1
|
Reduced expression of carbonic anhydrase III in skeletal muscles could be linked to muscle fatigue: A rat muscle fatigue model. J Orthop Translat 2019; 22:116-123. [PMID: 32440507 PMCID: PMC7231961 DOI: 10.1016/j.jot.2019.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 11/21/2022] Open
Abstract
Background Carbonic anhydrase III (CAIII) is expressed abundantly in slow skeletal muscles, adipocytes, and the liver. It plays a critical role in maintaining intracellular pH, antioxidation, and energy metabolism, which are further involved in fatigue. However, its function and mechanism in maintaining the physiological function of muscles or antifatigue are still ambiguous. We hypothesized that changes of CAIII in skeletal muscles might be related to the occurrence of muscle fatigue. Method After establishing a rat soleus muscle fatigue model, we measured the protein expression of the CAIII in muscles. And the muscle intracellular biochemical indices [malondialdehyde (MDA), adenosine triphosphate (ATP), and lactic acid] were also measured using assay kits. After transfected by CAIII-overexpressing and knockdown lentiviral vectors, the rat soleus muscles were induced to fatigue to investigate the effects and possible molecular mechanisms of CAIII in antifatigue. Results The expression of CAIII in fatigued soleus muscles was significantly decreased compared with that of the control group (P < 0.001). Moreover, the ATP level in the fatigued muscle also significantly decreased, whereas lactic acid and MDA levels were significantly increased (P < 0.001). After posttransfection for 21 days, CAIII levels in muscles were significantly reduced in the CAIII-interfering lentivirus group, but increased in the CAIII-overexpressed lentivirus group (P < 0.001). In addition, CAIII knockdown muscles showed more reduction of the maximal muscle force and ATP levels and more increase of MDA and lactic acid levels during the fatigue test than the control group, (P < 0.05). On the other hand, CAIII-overexpressed muscles showed less reduction of the maximal muscle force and ATP levels and less increase of MDA and lactic acid levels during muscle fatigue than the control group (P < 0.05). Conclusions Our study showed that soleus muscle fatigue induced by electrical stimulation could result in downregulation of CAIII and ATP levels and accumulation of lactic acid and MDA. Further study showed that CAIII knockdown led to more reduction of the maximal muscle force, whereas CAIII overexpression showed less reduction of the maximal muscle force, which suggested that CAIII levels in muscles might be related to the occurrence of muscle fatigue. Translational potential CAIII plays an important role in muscle fatigue. Up-regulating the expression of CAIII might contribute to dissipating fatigue, which would provide a new method to solve the difficulties in eliminating muscular fatigue.
Collapse
Key Words
- ATP, adenosine triphosphate
- CAIII, carbonic anhydrase III
- CAs, carbonic anhydrases
- Carbonic anhydrase III
- Ct, threshold cycle
- MDA, malondialdehyde
- Muscle fatigue
- NS, saline injection group
- PBS, phosphate-buffered saline
- PBST, PBS with Tween 20
- PVDF, polyvinylidene difluoride
- RIPA, radioimmunoprecipitation assay
- ROS, reactive oxygen species
- SD, Sprague Dawley
- SDS–PAGE gel, sodium dodecyl sulphate–polyacrylamide gel electrophoresis
- Soleus muscle
Collapse
|
2
|
Huang H, Zhao Y, Shang X, Liu X, Ren H. Expression of carbonic anhydrase III and skeletal muscle remodeling following selective denervation. Mol Med Rep 2017; 16:8289-8294. [PMID: 28983629 DOI: 10.3892/mmr.2017.7644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
Abstract
Carbonic anhydrase III (CAIII) is expressed selectively in type I (slow‑twitch) myofibers. To investigate the association between changes in the expression of CAIII and skeletal muscle structure following denervation, the present study stained adjacent sections of skeletal muscle for ATPase and immunohistochemically for CAIII. In addition, differences in the protein expression and phosphatase activity of CAIII were examined by western blot and phosphatase staining between rat soleus and extensol digitorum longus (EDL) muscles, which are composed of predominantly slow‑ and fast‑twitch fibers, respectively. Upon denervation, the EDL muscle showed more pronounced structural changes, compared with the soleus muscle. There was a transformation from fast to slow fibers, and a concomitant increase in fibers positive for CAIII. Following denervation, the protein expression of CAIII initially increased and then decreased in the soleus muscle, whereas the protein expression of CAIII in the EDL muscle increased gradually with time. In contrast to the protein changes, phosphatase activity in the soleus and EDL muscles decreased significantly following denervation. These results indicated that, following denervation, changes in the expression of CAIII were associated with myofiber remodeling. Specifically, the change in the expression of CAIII reflected the conversion to type I myofibers, suggesting the importance of CAIII in resistance to fatigue in skeletal muscle.
Collapse
Affiliation(s)
- He Huang
- Department of Neurology, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Yanling Zhao
- Department of Geriatrics, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Xiliang Shang
- Department of Sports Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Xueyuan Liu
- Department of Neurology, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Huimin Ren
- Institute of Neurology, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
3
|
Shi C, Uda Y, Dedic C, Azab E, Sun N, Hussein AI, Petty CA, Fulzele K, Mitterberger-Vogt MC, Zwerschke W, Pereira R, Wang K, Pajevic PD. Carbonic anhydrase III protects osteocytes from oxidative stress. FASEB J 2017; 32:440-452. [PMID: 28928248 DOI: 10.1096/fj.201700485rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/05/2017] [Indexed: 12/26/2022]
Abstract
Osteocytes are master orchestrators of bone remodeling; they control osteoblast and osteoclast activities both directly via cell-to-cell communication and indirectly via secreted factors, and they are the main postnatal source of sclerostin and RANKL (receptor activator of NF-kB ligand), two regulators of osteoblast and osteoclast function. Despite progress in understanding osteocyte biology and function, much remains to be elucidated. Recently developed osteocytic cell lines-together with new genome editing tools-has allowed a closer look at the biology and molecular makeup of these cells. By using single-cell cloning, we identified genes that are associated with high Sost/sclerostin expression and analyzed their regulation and function. Unbiased transcriptome analysis of high- vs. low-Sost/sclerostin-expressing cells identified known and novel genes. Dmp1 (dentin matrix protein 1), Dkk1 (Dickkopf WNT signaling pathway inhibitor 1), and Phex were among the most up-regulated known genes, whereas Srpx2, Cd200, and carbonic anhydrase III (CAIII) were identified as novel markers of differentiated osteocytes. Aspn, Enpp2, Robo2, Nov, and Serpina3g were among the transcripts that were most significantly suppressed in high-Sost cells. Considering that CAII was recently identified as being regulated by Sost/sclerostin and capable of controlling mineral homeostasis, we focused our attention on CAIII. Here, we report that CAIII is highly expressed in osteocytes, is regulated by parathyroid hormone both in vitro and in vivo, and protects osteocytes from oxidative stress.-Shi, C., Uda, Y., Dedic, C., Azab, E., Sun, N., Hussein, A. I., Petty, C. A., Fulzele, K., Mitterberger-Vogt, M. C., Zwerschke, W., Pereira, R., Wang, K., Divieti Pajevic, P. Carbonic anhydrase III protects osteocytes from oxidative stress.
Collapse
Affiliation(s)
- Chao Shi
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Yuhei Uda
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Christopher Dedic
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Ehab Azab
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Ningyuan Sun
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Amira I Hussein
- Department of Orthopedics, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Christopher A Petty
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Keertik Fulzele
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | | | - Werner Zwerschke
- Cell Metabolism and Differentiation Research Group, University of Innsbruck, Innsbruck, Austria
| | - Renata Pereira
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Kunzheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China;
| | - Paola Divieti Pajevic
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA;
| |
Collapse
|