1
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Khan K, Yu B, Tardif JC, Rhéaume E, Al-Kindi H, Filimon S, Pop C, Genest J, Cecere R, Schwertani A. Significance of the Wnt signaling pathway in coronary artery atherosclerosis. Front Cardiovasc Med 2024; 11:1360380. [PMID: 38586172 PMCID: PMC10995361 DOI: 10.3389/fcvm.2024.1360380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction The progression of coronary atherosclerosis is an active and regulated process. The Wnt signaling pathway is thought to play an active role in the pathogenesis of several cardiovascular diseases; however, a better understanding of this system in atherosclerosis is yet to be unraveled. Methods In this study, real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting were used to quantify the expression of Wnt3a, Wnt5a, and Wnt5b in the human coronary plaque, and immunohistochemistry was used to identify sites of local expression. To determine the pathologic significance of increased Wnt, human vascular smooth muscle cells (vSMCs) were treated with Wnt3a, Wnt5a, and Wnt5b recombinant proteins and assessed for changes in cell differentiation and function. Results RT-PCR and Western blotting showed a significant increase in the expression of Wnt3a, Wnt5a, Wnt5b, and their receptors in diseased coronary arteries compared with that in non-diseased coronary arteries. Immunohistochemistry revealed an abundant expression of Wnt3a and Wnt5b in diseased coronary arteries, which contrasted with little or no signals in normal coronary arteries. Immunostaining of Wnt3a and Wnt5b was found largely in inflammatory cells and myointimal cells. The treatment of vSMCs with Wnt3a, Wnt5a, and Wnt5b resulted in increased vSMC differentiation, migration, calcification, oxidative stress, and impaired cholesterol handling. Conclusions This study demonstrates the upregulation of three important members of canonical and non-canonical Wnt signaling pathways and their receptors in coronary atherosclerosis and shows an important role for these molecules in plaque development through increased cellular remodeling and impaired cholesterol handling.
Collapse
Affiliation(s)
- Kashif Khan
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Bin Yu
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | | | - Eric Rhéaume
- Department of Medicine, Montreal Heart Institute, Montreal, QC, Canada
| | - Hamood Al-Kindi
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Sabin Filimon
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Cristina Pop
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Jacques Genest
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Renzo Cecere
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Adel Schwertani
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
3
|
Garg A, Bandyopadhyay S. Role of an interdependent Wnt, GSK3-β/β-catenin and HB-EGF/EGFR mechanism in arsenic-induced hippocampal neurotoxicity in adult mice. CHEMOSPHERE 2024; 352:141375. [PMID: 38325618 DOI: 10.1016/j.chemosphere.2024.141375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
We previously reported the neurotoxic effects of arsenic in the hippocampus. Here, we explored the involvement of Wnt pathway, which contributes to neuronal functions. Administering environmentally relevant arsenic concentrations to postnatal day-60 (PND60) mice demonstrated a dose-dependent increase in hippocampal Wnt3a and its components, Frizzled, phospho-LRP6, Dishevelled and Axin1 at PND90 and PND120. However, p-GSK3-β(Ser9) and β-catenin levels although elevated at PND90, decreased at PND120. Additionally, treatment with Wnt-inhibitor, rDkk1, reduced p-GSK3-β(Ser9) and β-catenin at PND90, but failed to affect their levels at PND120, indicating a time-dependent link with Wnt. To explore other underlying factors, we assessed epidermal growth factor receptor (EGFR) pathway, which interacts with GSK3-β and appears relevant to neuronal functions. We primarily found that arsenic reduced hippocampal phosphorylated-EGFR and its ligand, Heparin-binding EGF-like growth factor (HB-EGF), at both PND90 and PND120. Moreover, treatment with HB-EGF rescued p-GSK3-β(Ser9) and β-catenin levels at PND120, suggesting their HB-EGF/EGFR-dependent regulation at this time point. Additionally, rDkk1, LiCl (GSK3-β-activity inhibitor), or β-catenin protein treatments induced a time-dependent recovery in HB-EGF, indicating potential inter-dependent mechanism between hippocampal Wnt/β-catenin and HB-EGF/EGFR following arsenic exposure. Fluorescence immunolabeling then validated these findings in hippocampal neurons. Further exploration of hippocampal neuronal survival and apoptosis demonstrated that treatment with rDkk1, LiCl, β-catenin and HB-EGF improved Nissl staining and NeuN levels, and reduced cleaved-caspase-3 levels in arsenic-treated mice. Supportively, we detected improved Y-Maze and Passive Avoidance performances for learning-memory functions in these mice. Overall, our study provides novel insights into Wnt/β-catenin and HB-EGF/EGFR pathway interaction in arsenic-induced hippocampal neurotoxicity.
Collapse
Affiliation(s)
- Asmita Garg
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanghamitra Bandyopadhyay
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
McCourt JL, Stearns-Reider KM, Mamsa H, Kannan P, Afsharinia MH, Shu C, Gibbs EM, Shin KM, Kurmangaliyev YZ, Schmitt LR, Hansen KC, Crosbie RH. Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways. Skelet Muscle 2023; 13:1. [PMID: 36609344 PMCID: PMC9817407 DOI: 10.1186/s13395-022-00311-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion complexes at the cell membrane, protecting the muscle from contraction-induced injury. In this study, we utilized transcriptomic and ECM protein-optimized proteomics data sets from wild-type, mdx, and mdx transgenic (mdxTG) skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression. METHODS The tibialis anterior and quadriceps muscles were isolated from wild-type, mdx, and mdxTG mice and subjected to bulk RNA-Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to identify candidate networks, signaling pathways, and upstream regulators. RESULTS Through our multi-omics approach, we identified 3 classes of differentially expressed genes and proteins in mdxTG muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), (2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most notably cytoskeleton and ECM organization pathways. ECM-optimized proteomics revealed an increased abundance of collagens II, V, and XI, along with β-spectrin in mdxTG samples. Using ingenuity pathway analysis, we identified upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mechanism of SSPN rescue through a rewiring of cell-ECM bidirectional communication. We found that SSPN overexpression results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt. CONCLUSIONS Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mechanotransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.
Collapse
Affiliation(s)
- Jackie L McCourt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Kristen M Stearns-Reider
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hafsa Mamsa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | | | - Cynthia Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Kara M Shin
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lauren R Schmitt
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, CO, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Condello S, Prasad M, Atwani R, Matei D. Tissue transglutaminase activates integrin-linked kinase and β-catenin in ovarian cancer. J Biol Chem 2022; 298:102242. [PMID: 35810788 PMCID: PMC9358478 DOI: 10.1016/j.jbc.2022.102242] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 10/26/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological cancer. OC cells have high proliferative capacity, are invasive, resist apoptosis, and tumors often display rearrangement of extracellular matrix (ECM) components, contributing to accelerated tumor progression. The multifunctional protein tissue transglutaminase (TG2) is known to be secreted in the tumor microenvironment (TME), where it interacts with fibronectin (FN) and the cell surface receptor β1 integrin. However, the mechanistic role of TG2 in cancer cell proliferation is unknown. Here, we demonstrate TG2 directly interacts with and facilitates the phosphorylation and activation of the integrin effector protein integrin-linked kinase (ILK) at Ser246. We show TG2 and p-Ser246-ILK form a complex that is detectable in patient-derived OC primary cells grown on FN-coated slides. In addition, we show co-expression of TGM2 and ILK correlates with poor clinical outcome. Mechanistically, we demonstrate TG2-mediated ILK activation causes phosphorylation of glycogen synthase kinase-3α/β (GSK-3α/β), allowing β-catenin nuclear translocation and transcriptional activity. Furthermore, inhibition of TG2 and ILK using small molecules, neutralizing antibodies, or shRNA-mediated knockdown block cell adhesion to the FN matrix, as well as the Wnt receptor response to the Wnt-3A ligand, and ultimately, cell adhesion, growth, and migration. In conclusion, we demonstrate TG2 directly interacts with and activates ILK in OC cells and tumors, and define a new mechanism which links ECM cues with β-catenin signaling in OC. These results suggest a central role of TG2/FN/integrin clusters in ECM rearrangement and indicate downstream effector ILK may represent a potential new therapeutic target in OC.
Collapse
Affiliation(s)
- Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202; Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202.
| | - Mayuri Prasad
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202; Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Rula Atwani
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202; Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; Robert H Lurie Comprehensive Cancer Center, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
6
|
Yu H, Zhou C, Hu D, Li C, Wang Q, Xue W, Peng A. Uremic toxin indoxyl sulfate induces dysfunction of vascular smooth muscle cells via integrin-β1/ERK signaling pathway. Clin Exp Nephrol 2022; 26:640-648. [PMID: 35333997 DOI: 10.1007/s10157-022-02195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Protein-bound uremic toxins (PBUTs) are reported to be one of the major culprits in chronic kidney disease-cardiovascular disease (CKD-CVD) development, yet its mechanism is not fully clear. Our previous study confirmed elevated expression of integrin-β1 (ITGβ1) in vascular smooth muscle cells of uremic patients. Thus, this study aimed to explore the relationship between PBUTs and ITGβ1 in uremic vasculature injury. METHODS Human umbilical vein smooth muscle cells (HUVSMCs) and endothelial cells (HUVECs) were treated with two representative PUBTs, indoxyl sulfate (IS) and p-cresyl sulfate (PC). Both cells were measured for the expression of ITGβ1 and downstream signaling pathways and assayed for proliferation, migration, adhesion and apoptosis. RESULTS The IS treatments were observed with significantly up-regulated ITGβ1 in HUVSMCs but not in HUVECs, while PC did not induce ITGβ1 alteration in either HUVSMCs or HUVECs. Furthermore, overexpression of ITGβ1 revealed activated downstream signal-regulated kinase (ERK) signaling pathway with promoted focal adhesion, migration, proliferation but no apoptosis in HUVSMCs by IS. These functional and pathway alterations could be significantly suppressed by RNA interference of ITGβ1. More importantly, the application of ERK1/2 inhibitor significantly suppressed the focal adhesion, migration and proliferation of HUVSMCs. CONCLUSION We first demonstrated that ITGβ1/ERK signaling pathway mediated abnormal focal adhesion, migration and proliferation of vascular smooth muscle cells stimulated by IS. ITGβ1/ERK signaling may serve as a novel therapeutic target for CKD-CVD.
Collapse
Affiliation(s)
- Haibo Yu
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunyu Zhou
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Dayong Hu
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Changbin Li
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Qiang Wang
- Department of Nephrology, Qilu Hospital of Shandong University (Qingdao), Qingdao, People's Republic of China
| | - Wen Xue
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| | - Ai Peng
- Division of Nephrology, Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
7
|
Sun H, Feng J, Ma Y, Cai D, Luo Y, Wang Q, Li F, Zhang M, Hu Q. Down-regulation of microRNA-342-5p or Up-regulation of Wnt3a Inhibits Angiogenesis and Maintains Atherosclerotic Plaque Stability in Atherosclerosis Mice. NANOSCALE RESEARCH LETTERS 2021; 16:165. [PMID: 34807315 PMCID: PMC8609054 DOI: 10.1186/s11671-021-03608-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/21/2021] [Indexed: 05/12/2023]
Abstract
Evidence has demonstrated that microRNA-342-5p (miR-342-5p) is implicated in atherosclerosis (AS), but little is known regarding its intrinsic regulatory mechanisms. Here, we aimed to explore the effect of miR-342-5p targeting Wnt3a on formation of vulnerable plaques and angiogenesis of AS. ApoE-/- mice were fed with high-fat feed for 16 w to replicate the AS vulnerable plaque model. miR-342-5p and Wnt3a expression in aortic tissues of AS were detected. The target relationship between miR-342-5p and Wnt3a was verified. Moreover, ApoE-/- mice were injected with miR-342-5p antagomir and overexpression-Wnt3a vector to test their functions in serum lipid levels, inflammatory and oxidative stress-related cytokines, aortic plaque stability and angiogenesis in plaque of AS mice. miR-342-5p expression was enhanced and Wnt3a expression was degraded in aortic tissues of AS mice and miR-342-5p directly targeted Wnt3a. Up-regulating Wnt3a or down-regulating miR-342-5p reduced blood lipid content, inflammatory and oxidative stress levels, the vulnerability of aortic tissue plaque and inhibited angiogenesis in aortic plaque of AS mice. Functional studies show that depleting miR-342-5p can stabilize aortic tissue plaque and reduce angiogenesis in plaque in AS mice via restoring Wnt3a.
Collapse
Affiliation(s)
- Haixia Sun
- Department of Cardiac Ultrasound, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Jinhua Feng
- Department of General Practitioner, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China
| | - Yan Ma
- Department of Cardiac Ultrasound, Haixi People's Hospital, Delingha, 817099, Qinghai, China
| | - Ding Cai
- Department of Neurology, Qinghai Provincial People's Hospital, No. 2 Gonghe Road, East District, Xining, 810007, Qinghai Province, China
| | - Yulu Luo
- Department of Cardiac Ultrasound, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Qinggong Wang
- Department of Cardiac Ultrasound, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Fang Li
- Department of Cardiac Ultrasound, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Mingyue Zhang
- Department of Cardiac Ultrasound, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Quanzhong Hu
- Department of Neurology, Qinghai Provincial People's Hospital, No. 2 Gonghe Road, East District, Xining, 810007, Qinghai Province, China.
| |
Collapse
|
8
|
Bundy K, Boone J, Simpson CL. Wnt Signaling in Vascular Calcification. Front Cardiovasc Med 2021; 8:708470. [PMID: 34595218 PMCID: PMC8476789 DOI: 10.3389/fcvm.2021.708470] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is a worldwide epidemic and considered the leading cause of death globally. Due to its high mortality rates, it is imperative to study the underlying causes and mechanisms of the disease. Vascular calcification, or the buildup of hydroxyapatite within the arterial wall, is one of the greatest contributors to cardiovascular disease. Medial vascular calcification is a predictor of cardiovascular events such as, but not limited to, hypertension, stiffness, and even heart failure. Vascular smooth muscle cells (VSMCs), which line the arterial wall and function to maintain blood pressure, are hypothesized to undergo a phenotypic switch into bone-forming cells during calcification, mimicking the manner by which mesenchymal stem cells differentiate into osteoblast cells throughout osteogenesis. RunX2, a transcription factor necessary for osteoblast differentiation and a target gene of the Wnt signaling pathway, has also shown to be upregulated when calcification is present, implicating that the Wnt cascade may be a key player in the transdifferentiation of VSMCs. It is important to note that the phenotypic switch of VSMCs from a healthy, contractile state to a proliferative, synthetic state is necessary in response to the vascular injury surrounding calcification. The lingering question, however, is if VSMCs acquire this synthetic phenotype through the Wnt pathway, how and why does this signaling occur? This review seeks to highlight the potential role of the canonical Wnt signaling pathway within vascular calcification based on several studies and further discuss the Wnt ligands that specifically aid in VSMC transdifferentiation.
Collapse
Affiliation(s)
- Kaylee Bundy
- Agricultural and Biological Engineering, Mississippi State University, Starkville, MS, United States
| | - Jada Boone
- Agricultural and Biological Engineering, Mississippi State University, Starkville, MS, United States
| | - C LaShan Simpson
- Agricultural and Biological Engineering, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
9
|
Li Z, Lian Z, Ma J, Zhang L, Lian X, Liu S, Xie J, Feng Z, Lin T, Zhang H, Liang X. Integrin β3 overexpression contributes to podocyte injury through inhibiting RhoA/YAP signaling pathway. Bioengineered 2021; 12:1138-1149. [PMID: 33818281 PMCID: PMC8806314 DOI: 10.1080/21655979.2021.1906097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Axis formed by integrin β3 (ITGβ3)-Ras homolog gene family, member A (RhoA), and Yes-associated protein (YAP) plays an important role in atherosclerosis. In addition, ITGβ3 overexpression was noted in high-glucose (HG) exposure podocytes. However, the ITGβ3–RhoA–YAP axis on HG-induced podocyte injury remains unclear. This study aimed to investigate whether ITGβ3 regulates podocyte injury by regulating the RhoA–YAP axis. The function and potential mechanism of ITGβ3 were observed through in vitro wound-healing assays, flow cytometry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blot assay. Results showed that HG treatment increased the ability of wound closure and apoptosis; however, in spite of HG treatment, ITGβ3 inhibition mitigated the ability of wound closure and apoptosis in podocytes. By contrast, overexpression of ITGβ3 increased the wound closure and apoptosis abilities of podocytes. Under HG treatment, ITGβ3 knockdown is associated with upregulation of RhoA, total YAP1, and nucleus YAP1, whereas ITGβ3 overexpression has opposite effect. In addition, RhoA overexpression in podocytes reverses the effect of ITGβ3 overexpression on the wound closure and apoptosis abilities of podocytes, rescue the expression of YAP in ITGβ3 overexpression podocytes. Taken together, ITGβ3 overexpression promotes podocytes injury by inhibiting RhoA-YAP axis. This will provide a new clue for preventing podocyte from damage.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiwen Lian
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jianchao Ma
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingji Lian
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jianteng Xie
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhonglin Feng
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ting Lin
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
10
|
Zhao XY, Hu SY, Yang JL, Chen XM, Huang XL, Tang LJ, Gu L, Su L. A 3' Untranslated Region Polymorphism of CTNNB1 (Rs2953) Alters MiR-3161 Binding and Affects the Risk of Ischemic Stroke and Coronary Artery Disease in Chinese Han Population. Eur Neurol 2021; 84:85-95. [PMID: 33789307 DOI: 10.1159/000514543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND CTNNB1 is reported to be related to the pathological process of ischemic stroke (IS) and coronary artery disease (CAD). Polymorphism located in the 3' untranslated region (3'UTR) of a gene might affect gene expression by modifying binding sites for microRNAs (miRNAs). This study aimed to analyze the association between polymorphism rs2953, which locates in the 3'UTR of CTNNB1, and the risk of IS and CAD. METHODS The CTNNB1 messenger RNA (mRNA) expression level in peripheral venous blood was measured. In total, 533 patients with IS, 500 patients with CAD, and 531 healthy individuals were genotyped by Sequenom Mass-Array technology. The binding of miR-3161 to CTNNB1 was determined by dual-luciferase reporter assay. RESULTS The CTNNB1 mRNA expression level for the IS group was significantly lower than that for the control group. Rs2953 was significantly associated with both IS risk and CAD risk. Significant association was also found between polymorphism rs2953 and many conventional factors, such as serum lipid level, blood coagulation markers, blood glucose level, and homocysteine level in patients. Rs2953 T allele introduced a binding site to miRNA-3161 and thus decreased luciferase activity. CONCLUSION Polymorphism rs2953 is associated with the risk of both IS and CAD. Moreover, polymorphism rs2953 (T) introduces a binding site to miRNA-3161 and thus decreases luciferase activity in cell lines.
Collapse
Affiliation(s)
- Xin-Yi Zhao
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Shu-Yan Hu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jia-Lei Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xing-Mei Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Xian-Li Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Lue-Jun Tang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Lian Gu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Li Su
- School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, China
| |
Collapse
|
11
|
Tyson J, Bundy K, Roach C, Douglas H, Ventura V, Segars MF, Schwartz O, Simpson CL. Mechanisms of the Osteogenic Switch of Smooth Muscle Cells in Vascular Calcification: WNT Signaling, BMPs, Mechanotransduction, and EndMT. Bioengineering (Basel) 2020; 7:bioengineering7030088. [PMID: 32781528 PMCID: PMC7552614 DOI: 10.3390/bioengineering7030088] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
Characterized by the hardening of arteries, vascular calcification is the deposition of hydroxyapatite crystals in the arterial tissue. Calcification is now understood to be a cell-regulated process involving the phenotypic transition of vascular smooth muscle cells into osteoblast-like cells. There are various pathways of initiation and mechanisms behind vascular calcification, but this literature review highlights the wingless-related integration site (WNT) pathway, along with bone morphogenic proteins (BMPs) and mechanical strain. The process mirrors that of bone formation and remodeling, as an increase in mechanical stress causes osteogenesis. Observing the similarities between the two may aid in the development of a deeper understanding of calcification. Both are thought to be regulated by the WNT signaling cascade and bone morphogenetic protein signaling and can also be activated in response to stress. In a pro-calcific environment, integrins and cadherins of vascular smooth muscle cells respond to a mechanical stimulus, activating cellular signaling pathways, ultimately resulting in gene regulation that promotes calcification of the vascular extracellular matrix (ECM). The endothelium is also thought to contribute to vascular calcification via endothelial to mesenchymal transition, creating greater cell plasticity. Each of these factors contributes to calcification, leading to increased cardiovascular mortality in patients, especially those suffering from other conditions, such as diabetes and kidney failure. Developing a better understanding of the mechanisms behind calcification may lead to the development of a potential treatment in the future.
Collapse
|
12
|
Sonn I, Nakamura M, Renault-Mihara F, Okano H. Polarization of Reactive Astrocytes in Response to Spinal Cord Injury is Enhanced by M2 Macrophage-Mediated Activation of Wnt/β-Catenin Pathway. Mol Neurobiol 2019; 57:1847-1862. [PMID: 31845093 DOI: 10.1007/s12035-019-01851-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023]
Abstract
Understanding the mechanisms of glial scar formation by reactive astrocytes is crucial for elaborating a therapeutic strategy to brain and spinal cord injury. However, the extrinsic mechanisms that drive the polarization of reactive astrocytes, the first step in glial scar formation, remain poorly understood. Here, using an in vitro chemotaxis assay as an experimental model for polarization, we observed that Il4-M2 macrophages are stronger inducers of reactive astrocytes' polarization, compared to naive or M1 macrophages. Then, we showed that both β1-integrin and Wnt/β-catenin pathways in astrocytes are required for this polarization in vitro and in vivo after spinal cord crush injury in mice. These findings provide molecular targets for manipulating the polarization of reactive astrocytes in order to potentially enhance the healing of SCI lesions.
Collapse
Affiliation(s)
- Iki Sonn
- Department of Physiology, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Francois Renault-Mihara
- Department of Physiology, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
13
|
Wadey K, Lopes J, Bendeck M, George S. Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovasc Res 2019; 114:601-610. [PMID: 29373656 DOI: 10.1093/cvr/cvy021] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/22/2018] [Indexed: 01/30/2023] Open
Abstract
Atherosclerosis is the underlying pathology of many cardiovascular diseases. The formation and rupture of atherosclerotic plaques in the coronary arteries results in angina and myocardial infarction. Venous coronary artery bypass grafts are designed to reduce the consequences of atherosclerosis in the coronary arteries by diverting blood flow around the atherosclerotic plaques. However, vein grafts suffer a high failure rate due to intimal thickening that occurs as a result of vascular cell injury and activation and can act as 'a soil' for subsequent atherosclerotic plaque formation. A clinically-proven method for the reduction of vein graft intimal thickening and subsequent major adverse clinical events is currently not available. Consequently, a greater understanding of the underlying mechanisms of intimal thickening may be beneficial for the design of future therapies for vein graft failure. Vein grafting induces inflammation and endothelial cell damage and dysfunction, that promotes vascular smooth muscle cell (VSMC) migration, and proliferation. Injury to the wall of the vein as a result of grafting leads to the production of chemoattractants, remodelling of the extracellular matrix and cell-cell contacts; which all contribute to the induction of VSMC migration and proliferation. This review focuses on the role of altered behaviour of VSMCs in the vein graft and some of the factors which critically lead to intimal thickening that pre-disposes the vein graft to further atherosclerosis and re-occurrence of symptoms in the patient.
Collapse
Affiliation(s)
- Kerry Wadey
- Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Joshua Lopes
- Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Michelle Bendeck
- Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sarah George
- Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| |
Collapse
|
14
|
Vallée A, Vallée JN, Lecarpentier Y. Metabolic reprogramming in atherosclerosis: Opposed interplay between the canonical WNT/β-catenin pathway and PPARγ. J Mol Cell Cardiol 2019; 133:36-46. [PMID: 31153873 DOI: 10.1016/j.yjmcc.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Atherosclerosis, a chronic inflammatory and age-related disease, is a complex mechanism presenting a dysregulation of vessel structures. During this process, the canonical WNT/β-catenin pathway is increased whereas PPARγ is downregulated. The two systems act in an opposite manner. This paper reviews the opposing interplay of these systems and their metabolic-reprogramming pathway in atherosclerosis. Activation of the WNT/β-catenin pathway enhances the transcription of targets involved in inflammation, endothelial dysfunction, the proliferation of vascular smooth muscle cells, and vascular calcification. This complex mechanism, which is partly controlled by the WNT/β-catenin pathway, presents several metabolic dysfunctions. This phenomenon, called aerobic glycolysis (or the Warburg effect), consists of a shift in ATP production from mitochondrial oxidative phosphorylation to aerobic glycolysis, leading to the overproduction of intracellular lactate. This mechanism is partially due to the injury of mitochondrial respiration and an increase in the glycolytic pathway. In contrast, PPARγ agonists downregulate the WNT/β-catenin pathway. Therefore, the development of therapeutic targets, such as PPARγ agonists, for the treatment of atherosclerosis could be an interesting and innovative way of counteracting the canonical WNT pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, Paris, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France; Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| |
Collapse
|
15
|
HGF promotes HTR-8/SVneo cell migration through activation of MAPK/PKA signaling leading to up-regulation of WNT ligands and integrins that target β-catenin. Mol Cell Biochem 2018; 453:11-32. [DOI: 10.1007/s11010-018-3428-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/16/2018] [Indexed: 02/01/2023]
|
16
|
Abstract
Chronic diseases account for approximately 45% of all deaths in developed countries and are particularly prevalent in countries with the most sophisticated and robust public health systems. Chronic metabolic diseases, specifically lifestyle-related diseases pertaining to diet and exercise, continue to be difficult to treat clinically. The most prevalent of these chronic metabolic diseases include obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiovascular disease and will be the focus of this review. Wnt proteins are highly conserved glycoproteins best known for their role in development and homeostasis of tissues. Given the importance of Wnt signalling in homeostasis, aberrant Wnt signalling likely regulates metabolic processes and may contribute to the development of chronic metabolic diseases. Expression of Wnt proteins and dysfunctional Wnt signalling has been reported in multiple chronic diseases. It is interesting to speculate about an interrelationship between the Wnt signalling pathways as a potential pathological mechanism in chronic metabolic diseases. The aim of this review is to summarize reported findings on the contrasting roles of Wnt signalling in lifestyle-related chronic metabolic diseases; specifically, the contribution of Wnt signalling to lipid accumulation, fibrosis and chronic low-grade inflammation.
Collapse
Affiliation(s)
- Ian Ackers
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- OHF Fellow, Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Ramiro Malgor
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Ramiro Malgor, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 202b Academic & Research Center, Athens, OH, 45701-2979 USA.
| |
Collapse
|
17
|
Petpiroon N, Sritularak B, Chanvorachote P. Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin αv and integrin β3. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:553. [PMID: 29284478 PMCID: PMC5747023 DOI: 10.1186/s12906-017-2059-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/12/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND The conversion of the epithelial phenotype of cancer cells into cells with a mesenchymal phenotype-so-called epithelial-mesenchymal transition (EMT)-has been shown to enhance the capacity of the cells to disseminate throughout the body. EMT is therefore becoming a potential target for anti-cancer drug discovery. Here, we showed that phoyunnanin E, a compound isolated from Dendrobium venustum, possesses anti-migration activity and addressed its mechanism of action. METHODS The cytotoxic and proliferative effects of phoyunnanin E on human non-small cell lung cancer-derived H460, H292, and A549 cells and human keratinocyte HaCaT cells were investigated by MTT assay. The effect of phoyunnanin E on EMT was evaluated by determining the colony formation and EMT markers. The migration and invasion of H460, H292, A549 and HaCaT cells was evaluated by wound healing assay and transwell invasion assay, respectively. EMT markers, integrins and migration-associated proteins were examined by western blot analysis. RESULTS Phoyunnanin E at the concentrations of 5 and 10 μM, which are non-toxic to H460, H292, A549 and HaCaT cells showed good potential to inhibit the migratory activity of three types of human lung cancer cells. The anti-migration effect of phoyunnanin E was shown to relate to the suppressed EMT phenotypes, including growth in anchorage-independent condition, cell motility, and EMT-specific protein markers (N-cadherin, vimentin, slug, and snail). In addition to EMT suppression, we found that phoyunnanin E treatment with 5 and 10 μM could decrease the cellular level of integrin αv and integrin β3, these integrins are frequently up-regulated in highly metastatic tumor cells. We further characterized the regulatory proteins in cell migration and found that the cells treated with phoyunnanin E exhibited a significantly lower level of phosphorylated focal adhesion kinase (p-FAK) and phosphorylated ATP-dependent tyrosine kinase (p-AKT), and their downstream effectors (including Ras-related C3 botulinum (Rac-GTP); Cell division cycle 42 (Cdc42); and Ras homolog gene family, member A (Rho-GTP)) in comparison to those of the non-treated control. CONCLUSIONS We have determined for the first time that phoyunnanin E could inhibit the motility of lung cancer cells via the suppression of EMT and metastasis-related integrins. This new information could support further development of this compound for anti-metastasis approaches.
Collapse
|
18
|
A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway. Mol Neurodegener 2017; 12:54. [PMID: 28697798 PMCID: PMC5505151 DOI: 10.1186/s13024-017-0193-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/20/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Autosomal-dominant mutations in the Park8 gene encoding Leucine-rich repeat kinase 2 (LRRK2) have been identified to cause up to 40% of the genetic forms of Parkinson's disease. However, the function and molecular pathways regulated by LRRK2 are largely unknown. It has been shown that LRRK2 serves as a scaffold during activation of WNT/β-catenin signaling via its interaction with the β-catenin destruction complex, DVL1-3 and LRP6. In this study, we examine whether LRRK2 also interacts with signaling components of the WNT/Planar Cell Polarity (WNT/PCP) pathway, which controls the maturation of substantia nigra dopaminergic neurons, the main cell type lost in Parkinson's disease patients. METHODS Co-immunoprecipitation and tandem mass spectrometry was performed in a mouse substantia nigra cell line (SN4741) and human HEK293T cell line in order to identify novel LRRK2 binding partners. Inhibition of the WNT/β-catenin reporter, TOPFlash, was used as a read-out of WNT/PCP pathway activation. The capacity of LRRK2 to regulate WNT/PCP signaling in vivo was tested in Xenopus laevis' early development. RESULTS Our proteomic analysis identified that LRRK2 interacts with proteins involved in WNT/PCP signaling such as the PDZ domain-containing protein GIPC1 and Integrin-linked kinase (ILK) in dopaminergic cells in vitro and in the mouse ventral midbrain in vivo. Moreover, co-immunoprecipitation analysis revealed that LRRK2 binds to two core components of the WNT/PCP signaling pathway, PRICKLE1 and CELSR1, as well as to FLOTILLIN-2 and CULLIN-3, which regulate WNT secretion and inhibit WNT/β-catenin signaling, respectively. We also found that PRICKLE1 and LRRK2 localize in signalosomes and act as dual regulators of WNT/PCP and β-catenin signaling. Accordingly, analysis of the function of LRRK2 in vivo, in X. laevis revelaed that LRKK2 not only inhibits WNT/β-catenin pathway, but induces a classical WNT/PCP phenotype in vivo. CONCLUSIONS Our study shows for the first time that LRRK2 activates the WNT/PCP signaling pathway through its interaction to multiple WNT/PCP components. We suggest that LRRK2 regulates the balance between WNT/β-catenin and WNT/PCP signaling, depending on the binding partners. Since this balance is crucial for homeostasis of midbrain dopaminergic neurons, we hypothesize that its alteration may contribute to the pathophysiology of Parkinson's disease.
Collapse
|
19
|
|
20
|
Lai KKY, Kweon SM, Chi F, Hwang E, Kabe Y, Higashiyama R, Qin L, Yan R, Wu RP, Lai K, Fujii N, French S, Xu J, Wang JY, Murali R, Mishra L, Lee JS, Ntambi JM, Tsukamoto H. Stearoyl-CoA Desaturase Promotes Liver Fibrosis and Tumor Development in Mice via a Wnt Positive-Signaling Loop by Stabilization of Low-Density Lipoprotein-Receptor-Related Proteins 5 and 6. Gastroenterology 2017; 152:1477-1491. [PMID: 28143772 PMCID: PMC5406249 DOI: 10.1053/j.gastro.2017.01.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Stearoyl-CoA desaturase (SCD) synthesizes monounsaturated fatty acids (MUFAs) and has been associated with the development of metabolic syndrome, tumorigenesis, and stem cell characteristics. We investigated whether and how SCD promotes liver fibrosis and tumor development in mice. METHODS Rodent primary hepatic stellate cells (HSCs), mouse liver tumor-initiating stem cell-like cells (TICs), and human hepatocellular carcinoma (HCC) cell lines were exposed to Wnt signaling inhibitors and changes in gene expression patterns were analyzed. We assessed the functions of SCD by pharmacologic and conditional genetic manipulation in mice with hepatotoxic or cholestatic induction of liver fibrosis, orthotopic transplants of TICs, or liver tumors induced by administration of diethyl nitrosamine. We performed bioinformatic analyses of SCD expression in HCC vs nontumor liver samples collected from patients, and correlated levels with HCC stage and patient mortality. We performed nano-bead pull-down assays, liquid chromatography-mass spectrometry, computational modeling, and ribonucleoprotein immunoprecipitation analyses to identify MUFA-interacting proteins. We examined the effects of SCD inhibition on Wnt signaling, including the expression and stability of low-density lipoprotein-receptor-related proteins 5 and 6 (LRP5 and LRP6), by immunoblot and quantitative polymerase chain reaction analyses. RESULTS SCD was overexpressed in activated HSC and HCC cells from patients; levels of SCD messenger RNA (mRNA) correlated with HCC stage and patient survival time. In rodent HSCs and TICs, the Wnt effector β-catenin increased sterol regulatory element binding protein 1-dependent transcription of Scd, and β-catenin in return was stabilized by MUFAs generated by SCD. This loop required MUFA inhibition of binding of Ras-related nuclear protein 1 (Ran1) to transportin 1 and reduced nuclear import of elav-like protein 1 (HuR), increasing cytosolic levels of HuR and HuR-mediated stabilization of mRNAs encoding LRP5 and LRP6. Genetic disruption of Scd and pharmacologic inhibitors of SCD reduced HSC activation and TIC self-renewal and attenuated liver fibrosis and tumorigenesis in mice. Conditional disruption of Scd2 in activated HSCs prevented growth of tumors from TICs and reduced the formation of diethyl nitrosamine-induced liver tumors in mice. CONCLUSIONS In rodent HSCs and TICs, we found SCD expression to be regulated by Wnt-β-catenin signaling, and MUFAs produced by SCD provided a forward loop to amplify Wnt signaling via stabilization of Lrp5 and Lrp6 mRNAs, contributing to liver fibrosis and tumor growth. SCD expressed by HSCs promoted liver tumor development in mice. Components of the identified loop linking HSCs and TICs might be therapeutic targets for liver fibrosis and tumors.
Collapse
Affiliation(s)
- Keane K Y Lai
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Soo-Mi Kweon
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Feng Chi
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Edward Hwang
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Reiichi Higashiyama
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Lan Qin
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Rui Yan
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Raymond P Wu
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Keith Lai
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Samuel French
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California; Harbor-University of California Los Angeles Medical Center, Torrance, California
| | - Jun Xu
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Jian-Ying Wang
- Departments of Surgery and Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ramachandran Murali
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lopa Mishra
- Department of Surgery and Cancer Center, George Washington University, Washington, District of Columbia
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California; Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, California.
| |
Collapse
|
21
|
Smith AA, Li J, Liu B, Hunter D, Pyles M, Gillette M, Dhamdhere GR, Abo A, Oro A, Helms JA. Activating Hair Follicle Stem Cells via R-spondin2 to Stimulate Hair Growth. J Invest Dermatol 2016; 136:1549-1558. [DOI: 10.1016/j.jid.2016.01.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 12/31/2022]
|
22
|
Williams H, Mill CAE, Monk BA, Hulin-Curtis S, Johnson JL, George SJ. Wnt2 and WISP-1/CCN4 Induce Intimal Thickening via Promotion of Smooth Muscle Cell Migration. Arterioscler Thromb Vasc Biol 2016; 36:1417-24. [PMID: 27199447 DOI: 10.1161/atvbaha.116.307626] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Increased vascular smooth muscle cell (VSMC) migration leads to intimal thickening which acts as a soil for atherosclersosis, as well as causing coronary artery restenosis after stenting and vein graft failure. Investigating factors involved in VSMC migration may enable us to reduce intimal thickening and improve patient outcomes. In this study, we determined whether Wnt proteins regulate VSMC migration and thereby intimal thickening. APPROACH AND RESULTS Wnt2 mRNA and protein expression were specifically increased in migrating mouse aortic VSMCs. Moreover, VSMC migration was induced by recombinant Wnt2 in vitro. Addition of recombinant Wnt2 protein increased Wnt1-inducible signaling pathway protein-1 (WISP-1) mRNA by ≈1.7-fold, via β-catenin/T-cell factor signaling, whereas silencing RNA knockdown of Wnt-2 reduced WISP-1 mRNA by ≈65%. Treatment with rWISP-1 significantly increased VSMC migration by ≈1.5-fold, whereas WISP-1 silencing RNA knockdown reduced migration by ≈40%. Wnt2 and WISP-1 effects were integrin-dependent and not additive, indicating that Wnt2 promoted VSMC migration via WISP-1. Additionally, Wnt2 and WISP-1 were significantly increased and colocated in human coronary arteries with intimal thickening. Reduced Wnt2 and WISP-1 levels in mouse carotid arteries from Wnt2(+/-) and WISP-1(-/-) mice, respectively, significantly suppressed intimal thickening in response to carotid artery ligation. In contrast, elevation of plasma WISP-1 via an adenovirus encoding WISP-1 significantly increased intimal thickening by ≈1.5-fold compared with mice receiving control virus. CONCLUSIONS Upregulation of Wnt2 expression enhanced WISP-1 and promoted VSMC migration and thereby intimal thickening. As novel regulators of VSMC migration and intimal thickening, Wnt2 or WISP-1 may provide a potential therapy for restenosis and vein graft failure.
Collapse
Affiliation(s)
- Helen Williams
- From the School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Carina A E Mill
- From the School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Bethan A Monk
- From the School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Sarah Hulin-Curtis
- From the School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Jason L Johnson
- From the School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Sarah J George
- From the School of Clinical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
23
|
Abstract
Wnt signaling encompasses multiple and complex signaling cascades and is involved in many developmental processes such as tissue patterning, cell fate specification, and control of cell division. Consequently, accurate regulation of signaling activities is essential for proper embryonic development. Wnt signaling is mostly silent in the healthy adult organs but a reactivation of Wnt signaling is generally observed under pathological conditions. This has generated increasing interest in this pathway from a therapeutic point of view. In this review article, the involvement of Wnt signaling in cardiovascular development will be outlined, followed by its implication in myocardial infarct healing, cardiac hypertrophy, heart failure, arrhythmias, and atherosclerosis. The initial experiments not always offer consensus on the effects of activation or inactivation of the pathway, which may be attributed to (i) the type of cardiac disease, (ii) timing of the intervention, and (iii) type of cells that are targeted. Therefore, more research is needed to determine the exact implication of Wnt signaling in the conditions mentioned above to exploit it as a powerful therapeutic target.
Collapse
|
24
|
LI ZHUO, ZHANG LI, SHI WEI, CHEN YUANHAN, ZHANG HONG, LIU SHUANGXIN, LIANG XINLING, LING TING, YU CHUNPING, HUANG ZHONGSHUN, TAN XIAOFAN, ZHAO XINCHEN, YE ZHIMING, ZHANG BIN, WANG WENJIAN, LI RUIZHAO, MA JIANCHAO. Spironolactone inhibits podocyte motility via decreasing integrin β1 and increasing integrin β3 in podocytes under high-glucose conditions. Mol Med Rep 2015; 12:6849-54. [PMID: 26352002 DOI: 10.3892/mmr.2015.4295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/29/2015] [Indexed: 01/19/2023] Open
|