1
|
Yang J, Ye K, Zhang R, Fan X, Xiong R, Zhang S, Liu Q, Lin M, Wang B, Tan X, Wen Q, Ou X. The characteristics and molecular targets of antiarrhythmic natural products. Biomed Pharmacother 2023; 168:115762. [PMID: 37897974 DOI: 10.1016/j.biopha.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Arrhythmia is one of the most common cardiovascular diseases. The search for new drugs to suppress various types of cardiac arrhythmias has always been the focus of attention. In the past decade, the screening of antiarrhythmic active substances from plants has received extensive attention. These natural compounds have obvious antiarrhythmic effects, and chemical modifications based on natural compounds have greatly increased their pharmacological properties. The chemical modification of botanical antiarrhythmic drugs is closely related to the development of new and promising drugs. Therefore, the structural characteristics and action targets of natural compounds with antiarrhythmic effects are reviewed in this paper, so that pharmacologists can select antiarrhythmic lead compounds from natural compounds based on the disease target - chemical structural characteristics.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; Department of Pharmacy, Santai County People's Hospital of Sichuan Province, Mianyang 621100, China
| | - Kejun Ye
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; Pharmacy Department, Chongqing Armed Police Corps Hospital, Chongqing 400061, China
| | - Rui Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xinrong Fan
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Rui Xiong
- Department of Pharmacy of the 958 Hospital of Chinese PLA/Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Shiyu Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Qiming Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Miao Lin
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bin Wang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Qiang Wen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, Guangxi Province, China.
| |
Collapse
|
2
|
Henley T, Goudy J, Easterling M, Donley C, Wirka R, Bressan M. Local tissue mechanics control cardiac pacemaker cell embryonic patterning. Life Sci Alliance 2023; 6:e202201799. [PMID: 36973005 PMCID: PMC10043993 DOI: 10.26508/lsa.202201799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac pacemaker cells (CPCs) initiate the electric impulses that drive the rhythmic beating of the heart. CPCs reside in a heterogeneous, ECM-rich microenvironment termed the sinoatrial node (SAN). Surprisingly, little is known regarding the biochemical composition or mechanical properties of the SAN, and how the unique structural characteristics present in this region of the heart influence CPC function remains poorly understood. Here, we have identified that SAN development involves the construction of a "soft" macromolecular ECM that specifically encapsulates CPCs. In addition, we demonstrate that subjecting embryonic CPCs to substrate stiffnesses higher than those measured in vivo results in loss of coherent electrical oscillation and dysregulation of the HCN4 and NCX1 ion channels required for CPC automaticity. Collectively, these data indicate that local mechanics play a critical role in maintaining the embryonic CPC function while also quantitatively defining the range of material properties that are optimal for embryonic CPC maturation.
Collapse
Affiliation(s)
- Trevor Henley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie Goudy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marietta Easterling
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carrie Donley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Wirka
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
4
|
Zhang G, Yang X, Shang X, Han W, Wang F, Ban S, Zhang S. Novel multi-component crystals of berberine with improved pharmaceutical properties. IUCRJ 2023; 10:66-76. [PMID: 36598503 PMCID: PMC9812220 DOI: 10.1107/s2052252522010983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
As an extremely popular natural product, berberine (BER) is mainly used for gastroenteritis and diarrhoea caused by bacteria. Research has also revealed the potent and extensive pharmacological properties of BER including its anti-arrhythmic, anti-tumour, anti-inflammatory and hypoglycemic activities and so on; therefore, BER is a promising drug for further development. However, its commercial form with hydrochloride exhibits poor stability and solubility, which are detrimental to its clinical therapeutic effects. For these purposes, the salt form was regulated via the reactive crystallization of 8-hydroxy-7,8-dihydroberberine (8H-HBER) with five pharmaceutically suitable organic acids including malonic acid (MA), L-tartaric acid (LTA), D-tartaric acid (DTA), DL-tartaric acid (DLTA) and citric acid (CA), resulting in the six novel solid forms 1BER-1LTA-1W, 1BER-1DTA-1W, 1BER-1DLTA and 2BER-2CA as well as two rare multi-stoichiometric solid forms 1BER-1MA and 1BER-2MA-2W. The preparation of the multi-stoichiometric products was greatly influenced by both the crystallization solvent type and the molar ratio of reactants. The structures of these multi-component solid forms were determined using single-crystal X-ray diffraction and further characterized by powder X-ray diffraction, thermal analysis and Fourier transform infrared spectroscopy. Stability experiments showed that all samples prepared had superior physical stability under high temperature and high humidity. Furthermore, dissolution experiments demonstrated that the maximum apparent solubilities (MAS) of all the products were significantly improved compared with the commercial form of BER in dilute hydrochloric solution (pH = 1.2). In particular, the MAS of 1BER-1MA in dilute hydrochloric solution is as high as 34 times that of the commercial form. In addition, it is preliminarily confirmed that the MAS of the samples prepared in pure water and dilute hydrochloric solution is primarily influenced by a combination of factors including the packing index, intermolecular interactions, affinity of the counter-ion to the solvent, the molar ratio of the drug to counter-ion in the product and the common ion effect. These novel solids are potential candidates for BER solid forms with improved oral dosage design and may prompt further development.
Collapse
Affiliation(s)
- Guoshun Zhang
- Department of Pharmacy, Shanxi Medical University, Taiyuan 030001, People’s Republic of China
| | - Xirui Yang
- Department of Pharmacy, Shanxi Medical University, Taiyuan 030001, People’s Republic of China
| | - Xiaoqing Shang
- Department of Pharmacy, Shanxi Medical University, Taiyuan 030001, People’s Republic of China
| | - Wei Han
- Department of Pharmacy, Shanxi Health Vocational College, Taiyuan 030001, People’s Republic of China
| | - Fengfeng Wang
- National Institutes for Food and Drug Control, Beijing 100050, People’s Republic of China
| | - Shurong Ban
- Department of Pharmacy, Shanxi Medical University, Taiyuan 030001, People’s Republic of China
| | - Shuqiu Zhang
- Department of Pharmacy, Shanxi Medical University, Taiyuan 030001, People’s Republic of China
| |
Collapse
|
5
|
Soltani D, Azizi B, Rahimi R, Talasaz AH, Rezaeizadeh H, Vasheghani-Farahani A. Mechanism-based targeting of cardiac arrhythmias by phytochemicals and medicinal herbs: A comprehensive review of preclinical and clinical evidence. Front Cardiovasc Med 2022; 9:990063. [PMID: 36247473 PMCID: PMC9559844 DOI: 10.3389/fcvm.2022.990063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrhythmias, characterized by an irregular heartbeat, are associated with high mortality and morbidity. Because of the narrow therapeutic window of antiarrhythmic drugs (AADs), the management of arrhythmia is still challenging. Therefore, searching for new safe, and effective therapeutic options is unavoidable. In this study, the antiarrhythmic effects of medicinal plants and their active constituents were systematically reviewed to introduce some possible candidates for mechanism-based targeting of cardiac arrhythmias. PubMed, Embase, and Cochrane library were searched from inception to June 2021 to find the plant extracts, phytochemicals, and multi-component herbal preparations with antiarrhythmic activities. From 7337 identified results, 57 original studies consisting of 49 preclinical and eight clinical studies were finally included. Three plant extracts, eight multi-component herbal preparations, and 26 phytochemicals were found to have antiarrhythmic effects mostly mediated by affecting K+ channels, followed by modulating Ca2+ channels, upstream target pathways, Nav channels, gap junction channels, and autonomic receptors. The most investigated medicinal plants were Rhodiola crenulata and Vitis vinifera. Resveratrol, Oxymatrine, and Curcumin were the most studied phytochemicals found to have multiple mechanisms of antiarrhythmic action. This review emphasized the importance of research on the cardioprotective effect of medicinal plants and their bioactive compounds to guide the future development of new AADs. The most prevalent limitation of the studies was their unqualified methodology. Thus, future well-designed experimental and clinical studies are necessary to provide more reliable evidence.
Collapse
Affiliation(s)
- Danesh Soltani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Roja Rahimi,
| | - Azita H. Talasaz
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Hossein Rezaeizadeh
- Department of Persian Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Ali Vasheghani-Farahani,
| |
Collapse
|
6
|
Expatiating the Pharmacological and Nanotechnological Aspects of the Alkaloidal Drug Berberine: Current and Future Trends. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123705. [PMID: 35744831 PMCID: PMC9229453 DOI: 10.3390/molecules27123705] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022]
Abstract
Traditionally, herbal compounds have been the focus of scientific interest for the last several centuries, and continuous research into their medicinal potential is underway. Berberine (BBR) is an isoquinoline alkaloid extracted from plants that possess a broad array of medicinal properties, including anti-diarrheal, anti-fibrotic, antidiabetic, anti-inflammatory, anti-obesity, antihyperlipidemic, antihypertensive, antiarrhythmic, antidepressant, and anxiolytic effects, and is frequently utilized as a traditional Chinese medicine. BBR promotes metabolisms of glucose and lipids by activating adenosine monophosphate-activated protein kinase, stimulating glycolysis and inhibiting functions of mitochondria; all of these ameliorate type 2 diabetes mellitus. BBR has also been shown to have benefits in congestive heart failure, hypercholesterolemia, atherosclerosis, non-alcoholic fatty liver disease, Alzheimer’s disease, and polycystic ovary syndrome. BBR has been investigated as an interesting pharmacophore with the potential to contribute significantly to the research and development of novel therapeutic medicines for a variety of disorders. Despite its enormous therapeutic promise, the clinical application of this alkaloid was severely limited because of its unpleasant pharmacokinetic characteristics. Poor bioavailability, limited absorption, and poor water solubility are some of the obstacles that restricted its use. Nanotechnology has been suggested as a possible solution to these problems. The present review aims at recent updates on important therapeutic activities of BBR and different types of nanocarriers used for the delivery of BBR in different diseases.
Collapse
|
7
|
Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc Ther 2022; 2022:4559809. [PMID: 35387267 PMCID: PMC8964196 DOI: 10.1155/2022/4559809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Antiarrhythmic drugs (AADs) have a therapeutic effect on atrial fibrillation (AF) by regulating the function of ion channels. However, several adverse effects and high recurrence rates after drug withdrawal seriously affect patients’ medication compliance and clinical prognosis. Thus, safer and more effective drugs are urgently needed. Active components extracted from natural products are potential choices for AF therapy. Natural products like Panax notoginseng (Burk.) F.H. Chen, Sophora flavescens Ait., Stephania tetrandra S. Moore., Pueraria lobata (Willd.) Ohwi var. thomsonii (Benth.) Vaniot der Maesen., and Coptis chinensis Franch. have a long history in the treatment of arrhythmia, myocardial infarction, stroke, and heart failure in China. Based on the classification of chemical structures, this article discussed the natural product components’ therapeutic effects on atrial fibrillation by regulating ion channels, connexins, and expression of related genes, in order to provide a reference for development of therapeutic drugs for atrial fibrillation.
Collapse
|
8
|
Zhao MM, Lu J, Li S, Wang H, Cao X, Li Q, Shi TT, Matsunaga K, Chen C, Huang H, Izumi T, Yang JK. Berberine is an insulin secretagogue targeting the KCNH6 potassium channel. Nat Commun 2021; 12:5616. [PMID: 34556670 PMCID: PMC8460738 DOI: 10.1038/s41467-021-25952-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Coptis chinensis is an ancient Chinese herb treating diabetes in China for thousands of years. However, its underlying mechanism remains poorly understood. Here, we report the effects of its main active component, berberine (BBR), on stimulating insulin secretion. In mice with hyperglycemia induced by a high-fat diet, BBR significantly increases insulin secretion and reduced blood glucose levels. However, in mice with hyperglycemia induced by global or pancreatic islet β-cell-specific Kcnh6 knockout, BBR does not exert beneficial effects. BBR directly binds KCNH6 potassium channels, significantly accelerates channel closure, and subsequently reduces KCNH6 currents. Consequently, blocking KCNH6 currents prolongs high glucose-dependent cell membrane depolarization and increases insulin secretion. Finally, to assess the effect of BBR on insulin secretion in humans, a randomized, double-blind, placebo-controlled, two-period crossover, single-dose, phase 1 clinical trial (NCT03972215) including 15 healthy men receiving a 160-min hyperglycemic clamp experiment is performed. The pre-specified primary outcomes are assessment of the differences of serum insulin and C-peptide levels between BBR and placebo treatment groups during the hyperglycemic clamp study. BBR significantly promotes insulin secretion under hyperglycemic state comparing with placebo treatment, while does not affect basal insulin secretion in humans. All subjects tolerate BBR well, and we observe no side effects in the 14-day follow up period. In this study, we identify BBR as a glucose-dependent insulin secretagogue for treating diabetes without causing hypoglycemia that targets KCNH6 channels.
Collapse
Affiliation(s)
- Miao-Miao Zhao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Jing Lu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Sen Li
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Hao Wang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Xi Cao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Qi Li
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Ting-Ting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China.
| |
Collapse
|
9
|
Beik A, Joukar S, Najafipour H. A review on plants and herbal components with antiarrhythmic activities and their interaction with current cardiac drugs. J Tradit Complement Med 2020; 10:275-287. [PMID: 32670823 PMCID: PMC7340875 DOI: 10.1016/j.jtcme.2020.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/06/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
This paper aimed to compile information on plants or their compounds which have experimentally shown antiarrhythmic effect and to scrutinize the efficacy and potency of them and their potential interaction with conventional cardiac drugs. Literature searches were accomplished by using numerous electronic databases, and the available knowledge on different parts of herbs and their ingredients with antiarrhythmic effects up to 2019 were identified and collected. The results indicate that 36 herbs or their derivatives can be effective in the treatment of arrhythmias, especially in animal and cellular models. They affect various ionic channels in different action potential phases. The alterations in ionic currents lead to changing in the amplitude and duration of the action potential, effective refractory period, maximum velocity, resting membrane potential, channel trafficking, or intracellular calcium concentration. The agents that prolong action potential duration and effective refractory period such as dauricine and sophocarpine seem to be more beneficial if more comprehensive studies confirm their efficacy and safety. It is noteworthy that the consumption of some herbal agents for cardiovascular (e.g. Hawthorn and Ginseng) or other (e.g. Ginseng and Licorice) therapeutic purposes may boost the pro-arrhythmogenic effect of current cardiovascular drugs such as cardiac glycosides. This study accentuates known plants or their derivatives with anti-arrhythmic effects, potential interaction with other cardiac drugs, and the possible mechanisms involved. It can assist clinicians and scientists in research and therapeutic approaches to the management of cardiac arrhythmias.
Collapse
Affiliation(s)
- Ahmad Beik
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan ST, Šmejkal K, Malaník M, Sychrová A, Barreca D, Ziberna L, Mahomoodally MF, Zengin G, Xu S, Nabavi SM, Shen AZ. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019; 9:1923-1951. [PMID: 31037148 PMCID: PMC6485276 DOI: 10.7150/thno.30787] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMD) are the leading causes of death worldwide, underscoring the urgent necessity to develop new pharmacotherapies. Berberine (BBR) is an eminent component of traditional Chinese and Ayurvedic medicine for more than 2000 years. Recently, BBR has attracted much interest for its pharmacological actions in treating and/or managing CVMD. Recent discoveries of basic, translational and clinical studies have identified many novel molecular targets of BBR (such as AMPK, SIRT1, LDLR, PCSK9, and PTP1B) and provided novel evidences supporting the promising therapeutic potential of BBR to combat CVMD. Thus, this review provides a timely overview of the pharmacological properties and therapeutic application of BBR in CVMD, and underlines recent pharmacological advances which validate BBR as a promising lead drug against CVMD.
Collapse
|
11
|
Du J, Deng S, Pu D, Liu Y, Xiao J, She Q. Age-dependent down-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 4 causes deterioration of canine sinoatrial node function. Acta Biochim Biophys Sin (Shanghai) 2017; 49:400-408. [PMID: 28369243 DOI: 10.1093/abbs/gmx026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Indexed: 12/19/2022] Open
Abstract
The activity of pacemaker cells in the sinoatrial node (SAN) is an indicator of normal sinus rhythm. Clinical studies have revealed that the dysfunction of the SAN progressively increases with aging. In this study, we determined the changes in hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) expression and the relationship between aging and canine SAN dysfunction. The results of cardiac electrophysiological determination revealed that the intrinsic heart rate decreased from 168 ± 11 beats min-1 in young canines to 120 ± 9 beats min-1 in adults and to 88 ± 9 beats min-1 in aged canines. The sinus node recovery time (SNRT) increased from 412 ± 32 ms in young canines to 620 ± 56 ms in adults and to 838 ± 120 ms in aged canines. Corrected SNRT (CSNRT) increased from 55 ± 12 ms in young canines to 117 ± 27 ms in adults and to 171 ± 37 ms in aged canines. These results indicated that SAN function deteriorated with aging in the canine heart. However, histological staining illustrated that fibrosis was not significantly increased with aging in canine SAN. Real-time polymerase chain reaction indicated that the expression of HCN4 mRNA was downregulated in the elderly canine SAN. Similarly, we also verified that HCN4 protein expression within the SAN declined with aging via immunofluorescence staining and western blot analysis. Taken together, our data show that electrical remodeling, related to the down-regulation of HCN4, is responsible for the gradually increased incidence of SAN dysfunction with aging. Our results provide further evidence for explaining the mechanisms of age-related deterioration in the SAN.
Collapse
Affiliation(s)
- Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Di Pu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jun Xiao
- Department of Cardiology, Chongqing Medical Emergency Center, Chongqing 400014, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
12
|
Imenshahidi M, Hosseinzadeh H. Berberis Vulgaris and Berberine: An Update Review. Phytother Res 2016; 30:1745-1764. [PMID: 27528198 DOI: 10.1002/ptr.5693] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/04/2016] [Accepted: 07/16/2016] [Indexed: 01/30/2023]
Abstract
Berberine is an isoquinoline alkaloid present in several plants, including Coptis sp. and Berberis sp. Berberine is a customary component in Chinese medicine, and is characterized by a diversity of pharmacological effects. An extensive search in electronic databases (PubMed, Scopus, Ovid, Wiley, ProQuest, ISI, and Science Direct) were used to identify the pharmacological and clinical studies on Berberis vulgaris and berberine, during 2008 to 2015, using 'berberine' and 'Berberis vulgaris' as search words. We found more than 1200 new article studying the properties and clinical uses of berberine and B. vulgaris, for treating tumor, diabetes, cardiovascular disease, hyperlipidemia, inflammation, bacterial and viral infections, cerebral ischemia trauma, mental disease, Alzheimer disease, osteoporosis, and so on. In this article, we have updated the pharmacological effects of B. vulgaris and its active constituent, berberine. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Shukla S, Sharma A, Pandey VK, Raisuddin S, Kakkar P. Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells. Toxicol Appl Pharmacol 2015; 291:70-83. [PMID: 26712469 DOI: 10.1016/j.taap.2015.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/09/2015] [Accepted: 12/15/2015] [Indexed: 02/04/2023]
Abstract
Post-translational modifications i.e. phosphorylation and acetylation are pivotal requirements for proper functioning of eukaryotic proteins. The current study aimed to decode the impact of acetylation/deacetylation of non-histone targets i.e. FoxO1/3a and p53 of sirtuins (NAD(+) dependent enzymes with lysine deacetylase activity) in berberine treated human hepatoma cells. Berberine (100 μM) inhibited sirtuins significantly (P<0.05) at transcriptional level as well as at translational level. Combination of nicotinamide (sirtuin inhibitor) with berberine potentiated sirtuins inhibition and increased the expression of FoxO1/3a and phosphorylation of p53 tumor suppressor protein. As sirtuins deacetylate non-histone targets including FoxO1/3a and p53, berberine increased the acetylation load of FoxO1/3a and p53 proteins. Acetylated FoxO and p53 proteins transcriptionally activate BH3-only proteins Bim and PUMA (3.89 and 3.87 fold respectively, P<0.001), which are known as direct activator of pro-apoptotic Bcl-2 family protein Bax that culminated into mitochondria mediated activation of apoptotic cascade. Bim/PUMA knock-down showed no changes in sirtuins' expression while cytotoxicity induced by berberine and nicotinamide was curtailed up to 28.3% (P<0.001) and it restored pro/anti apoptotic protein ratio in HepG2 cells. Sirtuins inhibition was accompanied by decline in NAD(+)/NADH ratio, ATP generation, enhanced ROS production and decreased mitochondrial membrane potential. TEM analysis confirmed mitochondrial deterioration and cell damage. SRT-1720 (1-10 μM), a SIRT-1 activator, when pre-treated with berberine (25 μM), reversed sirtuins expression comparable to control and significantly restored the cell viability (P<0.05). Thus, our findings suggest that berberine mediated sirtuins inhibition resulting into FoxO1/3a and p53 acetylation followed by BH3-only protein Bim/PUMA activation may in part be responsible for mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Shatrunajay Shukla
- Herbal Research Section, CSIR - Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow-226001, India; Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi -110062, India
| | - Ankita Sharma
- Herbal Research Section, CSIR - Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow-226001, India
| | - Vivek Kumar Pandey
- Herbal Research Section, CSIR - Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow-226001, India; Academy of Scientific and Innovative Research, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi -110062, India
| | - Poonam Kakkar
- Herbal Research Section, CSIR - Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow-226001, India; Academy of Scientific and Innovative Research, India.
| |
Collapse
|
14
|
Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav 2015; 52:308-18. [PMID: 26074183 DOI: 10.1016/j.yebeh.2015.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/25/2023]
Abstract
Epilepsy is the most common chronic neurological disease, affecting about 1% of the world's population during their lifetime. Most people with epilepsy can attain a seizure-free life upon treatment with antiepileptic drugs (AEDs). Unfortunately, seizures in up to 30% do not respond to treatment. It is estimated that 90% of people with epilepsy live in developing countries, and most of them receive no drug treatment for the disease. This treatment gap has motivated investigations into the effects of plants that have been used by traditional healers all over the world to treat seizures. Extracts of hundreds of plants have been shown to exhibit anticonvulsant activity in phenotypic screens performed in experimental animals. Some of those extracts appear to exhibit anticonvulsant efficacy similar to that of synthetic AEDs. Dozens of plant-derived chemical compounds have similarly been shown to act as anticonvulsants in various in vivo and in vitro assays. To a significant degree, anticonvulsant effects of plant extracts can be attributed to widely distributed flavonoids, (furano)coumarins, phenylpropanoids, and terpenoids. Flavonoids and coumarins have been shown to interact with the benzodiazepine site of the GABAA receptor and various voltage-gated ion channels, which are targets of synthetic AEDs. Modulation of the activity of ligand-gated and voltage-gated ion channels provides an explanatory basis of the anticonvulsant effects of plant secondary metabolites. Many complex extracts and single plant-derived compounds exhibit antiinflammatory, neuroprotective, and cognition-enhancing activities that may be beneficial in the treatment of epilepsy. Thus, botanicals provide a base for target-oriented antiepileptic drug discovery and development. In the future, preclinical work should focus on the characterization of the effects of plant extracts and plant-derived compounds on well-defined targets rather than on phenotypic screening using in vivo animal models of acute seizures. At the same time, available data provide ample justification for clinical studies with selected standardized botanical extracts and plant-derived compounds. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Nikolaus J Sucher
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA.
| | - Maria C Carles
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA
| |
Collapse
|