1
|
Xie L, Ding Y, Zhang X. Melatonin and ovarian tissue transplantation: Current frontiers in research. J Gynecol Obstet Hum Reprod 2024; 53:102726. [PMID: 38219858 DOI: 10.1016/j.jogoh.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/29/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
The progress achieved in anticancer therapy in recent years has been paralleled by an increase in the survival of women with cancer globally. Nonetheless, the gonadotoxic impact of anticancer drugs has led to ovarian failure in treated women. While there are documented cases of successful ovarian tissue transplants resulting in restored fertility and childbirth, challenges persist, including suboptimal functional recovery and limited graft lifespan. Melatonin, an inert hormone primarily secreted by the mammalian pineal gland, exhibits diverse physiological functions, including antioxidative, anti-inflammatory, anti-apoptotic, and angiogenesis-regulating properties. Consequently, researchers have explored melatonin as a modulator to enhance graft function recovery in ovarian transplantation experiments, yielding promising outcomes. This review examines the relevant literature, consolidating findings that underscore the positive effects of melatonin in safeguarding the morphology and structure of transplanted ovarian tissues, facilitating graft function recovery, and extending lifespan. The amassed evidence supports the consideration of melatonin as a prospective protective agent for human ovarian tissue transplantation in the future.
Collapse
Affiliation(s)
- Lingyun Xie
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, 111 Ning Guo Road, Yangpu District, Shanghai 200011, China
| | - Yan Ding
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shen Yang Road, Yangpu District, Shanghai 200090, China
| | - Xuyin Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shen Yang Road, Yangpu District, Shanghai 200090, China.
| |
Collapse
|
2
|
Taha AM, Mahmoud AM, Ghonaim MM, Kamran A, AlSamhori JF, AlBarakat MM, Shrestha AB, Jaiswal V, Reiter RJ. Melatonin as a potential treatment for septic cardiomyopathy. Biomed Pharmacother 2023; 166:115305. [PMID: 37619482 DOI: 10.1016/j.biopha.2023.115305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Septic cardiomyopathy (SCM) is a common complication of sepsis contributing to high mortality rates. Its pathophysiology involves complex factors, including inflammatory cytokines, mitochondrial dysfunction, oxidative stress, and immune dysregulation. Despite extensive research, no effective pharmacological agent has been established for sepsis-induced cardiomyopathy. Melatonin, a hormone with diverse functions in the body, has emerged as a potential agent for SCM through its anti-oxidant, anti-inflammatory, anti-apoptotic, and cardioprotective roles. Through various molecular levels of its mechanism of action, it counterattacks the adverse event of sepsis. Experimental studies have mentioned that melatonin protects against many cardiovascular diseases and exerts preventive effects on SCM. Moreover, melatonin has been investigated in combination with other drugs such as antibiotics, resveratrol, and anti-oxidants showing synergistic effects in reducing inflammation, anti-oxidant, and improving cardiac function. While preclinical studies have demonstrated positive results, clinical trials are required to establish the optimal dosage, route of administration, and treatment duration for melatonin in SCM. Its safety profile, low toxicity, and natural occurrence in the human body provide a favorable basis for its clinical use. This review aims to provide an overview of the current evidence of the use of melatonin in sepsis-induced cardiomyopathy (SICM). Melatonin appears to be promising as a possible treatment for sepsis-induced cardiomyopathy and demands further investigation.
Collapse
Affiliation(s)
- Amira Mohamed Taha
- Faculty of Medicine, Fayoum University, Fayoum, Egypt; Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA
| | | | | | - Ateeba Kamran
- Bachelor of Medicine, Bachelor of Surgery, Karachi Medical and Dental College, Karachi, Pakistan
| | | | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Abhigan Babu Shrestha
- Department of Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh.
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
3
|
Melatonin and Glycine Reduce Uterus Ischemia/Reperfusion Injury in a Rat Model of Warm Ischemia. Int J Mol Sci 2021; 22:ijms22168373. [PMID: 34445081 PMCID: PMC8394613 DOI: 10.3390/ijms22168373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 01/01/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) remains a significant problem to be solved in uterus transplantation (UTx). Melatonin and glycine have been shown to possess direct cytoprotective activities, mainly due to their antioxidative and anti-inflammatory properties. The aim of this study was to investigate the protective effects of melatonin and glycine and their combination on IRI in a rat model of warm ischemia. In this study, Sprague-Dawley rats were assigned to eight groups, including sham and IRI (n = 80). Melatonin and glycine alone or their combination were administered prior to 1 h of uterus ischemia followed by 1 h of reperfusion. Melatonin (50 mg/kg) was administered via gavage 2 h before IRI and glycine in an enriched diet for 5 days prior to intervention. Uterus IRI was estimated by histology, including immunohistochemistry, and biochemical tissue analyses. Histology revealed that uterus IRI was significantly attenuated by pretreatment with melatonin (p = 0.019) and glycine (p = 0.044) alone as well as their combination (p = 0.003). Uterus IRI led to increased myeloperoxidase expression, which was significantly reduced by melatonin (p = 0.004), glycine (p < 0.001) or their combination (p < 0.001). The decline in superoxide dismutase activity was significantly reduced in the melatonin (p = 0.027), glycine (p = 0.038) and combined treatment groups (p = 0.015) when compared to the IRI control group. In conclusion, melatonin, glycine and their combination significantly reduced oxidative stress-induced cell damage after IRI in a small animal warm ischemia model, and, therefore, clinical studies are required to evaluate the protective effects of these well-characterized substances in uterus IRI.
Collapse
|
4
|
Ma Y, Yan G, Guo J, Li F, Zheng H, Wang C, Chen Y, Ye Y, Dai H, Qi Z, Zhuang G. Berberine Prolongs Mouse Heart Allograft Survival by Activating T Cell Apoptosis via the Mitochondrial Pathway. Front Immunol 2021; 12:616074. [PMID: 33732240 PMCID: PMC7959711 DOI: 10.3389/fimmu.2021.616074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
Berberine, which is a traditional Chinese medicine can inhibit tumorigenesis by inducing tumor cell apoptosis. However, the immunoregulatory of effects berberine on T cells remains poorly understood. Here, we first examined whether berberine can prolong allograft survival by regulating the recruitment and function of T cells. Using a major histocompatibility complex complete mismatch mouse heterotopic cardiac transplantation model, we found that the administration of moderate doses (5 mg/kg) of berberine significantly prolonged heart allograft survival to 19 days and elicited no obvious berberine-related toxicity. Compared to that with normal saline treatment, berberine treatment decreased alloreactive T cells in recipient splenocytes and lymph node cells. It also inhibited the activation, proliferation, and function of alloreactive T cells. Most importantly, berberine treatment protected myocardial cells by decreasing CD4+ and CD8+ T cell infiltration and by inhibiting T cell function in allografts. In vivo and in vitro assays revealed that berberine treatment eliminated alloreactive T lymphocytes via the mitochondrial apoptosis pathway, which was validated by transcriptome sequencing. Taken together, we demonstrated that berberine prolongs allograft survival by inducing apoptosis of alloreactive T cells. Thus, our study provides more evidence supporting the potential use of berberine in translational medicine.
Collapse
Affiliation(s)
- Yunhan Ma
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Guoliang Yan
- School of Medicine, Xiamen University, Xiamen, China
| | - Junjun Guo
- School of Medicine, Xiamen University, Xiamen, China
| | - Fujun Li
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiping Zheng
- School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Yingyu Chen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Yuhan Ye
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
| | - Guohong Zhuang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Affiliation(s)
- David J. Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide Health and Medical Research Building, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Shen T, Huh MH, Czer LS, Vaidya A, Esmailian F, Kobashigawa JA, Nurok M. Controversies in the Postoperative Management of the Critically Ill Heart Transplant Patient. Anesth Analg 2019; 129:1023-1033. [PMID: 31162160 DOI: 10.1213/ane.0000000000004220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Heart transplant recipients are susceptible to a number of complications in the immediate postoperative period. Despite advances in surgical techniques, mechanical circulatory support (MCS), and immunosuppression, evidence supporting optimal management strategies of the critically ill transplant patient is lacking on many fronts. This review identifies some of these controversies with the aim of stimulating further discussion and development into these gray areas.
Collapse
Affiliation(s)
- Tao Shen
- From the Departments of Anesthesiology.,Surgery, Cedars-Sinai Heart Institute, Los Angeles, California
| | | | - Lawrence S Czer
- Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California
| | - Ajay Vaidya
- Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California
| | | | - Jon A Kobashigawa
- Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California
| | - Michael Nurok
- From the Departments of Anesthesiology.,Surgery, Cedars-Sinai Heart Institute, Los Angeles, California
| |
Collapse
|
7
|
Zhang WX, He BM, Wu Y, Qiao JF, Peng ZY. Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. Life Sci 2019; 217:8-15. [DOI: 10.1016/j.lfs.2018.11.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
|
8
|
Stiegler P, Bausys A, Leber B, Strupas K, Schemmer P. Impact of Melatonin in Solid Organ Transplantation-Is It Time for Clinical Trials? A Comprehensive Review. Int J Mol Sci 2018; 19:ijms19113509. [PMID: 30413018 PMCID: PMC6274782 DOI: 10.3390/ijms19113509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Solid organ transplantation is the "gold standard" for patients with end-stage organ disease. However, the supply of donor organs is critical, with an increased organ shortage over the last few years resulting in a significant mortality of patients on waiting lists. New strategies to overcome the shortage of organs are urgently needed. Some experimental studies focus on melatonin to improve the donor pool and to protect the graft; however, current research has not reached the clinical level. Therefore, this review provides a comprehensive overview of the data available, indicating that clinical evaluation is warranted.
Collapse
Affiliation(s)
- Philipp Stiegler
- Department General, Visceral and Transplant Surgery, Medical University of Graz, Graz 8036, Austria.
- Transplant Center Graz, Medical University of Graz, Graz 8036, Austria.
| | - Augustinas Bausys
- Department General, Visceral and Transplant Surgery, Medical University of Graz, Graz 8036, Austria.
- Transplant Center Graz, Medical University of Graz, Graz 8036, Austria.
- Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania.
- Department of Abdominal Surgery and Oncology, National Cancer Institute, Vilnius 08660, Lithuania.
| | - Bettina Leber
- Transplant Center Graz, Medical University of Graz, Graz 8036, Austria.
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania.
| | - Peter Schemmer
- Department General, Visceral and Transplant Surgery, Medical University of Graz, Graz 8036, Austria.
- Transplant Center Graz, Medical University of Graz, Graz 8036, Austria.
| |
Collapse
|
9
|
The Protective Effect of Chrysanthemum indicum Extract against Ankylosing Spondylitis in Mouse Models. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8206281. [PMID: 28261616 PMCID: PMC5312047 DOI: 10.1155/2017/8206281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/15/2017] [Indexed: 12/16/2022]
Abstract
In traditional Chinese and Korean homeopathic medicine, Chrysanthemum indicum Linné (Asteraceae) is a time-honored herb, prescribed for the resolution of symptoms associated with inflammatory and hypertensive conditions as well as those affecting the lungs and its associated structures. The goal of this work is to investigate the defensive role of Chrysanthemum indicum extract in fighting ankylosing spondylitis (AS) using mouse models, through which the manifestation and extent of the disease progression were measured with quantitative analysis of the intervertebral joints. Markers of inflammation as well as oxidative stress were also analysed. Western blot was used to quantify the levels of Nuclear Factor-κB (NF-κB) p65, Dickkopf-1 (DKK-1), and sclerostin (SOST). Consequently, the findings of this experiment demonstrated that AS in mice that were given Chrysanthemum indicum extract had lower level of TNF-α, IL-1β, and IL-6 (P < 0.05) and increased level of catalase (CAT), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD) (P < 0.05). The results also revealed that Chrysanthemum indicum supplemented with diet contributed to a decrease in Nuclear Factor-κB (NF-κB) p65 protein expression (P < 0.05) and higher levels of DKK-1 and SOST proteins (P < 0.05). Therefore, we concluded that the beneficial role of Chrysanthemum indicum in AS is manifested through downregulating oxidative stress, inhibiting inflammatory mediators and NF-κB, and increasing DKK-1 and SOST levels.
Collapse
|
10
|
Esteban-Zubero E, García-Gil FA, López-Pingarrón L, Alatorre-Jiménez MA, Iñigo-Gil P, Tan DX, García JJ, Reiter RJ. Potential benefits of melatonin in organ transplantation: a review. J Endocrinol 2016; 229:R129-46. [PMID: 27068700 DOI: 10.1530/joe-16-0117] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Organ transplantation is a useful therapeutic tool for patients with end-stage organ failure; however, graft rejection is a major obstacle in terms of a successful treatment. Rejection is usually a consequence of a complex immunological and nonimmunological antigen-independent cascade of events, including free radical-mediated ischemia-reperfusion injury (IRI). To reduce the frequency of this outcome, continuing improvements in the efficacy of antirejection drugs are a top priority to enhance the long-term survival of transplant recipients. Melatonin (N-acetyl-5-methoxytryptamine) is a powerful antioxidant and ant-inflammatory agent synthesized from the essential amino acid l-tryptophan; it is produced by the pineal gland as well as by many other organs including ovary, testes, bone marrow, gut, placenta, and liver. Melatonin has proven to be a potentially useful therapeutic tool in the reduction of graft rejection. Its benefits are based on its direct actions as a free radical scavenger as well as its indirect antioxidative actions in the stimulation of the cellular antioxidant defense system. Moreover, it has significant anti-inflammatory activity. Melatonin has been found to improve the beneficial effects of preservation fluids when they are enriched with the indoleamine. This article reviews the experimental evidence that melatonin is useful in reducing graft failure, especially in cardiac, bone, otolaryngology, ovarian, testicular, lung, pancreas, kidney, and liver transplantation.
Collapse
Affiliation(s)
| | | | - Laura López-Pingarrón
- Department of MedicinePsychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | | | - Pablo Iñigo-Gil
- Department of MedicinePsychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural BiologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - José Joaquín García
- Department of Pharmacology and PhysiologyUniversity of Zaragoza, Zaragoza, Spain
| | - Russel J Reiter
- Department of Cellular and Structural BiologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
11
|
Liu K, Wu L, Shi X, Wu F. Protective effect of naringin against ankylosing spondylitis via ossification, inflammation and oxidative stress in mice. Exp Ther Med 2016; 12:1153-1158. [PMID: 27446336 DOI: 10.3892/etm.2016.3410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/04/2016] [Indexed: 12/29/2022] Open
Abstract
Naringin is an abundant flavanone in pomelo, grapefruit as well as lime and its variants, has been shown to exhibit certain antioxidative, anti-inflammatory, anti-cancer and hypoglycemic effects. The aim of the current study was to evaluate the protective effects of naringin against ankylosing spondylitis (AS) and to elucidate the potential underlying mechanism. Firstly, a mouse model of ankylosing spondylitis (AS) was established. Next, osteocalcin (OC), alkaline phosphatase (ALP) and triglyceride (TG) activity values, inflammatory factor and oxidative stress were evaluated in the AS mice. Then, the Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) protein expression levels in the AS mice were investigated using western blot analysis. The results showed that naringin increased OC, ALP and TG activity values in the AS mouse model. Furthermore, inflammatory factor and oxidative stress levels in the AS mice were restrained by treatment with naringin. Furthermore, JAK2 and STAT3 protein expression levels were reduced by treatment with naringin. In conclusion, the present results indicated that the protective effects of naringin against AS are exerted via the induction of ossification, suppression of inflammation and oxidative stress and the downregulation of JAK2/STAT3 in mice.
Collapse
Affiliation(s)
- Kang Liu
- Department of Orthopedics, The Second Hospital Affiliated to Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang 310005, P.R. China
| | - Lianguo Wu
- Department of Orthopedics, The Second Hospital Affiliated to Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang 310005, P.R. China
| | - Xiaolin Shi
- Department of Orthopedics, The Second Hospital Affiliated to Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang 310005, P.R. China
| | - Fengqing Wu
- Department of Orthopedics, The Second Hospital Affiliated to Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang 310005, P.R. China
| |
Collapse
|