1
|
Chen KQ, Wang SZ, Lei HB, Liu X. Dauricine: Review of Pharmacological Activity. Drug Des Devel Ther 2024; 18:4371-4385. [PMID: 39355570 PMCID: PMC11444063 DOI: 10.2147/dddt.s471352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Background Dauricine is an important natural organic compound in Menispermum dauricum, which often has significant biological activity. Purpose The purpose of this review is to systemically summarize and discuss the pharmacological activity and underlying mechanisms of dauricine in recent years. Methods Web of Science (121 articles) and PubMed databases (97 articles) were used to search for articles related to "dauricine" published from 2000 to 2024. Meanwhile, we classified the pharmacological activity of dauricine by screening these articles. Results Emerging evidence suggests that dauricine possesses numerous pharmacological activities, including neuroprotection, anti-cancer, anti-arrhythmia, anti-inflammatory and anti-diabetes. Conclusion Dauricine has a potential value in the treatment of many diseases. We hope that this review will contribute to therapeutic development and future studies of dauricine.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, 411100, People's Republic of China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Hai-Bo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, 411100, People's Republic of China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, 411100, People's Republic of China
| |
Collapse
|
2
|
Lin GC, Friedl HP, Grabner S, Gerhartl A, Neuhaus W. Transport of Non-Steroidal Anti-Inflammatory Drugs across an Oral Mucosa Epithelium In Vitro Model. Pharmaceutics 2024; 16:543. [PMID: 38675204 PMCID: PMC11054638 DOI: 10.3390/pharmaceutics16040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most prescribed drugs to treat pain or fever. However, oral administration of NSAIDs is frequently associated with adverse effects due to their inhibitory effect on the constitutively expressed cyclooxygenase enzyme 1 (COX-1) in, for instance, the gastrointestinal tract. A systemic delivery, such as a buccal delivery, of NSAIDs would be beneficial and additionally has the advantage of a non-invasive administration route, especially favourable for children or the elderly. To investigate the transport of NSAIDs across the buccal mucosa and determine their potential for buccal therapeutic usage, celecoxib, diclofenac, ibuprofen and piroxicam were tested using an established oral mucosa Transwell® model based on human cell line TR146. Carboxyfluorescein and diazepam were applied as internal paracellular and transcellular marker molecule, respectively. Calculated permeability coefficients revealed a transport ranking of ibuprofen > piroxicam > diclofenac > celecoxib. Transporter protein inhibitor verapamil increased the permeability for ibuprofen, piroxicam and celecoxib, whereas probenecid increased the permeability for all tested NSAIDs. Furthermore, influence of local inflammation of the buccal mucosa on the transport of NSAIDs was mimicked by treating cells with a cytokine mixture of TNF-α, IL-1ß and IFN-γ followed by transport studies with ibuprofen (+ probenecid). Cellular response to pro-inflammatory stimuli was confirmed by upregulation of cytokine targets at the mRNA level, increased secreted cytokine levels and a significant decrease in the paracellular barrier. Permeability of ibuprofen was increased across cell layers treated with cytokines, while addition of probenecid increased permeability of ibuprofen in controls, but not across cell layers treated with cytokines. In summary, the suitability of the in vitro oral mucosa model to measure NSAID transport rankings was demonstrated, and the involvement of transporter proteins was confirmed; an inflammation model was established, and increased NSAID transport upon inflammation was measured.
Collapse
Affiliation(s)
- Grace C. Lin
- Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria (A.G.)
| | - Heinz-Peter Friedl
- Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria (A.G.)
| | - Sarah Grabner
- Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria (A.G.)
| | - Anna Gerhartl
- Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria (A.G.)
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria (A.G.)
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Zhu C, Zhang Z, Wang S, Sun Z. Study on the mechanism of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen in sedation and tranquillising mind. Mol Divers 2023:10.1007/s11030-023-10756-x. [PMID: 37917323 DOI: 10.1007/s11030-023-10756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
This study analysed the pharmacological mechanism of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen in sedation and tranquillising mind using network pharmacology methods. The findings of this study aimed to serve as a reference for the development of novel drugs and the clinical expansion and application of traditional Chinese medicine formulas. The chemical constituents and therapeutic targets of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen were acquired from TCMSP, HERB, and ETCM databases. Active components were identified using ADME criteria, while the primary targets associated with sedation and mental tranquillity were obtained from GENECARDS, OMIM, and DRUGBANK databases. A protein-protein interaction (PPI) network analysis was conducted using the STRING platform to investigate potential functional protein modules by the network. The METASCAPE platform was employed for the study of the "component-target" and its associated biological processes and pathways. Subsequently, the "component-target" network was constructed using Cytoscape 3.9.1 software. Finally, the validation of molecular docking was conducted through AUTODOCK. The findings revealed that Quercetin, Atropine, Dauricine, (S)-Coclaurine, and other active ingredients were identified as the core constituents of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen. Additionally, PTGS2, PTGS1, MAOB, GABRA1, SLC6A2, ADRB2, CHRM1, HTR2A, and other targets were identified as the core targets. The results of the molecular docking analysis demonstrated that Quercetin, Atropine, Dauricine, and (S)-Coclaurine exhibited binding solid affinity towards PTGS2 and PTGS1. The predominant biological pathways associated with sedation and tranquilisation primarily involved Neuroactive ligand-receptor interaction and activation of receptors involved in chemical carcinogenesis. This study provided initial findings on the multi-component, multi-target, and multi-pathway mechanism underlying the sedative and tranquillising effects of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen. These findings had the potential to serve as a foundation for the future development and utilisation of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen.
Collapse
Affiliation(s)
- Chenghao Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhengru Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shangtao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
4
|
Yasgar A, Bougie D, Eastman RT, Huang R, Itkin M, Kouznetsova J, Lynch C, McKnight C, Miller M, Ngan DK, Peryea T, Shah P, Shinn P, Xia M, Xu X, Zakharov AV, Simeonov A. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS Pharmacol Transl Sci 2023; 6:683-701. [PMID: 37200814 PMCID: PMC10186358 DOI: 10.1021/acsptsci.2c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 05/20/2023]
Abstract
Dietary supplements and natural products are often marketed as safe and effective alternatives to conventional drugs, but their safety and efficacy are not well regulated. To address the lack of scientific data in these areas, we assembled a collection of Dietary Supplements and Natural Products (DSNP), as well as Traditional Chinese Medicinal (TCM) plant extracts. These collections were then profiled in a series of in vitro high-throughput screening assays, including a liver cytochrome p450 enzyme panel, CAR/PXR signaling pathways, and P-glycoprotein (P-gp) transporter assay activities. This pipeline facilitated the interrogation of natural product-drug interaction (NaPDI) through prominent metabolizing pathways. In addition, we compared the activity profiles of the DSNP/TCM substances with those of an approved drug collection (the NCATS Pharmaceutical Collection or NPC). Many of the approved drugs have well-annotated mechanisms of action (MOAs), while the MOAs for most of the DSNP and TCM samples remain unknown. Based on the premise that compounds with similar activity profiles tend to share similar targets or MOA, we clustered the library activity profiles to identify overlap with the NPC to predict the MOAs of the DSNP/TCM substances. Our results suggest that many of these substances may have significant bioactivity and potential toxicity, and they provide a starting point for further research on their clinical relevance.
Collapse
Affiliation(s)
- Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Danielle Bougie
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Richard T Eastman
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Misha Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Jennifer Kouznetsova
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Crystal McKnight
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Mitch Miller
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Deborah K Ngan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Tyler Peryea
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
5
|
Pu Z, Bao X, Xia S, Shao P, Xu Y. Serpine1 Regulates Peripheral Neutrophil Recruitment and Acts as Potential Target in Ischemic Stroke. J Inflamm Res 2022; 15:2649-2663. [PMID: 35494316 PMCID: PMC9049872 DOI: 10.2147/jir.s361072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Peripheral neutrophil infiltration can exacerbate ischemia–reperfusion injury. We focused on the relationship between various peripheral immune cells and cerebral ischemia–reperfusion (I/R) injury. Methods In this study, we investigated the effects of dauricine on neuronal injury induced by ischemia–reperfusion and peripheral immune cells after ischemic stroke in mouse model, and we explored the undefined mechanisms of regulating peripheral immune cells through RNA sequencing and various biochemical verification in vitro and in vivo. Results We found that dauricine improved the neurological deficits of I/R injury, reduced the infarct volume, and improved the neurological scores. Furthermore, dauricine reduced the infiltration of neutrophils into the brain after MCAO-R and increased peripheral neutrophils but unchanged the permeability of the endotheliocyte Transwell system in an in vitro blood-brain barrier (BBB) model. RNA sequencing showed that chemotaxis factors, such as CXCL3, CXCL11, CCL20, CCL22, IL12a, IL23a, and serpine1, might play a crucial role. Overexpression of serpine1 reversed LPS-induced migration of neutrophils. Dauricine can directly bind with serpine1 in ligand–receptor docking performed with the Autodock and analyzed with PyMOL. Conclusion We identified chemotaxis factor serpine1 played a crucial role in peripheral neutrophil infiltration, which may contribute to reduce the neuronal injury induced by ischemia–reperfusion. These findings reveal that serpine1 may act as a potential treatment target in the acute stage of ischemic stroke.
Collapse
Affiliation(s)
- Zhijun Pu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Pengfei Shao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
- Correspondence: Yun Xu, Email
| |
Collapse
|
6
|
Zhang H, Wang X, Guo Y, Liu X, Zhao X, Teka T, Lv C, Han L, Huang Y, Pan G. Thirteen bisbenzylisoquinoline alkaloids in five Chinese medicinal plants: Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity studies. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113566. [PMID: 33166629 DOI: 10.1016/j.jep.2020.113566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
RELEVANCE Bisbenzylisoquinoline (BBIQ) alkaloids are generally present in plants of Berberidaceae, Monimiaceae and Ranunculaceae families in tropical and subtropical regions. Some species of these families are used in traditional Chinese medicine, with the effects of clearing away heat and detoxification, promoting dampness and defecation, and eliminating sores and swelling. This article offers essential data focusing on 13 representative BBIQ compounds, which are mainly extracted from five plants. The respective botany, traditional uses, phytochemistry, pharmacokinetics, and toxicity are summarized comprehensively. In addition, the ADME prediction of the 13 BBIQ alkaloids is compared and analyzed with the data obtained. MATERIALS AND METHODS We have conducted a systematic review of the botanical characteristics, traditional uses, phytochemistry, pharmacokinetics and toxicity of BBIQ alkaloids based on literatures collected from PubMed, Web of Science and Elsevier during 1999-2020. ACD/Percepta software was utilized to predict the pharmacokinetic parameters of BBIQ alkaloids and their affinity with enzymes and transporters. RESULTS Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity of 13 alkaloids, namely, tetrandrine, dauricine, curine, trilobine, isotrilobine, cepharanthine, daurisoline, thalicarpine, thalidasine, isotetrandrine, liensinine, neferine and isoliensinine, have been summarized in this paper. It can't be denied that these alkaloids are important material basis of pharmacological effects of family Menispermaceae and others, and for traditional and local uses which has been basically reproduced in the current studies. The 13 BBIQ alkaloids in this paper showed strong affinity and inhibitory effect on P-glycoprotein (P-gp), with poor oral absorption and potent binding ability with plasma protein. BBIQ alkaloids represented by tetrandrine play a key role in regulating P-gp or reversing multidrug resistance (MDR) in a variety of tumors. The irrationality of their usage could pose a risk of poisoning in vivo, including renal and liver toxicity, which are related to the formation of quinone methide during metabolism. CONCLUSION Although there is no further clinical evaluation of BBIQ alkaloids as MDR reversal agents, their effects on P-gp should not be ignored. Considering their diverse distribution, pharmacokinetic characteristics and toxicity reported during clinical therapy, the quality standards in different plant species and the drug dosage remain unresolved problems.
Collapse
Affiliation(s)
- Han Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Yaqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Xiaomei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Xizi Zhao
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Tekleab Teka
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Chunxiao Lv
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin-300250, China
| | - Lifeng Han
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China.
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin-300250, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin-300250, China.
| |
Collapse
|
7
|
Wei H, Han Y, Wang J, Hou T, Yao Y, Jin J, Zhao T, Zhang X, Liu Y, Liang X. Analgesic bisbenzylisoquinoline alkaloids from the rhizoma of Menispermum dauricum DC. Bioorg Chem 2020; 107:104517. [PMID: 33280831 DOI: 10.1016/j.bioorg.2020.104517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/04/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Fifteen new bisbenzylisoquinoline alkaloids (1-15) were isolated from the rhizome of Menispermum dauricum DC. Compounds 1-9 were new N-oxides of dauricine-type alkaloids. Compounds 10-14 were rare tail-to-tail quaternary alkaloids. Their structures were characterized by comprehensive analysis of spectroscopic data, and absolute configurations were established from electronic circular dichroism (ECD) data and ECD calculations. Compounds were assayed on analgesic-related G-protein coupled receptors (GPCRs) including dopamine D1 and D2 receptors, opioid Mu receptor and muscarinic M3 receptor. Compound 1 showed high affinity and selective antagonistic activity on the M3 receptor with an IC50 value of 2.2 ± 0.5 μM; compound 15 exhibited the highest antagonistic affinity among the evaluated compounds on Mu (IC50 = 1.1 ± 0.6 μM) and it also acted as a D1 receptor antagonist (IC50 = 8.8 ± 2.9 μM). These findings expanded the existing library of bisbenzylisoquinoline alkaloids and provided new structures for the related future drug design and synthesis.
Collapse
Affiliation(s)
- Hongli Wei
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Han
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jixia Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Hou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yumin Yao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jingmei Jin
- School of Life Sciences and Technology, Dalian University, Dalian, Liaoning 116622, China
| | - Tianyuan Zhao
- College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Xiuli Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yanfang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
8
|
Park HJ, Gholam Zadeh M, Suh JH, Choi HS. Dauricine Protects from LPS-Induced Bone Loss via the ROS/PP2A/NF-κB Axis in Osteoclasts. Antioxidants (Basel) 2020; 9:antiox9070588. [PMID: 32640590 PMCID: PMC7402093 DOI: 10.3390/antiox9070588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 01/03/2023] Open
Abstract
Dauricine (DAC), an isoquinoline alkaloid, exhibits anti-inflammatory activity. We hypothesized that DAC may prevent the inflammatory bone loss induced by lipopolysaccharide (LPS). LPS-induced bone loss was decreased by DAC in female C57BL/6J mice as evaluated by micro-computerized tomography (μCT) analysis. In vivo tartrate-resistant acid phosphatase (TRAP) staining showed that the increased number of osteoclasts (OCs) in LPS-treated mice was attenuated by DAC, indicating that DAC exhibited bone sparing effects through acting on OCs. DAC also decreased the differentiation and activity of OCs after LPS stimulation in vitro. LPS-induced cytosolic reactive oxygen species (cROS) oxidized PP2A, a serine/threonine phosphatase, leading to the activation of IKKα/β, followed by the nuclear localization of p65. DAC decreased LPS-induced ROS, resulting in the recovery of the activity of PP2A by reducing its oxidized form. Consequently, DAC reduced the phosphorylation of IKKα/β to block the nuclear localization of p65, which decreased NF-κB activation. Taken together, DAC reduced the differentiation and activity of OCs by decreasing ROS via the ROS/PP2A/NF-κB axis, resulting in protection from LPS-induced bone loss. We have demonstrated that LPS-induced bone loss was inhibited by DAC via its action on OCs, implying the therapeutic potential of DAC against inflammatory bone loss.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea; (H.-J.P.); (M.G.Z.)
| | | | - Jae-Hee Suh
- Department of Pathology, Ulsan University Hospital, Ulsan 44030, Korea;
| | - Hye-Seon Choi
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea; (H.-J.P.); (M.G.Z.)
- Correspondence: ; Tel.: +82-52-259-1545; Fax: +82-52-259-1694
| |
Collapse
|
9
|
Li M, Liu G, Wang K, Wang L, Fu X, Lim LY, Chen W, Mo J. Metal ion-responsive nanocarrier derived from phosphonated calix[4]arenes for delivering dauricine specifically to sites of brain injury in a mouse model of intracerebral hemorrhage. J Nanobiotechnology 2020; 18:61. [PMID: 32306970 PMCID: PMC7168846 DOI: 10.1186/s12951-020-00616-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
Primary intracerebral hemorrhage (ICH) is a leading cause of long-term disability and death worldwide. Drug delivery vehicles to treat ICH are less than satisfactory because of their short circulation lives, lack of specific targeting to the hemorrhagic site, and poor control of drug release. To exploit the fact that metal ions such as Fe2+ are more abundant in peri-hematomal tissue than in healthy tissue because of red blood cell lysis, we developed a metal ion-responsive nanocarrier based on a phosphonated calix[4]arene derivative in order to deliver the neuroprotective agent dauricine (DRC) specifically to sites of primary and secondary brain injury. The potential of the dauricine-loaded nanocarriers for ICH therapy was systematically evaluated in vitro and in mouse models of autologous whole blood double infusion. The nanocarriers significantly reduced brain water content, restored blood-brain barrier integrity and attenuated neurological deficits by inhibiting the activation of glial cells, infiltration by neutrophils as well as production of pro-inflammatory factors (IL-1β, IL-6, TNF-α) and matrix-metalloprotease-9. These results suggest that our dauricine-loaded nanocarriers can improve neurological outcomes in an animal model of ICH by reducing inflammatory injury and inhibiting apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Mingxin Li
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Guohao Liu
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,Department of Radiology, Affiliated Hospital of Jilin Medical University, Jilin, 132013, China
| | - Kaixuan Wang
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Lingfeng Wang
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Xiang Fu
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Wei Chen
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China. .,School of Pharmacy, Guilin Medical University, Guilin, 541001, China.
| | - Jingxin Mo
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China. .,School of Chemistry, University of New South Wales Sydney, Kensington, NSW, 2052, Australia.
| |
Collapse
|
10
|
Pu Z, Ma S, Wang L, Li M, Shang L, Luo Y, Chen W. Amyloid-beta Degradation and Neuroprotection of Dauricine Mediated by Unfolded Protein Response in a Caenorhabditis elegans Model of Alzheimer’s disease. Neuroscience 2018; 392:25-37. [DOI: 10.1016/j.neuroscience.2018.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 01/04/2023]
|
11
|
Geng P, Zhang J, Chen B, Wang Q, Wang S, Wen C. Determination and pharmacokinetic study of dauricine in rat plasma by UPLC–MS/MS. ACTA CHROMATOGR 2018. [DOI: 10.1556/1326.2017.00118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peiwu Geng
- The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Wenzhou Medical University, Lishui 323000, China
| | - Jing Zhang
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| | - Bingbao Chen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| | - Qianqian Wang
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Wenzhou Medical University, Lishui 323000, China
| | - Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|