
|
Chen P, Zhang H, Zhang Q, Zhou W, Deng Y, Hu X, Zhang L. Basic Fibroblast Growth Factor Reduces Permeability and Apoptosis of Human Brain Microvascular Endothelial Cells in Response to Oxygen and Glucose Deprivation Followed by Reoxygenation via the Fibroblast Growth Factor Receptor 1 (FGFR1)/ERK Pathway. Med Sci Monit 2019; 25:7191-7201. [PMID: 31551405 PMCID: PMC6778414 DOI: 10.12659/msm.918626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Disruption of the blood–brain barrier (BBB) is a mechanism in the pathogenesis of traumatic brain injury. Basic fibroblast growth factor (bFGF) is expressed in angiogenesis, neurogenesis, and neuronal survival. This study aimed to investigate the role of bFGF in vitro in human brain microvascular endothelial cells (HBMECs) challenged by oxygen-glucose deprivation/reperfusion (OGD/R). Material/Methods HBMECs were cultured in glucose-free medium and an environment with <0.5% oxygen in an anaerobic chamber. Immunocytochemistry, Western blot, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were used to measure the protein and mRNA expression levels of bFGF, tight junction, adherens junction, apoptotic proteins, and matrix metalloproteinases (MMPs). The effects of bFGF on the viability of HBMECs was evaluated using the cell counting kit-8 (CCK-8) assay. Cell apoptosis was evaluated using the TUNEL assay, and endothelial permeability was quantified using a transwell migration assay with fluorescein isothiocyanate (FITC) conjugated with dextran. The effects of bFGF were evaluated following inhibition of fibroblast growth factor receptor 1 (FGFR1) with PD173074 and inhibition of ERK with PD98059. Results Following OGD/R of HBMECs, bFGF significantly reduced cell permeability and apoptosis and significantly inhibited the down-regulation of the expressions of proteins associated with tight junctions, adherens junctions, apoptosis and matrix metalloproteinases (MMPs). The effects of bFGF were mediated by the activation of FGFR1 and ERK, as they were blocked by FGFR1 and ERK inhibitors. Conclusions Permeability and apoptosis of HBMECs challenged by OGD/R were reduced by bFGF by activation of the FGFR1 and the ERK pathway.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland).,Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Hongguang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Qingtao Zhang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Wei Zhou
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Xi Hu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Lianyang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland)
| |
Collapse
|
11
|
Mao W, Yi X, Qin J, Tian M, Jin G. CXCL12 promotes proliferation of radial glia like cells after traumatic brain injury in rats. Cytokine 2019; 125:154771. [PMID: 31400639 DOI: 10.1016/j.cyto.2019.154771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023]
Abstract
To investigate the effect of CXCL12 on regeneration of radial glia like cells after traumatic brain injury (TBI). We randomly divided 48 rats into 4 groups: (1) the sham group, rats were performed craniotomy only, (2) the control group, saline were injected into the ipsilateral cortex after TBI, (3) the CXCL12 group, CXCL12 were injected, and (4) the CXCL12 + AMD3100 group, a mixture of CXCL12 and AMD3100 were injected. Seven days after TBI, the brain tissues were subjected to immunofluorescence double-labeled staining of BrdU/Nestin, BLBP/Nestin, BLBP/Vimentin, BLBP/SOX2, BLBP/CXCR4, BLBP/DCX. Western Blot assay was used to measure the levels of Nestin, BLBP, and Vimentin. Compared with the control group, CXCL12 treatment significantly increased the number of cells stained with BrdU/Nestin, BLBP/Nestin, and BLBP/Vimentin around the injured cortex and corpus callosum areas. CXCL12 + AMD3100 treatment significantly decreased the number of these cells compared with the CXCL12 treatment and control group. The protein levels of Nestin, BLBP, and Vimentin had the same change trends as those of the immunofluorescence staining. The BLBP/Vimentin positive cells presented with the astrocyte pattern around the injured cortex area but with the RGCs pattern around the injured corpus callosum area. The BLBP positive cells also expressed CXCR4 and SOX2. Altogether, CXCL12 promotes the proliferation of neural precursor cells after TBI by combing to its receptor, CXCR4. The proliferating neural precursor cells presents radial glial cell like cells. The RGCs-like cells can differentiate into immature neurons and promote the migration of immature neurons.
Collapse
Affiliation(s)
- Weifeng Mao
- Department of Anatomy, Nantong University Medical School, Jiangsu 226001, China
| | - Xin Yi
- Department of Anatomy, Nantong University Medical School, Jiangsu 226001, China
| | - Jianbing Qin
- Department of Anatomy, Nantong University Medical School, Jiangsu 226001, China
| | - Meiling Tian
- Department of Anatomy, Nantong University Medical School, Jiangsu 226001, China
| | - Guohua Jin
- Department of Anatomy, Nantong University Medical School, Jiangsu 226001, China.
| |
Collapse
|
12
|
Wu S, FitzGerald KT, Giordano J. On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Front Neurol 2018; 9:602. [PMID: 30150968 PMCID: PMC6099099 DOI: 10.3389/fneur.2018.00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage critical axonal pathways and neurons and lead to partial to complete loss of neural function that is difficult to address in the mature central nervous system. Improvement and innovation in the development, manufacture, and delivery of stem-cell based therapies, as well as the continued exploration of newer forms of stem cells, have allowed the professional and public spheres to resolve technical and ethical questions that previously hindered stem cell research for central nervous system injury. Recent in vitro and in vivo models have demonstrated the potential that reprogrammed autologous stem cells, in particular, have to restore functionality and induce regeneration-while potentially mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic derivation. These newer stem-cell based approaches are not, however, without concerns and problems of safety, efficacy, use and distribution. This review is an assessment of the current state of the science, the potential solutions that have been and are currently being explored, and the problems and questions that arise from what appears to be a promising way forward (i.e., autologous stem cell-based therapies)-for the purpose of advancing the research for much-needed therapeutic interventions for central neurotrauma.
Collapse
Affiliation(s)
- Samantha Wu
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Kevin T. FitzGerald
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - James Giordano
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
13
|
Herraiz S, Romeu M, Buigues A, Martínez S, Díaz-García C, Gómez-Seguí I, Martínez J, Pellicer N, Pellicer A. Autologous stem cell ovarian transplantation to increase reproductive potential in patients who are poor responders. Fertil Steril 2018; 110:496-505.e1. [PMID: 29960701 DOI: 10.1016/j.fertnstert.2018.04.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/10/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To evaluate effects of autologous stem cell ovarian transplant (ASCOT) on ovarian reserve and IVF outcomes of women who are poor responders with very poor prognosis. DESIGN Prospective observational pilot study. SETTING University hospital. PATIENT(S) Seventeen women who are poor responders. INTERVENTION(S) Ovarian infusion of bone marrow-derived stem cells. MAIN OUTCOME MEASURE(S) Serum antimüllerian hormone levels and antral follicular count (AFC), punctured follicles, and oocytes retrieved after stimulation (controlled ovarian stimulation) were measred. Apheresis was analyzed for growth factor concentrations. RESULT(S) The ASCOT resulted in a significant improvement in AFC 2 weeks after treatment. With an increase in AFC of three or more follicles and/or two consecutive increases in antimüllerian hormone levels as success criteria, ovarian function improved in 81.3% of women. These positive effects were associated with the presence of fibroblast growth factor-2 and thrombospondin. During controlled ovarian stimulation, ASCOT increased the number of stimulable antral follicles and oocytes, but the embryo euploidy rate was low (16.1%). Five pregnancies were achieved: two after ET, three by natural conception. CONCLUSION(S) Our results suggest that ASCOT optimized the mobilization and growth of existing follicles, possibly related to fibroblast growth factor-2 and thrombospondin-1 within apheresis. The ASCOT improved follicle and oocyte quantity enabling pregnancy in women who are poor responders previously limited to oocyte donation. CLINICAL TRIAL REGISTRATION NUMBER NCT02240342.
Collapse
Affiliation(s)
- Sonia Herraiz
- Fundación IVI, La Fe University Hospital, Valencia, Spain; IVI-RMA Valencia, La Fe University Hospital, Valencia, Spain; Reproductive Medicine Research Group, IIS La Fe, La Fe University Hospital, Valencia, Spain.
| | - Mónica Romeu
- Reproductive Medicine Research Group, IIS La Fe, La Fe University Hospital, Valencia, Spain; Women's Health Area, La Fe University Hospital, Valencia, Spain
| | - Anna Buigues
- Fundación IVI, La Fe University Hospital, Valencia, Spain; Reproductive Medicine Research Group, IIS La Fe, La Fe University Hospital, Valencia, Spain; Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Susana Martínez
- Women's Health Area, La Fe University Hospital, Valencia, Spain
| | | | - Inés Gómez-Seguí
- Hematology Department, La Fe University Hospital, Valencia, Spain
| | - José Martínez
- Radiology Department, La Fe University Hospital, Valencia, Spain
| | - Nuria Pellicer
- Women's Health Area, La Fe University Hospital, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, La Fe University Hospital, Valencia, Spain; Reproductive Medicine Research Group, IIS La Fe, La Fe University Hospital, Valencia, Spain; IVI-RMA Rome, Rome, Italy
| |
Collapse
|
14
|
Safety of neural stem cell transplantation in patients with severe traumatic brain injury. Exp Ther Med 2017; 13:3613-3618. [PMID: 28588689 DOI: 10.3892/etm.2017.4423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Neural stem cell (NSC) therapy is a promising treatment for traumatic brain injury (TBI). In addition, mesenchymal stem cells (MSCs) have been investigated for the treatment of TBI due to their functions in neural regeneration and their neurotrophic effect. In the present study, the safety, feasibility and biological effects of autologous MSC-derived NSC-like cell transplantation were investigated in 10 patients with severe TBI. All patients received intravenous or intrathecal injections of human NSC-like cells and were evaluated with physical and neurological examinations, routine laboratory tests and neuroradiological findings. The results indicated that the majority of patients experienced improved neurological function in different degrees during the follow-up period. No mortality or serious adverse events were observed in any patient subsequent to transplantation. Higher serum levels of nerve growth factor and brain-derived neurotrophic factor were detected following the transplantation, as compared with the levels prior to treatment. Overall, the present results suggest that transplantation of autologous NSC-like cells is feasible and appears to be safe for the treatment of non-acute severe TBI.
Collapse
|
15
|
Hasan A, Deeb G, Rahal R, Atwi K, Mondello S, Marei HE, Gali A, Sleiman E. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury. Front Neurol 2017; 8:28. [PMID: 28265255 PMCID: PMC5316525 DOI: 10.3389/fneur.2017.00028] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University , Doha , Qatar
| | - George Deeb
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Rahaf Rahal
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Khairallah Atwi
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina , Messina , Italy
| | | | - Amr Gali
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Eliana Sleiman
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| |
Collapse
|
16
|
Gennai S, Monsel A, Hao Q, Liu J, Gudapati V, Barbier EL, Lee JW. Cell-based therapy for traumatic brain injury. Br J Anaesth 2015; 115:203-12. [PMID: 26170348 DOI: 10.1093/bja/aev229] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury is a major economic burden to hospitals in terms of emergency department visits, hospitalizations, and utilization of intensive care units. Current guidelines for the management of severe traumatic brain injuries are primarily supportive, with an emphasis on surveillance (i.e. intracranial pressure) and preventive measures to reduce morbidity and mortality. There are no direct effective therapies available. Over the last fifteen years, pre-clinical studies in regenerative medicine utilizing cell-based therapy have generated enthusiasm as a possible treatment option for traumatic brain injury. In these studies, stem cells and progenitor cells were shown to migrate into the injured brain and proliferate, exerting protective effects through possible cell replacement, gene and protein transfer, and release of anti-inflammatory and growth factors. In this work, we reviewed the pathophysiological mechanisms of traumatic brain injury, the biological rationale for using stem cells and progenitor cells, and the results of clinical trials using cell-based therapy for traumatic brain injury. Although the benefits of cell-based therapy have been clearly demonstrated in pre-clinical studies, some questions remain regarding the biological mechanisms of repair and safety, dose, route and timing of cell delivery, which ultimately will determine its optimal clinical use.
Collapse
Affiliation(s)
- S Gennai
- Department of Emergency Medicine, Grenoble University Hospital, La Tronche, France
| | - A Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Q Hao
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| | - J Liu
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| | - V Gudapati
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| | - E L Barbier
- Grenoble Institut des Neurosciences, Unité Inserm U 836, La Tronche, France
| | - J W Lee
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| |
Collapse
|
17
|
Yao J, Zheng K, Zhang X. Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury. Mol Med Rep 2015; 12:6591-7. [PMID: 26351751 PMCID: PMC4626137 DOI: 10.3892/mmr.2015.4292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/17/2015] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and morbidity in adults and children worldwide. Recent studies have demonstrated that both apoptosis and autophagy participate in TBI-induced neuronal cell death and functional loss. The peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist rosiglitazone (RSG) is a well-known anti-inflammatory, which carries out its effects via the activation of PPAR-γ. Previous studies have suggested that RSG may exert neuroprotective effects in animal models of both chronic and acute brain injury; however, whether RSG is involved in autophagic neuronal death following TBI remains to be elucidated. The present study aimed to determine whether RSG carries out its neuroprotective properties via the attenuation of neuronal apoptosis and autophagy, following TBI in a rat model. Furthermore, the role of RSG was investigated with regards to the modulation of inflammation and glutamate excitotoxicity, and the impact of RSG on functional recovery following TBI was determined. The rats were subjected to controlled cortical impact injury, prior to being randomly divided into three groups: A sham-operated group, a TBI group, and an RSG treatment group. The RSG treatment group was intraperitoneally treated with 2 mg/kg RSG immediately after TBI. The results of the present study demonstrated that RSG treatment following TBI significantly reduced neuronal apoptosis and autophagy, and increased functional recovery. These effects were correlated with a decrease in the protein expression levels of tumor necrosis factor α and interleukin-6. However, no significant changes were observed in the protein expression levels of glutamate transporter-1 in the brain cortex. The results of the present study provide in vivo evidence that RSG may exert neuroprotective effects via the inhibition of neuronal apoptosis and autophagy following experimental TBI in rats, and the mechanism underlying these effects may be associated with the anti-inflammatory action of RSG. The present study offers a novel insight into the potential use of RSG as a neuroprotective agent for the treatment of cerebral injuries.
Collapse
Affiliation(s)
- Junchao Yao
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061000, P.R. China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiang Zhang
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|