1
|
Hora S, Wuestefeld T. Liver Injury and Regeneration: Current Understanding, New Approaches, and Future Perspectives. Cells 2023; 12:2129. [PMID: 37681858 PMCID: PMC10486351 DOI: 10.3390/cells12172129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
The liver is a complex organ with the ability to regenerate itself in response to injury. However, several factors can contribute to liver damage beyond repair. Liver injury can be caused by viral infections, alcoholic liver disease, non-alcoholic steatohepatitis, and drug-induced liver injury. Understanding the cellular and molecular mechanisms involved in liver injury and regeneration is critical to developing effective therapies for liver diseases. Liver regeneration is a complex process that involves the interplay of various signaling pathways, cell types, and extracellular matrix components. The activation of quiescent hepatocytes that proliferate and restore the liver mass by upregulating genes involved in cell-cycle progression, DNA repair, and mitochondrial function; the proliferation and differentiation of progenitor cells, also known as oval cells, into hepatocytes that contribute to liver regeneration; and the recruitment of immune cells to release cytokines and angiogenic factors that promote or inhibit cell proliferation are some examples of the regenerative processes. Recent advances in the fields of gene editing, tissue engineering, stem cell differentiation, small interfering RNA-based therapies, and single-cell transcriptomics have paved a roadmap for future research into liver regeneration as well as for the identification of previously unknown cell types and gene expression patterns. In summary, liver injury and regeneration is a complex and dynamic process. A better understanding of the cellular and molecular mechanisms driving this phenomenon could lead to the development of new therapies for liver diseases and improve patient outcomes.
Collapse
Affiliation(s)
- Shainan Hora
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore;
| | - Torsten Wuestefeld
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore;
- National Cancer Centre Singapore, Singapore 168583, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
2
|
Hao T, Yu H, Huang D, Liu Q. TMUB1 Correlated with Immune Infiltration Is a Prognostic Marker for Colorectal Cancer. DISEASE MARKERS 2022; 2022:5884531. [PMID: 35928927 PMCID: PMC9345731 DOI: 10.1155/2022/5884531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) is overexpressed in a large number of liver and esophageal tumors. However, only a few reports on the clinical significance of TMUB1 in colorectal cancer (CRC) exist. METHODS Here, we evaluated the clinical significance and potential biological role of TMUB1 using bioinformatics analysis. Univariate and multivariate analyses were performed to evaluate the relationship of TMUB1 with clinicopathological features. Gene set enrichment analysis (GSEA) was performed to identify the biological function of TMUB1, while any associations between the expression of TMUB1 and the infiltration of 24 immune cells were analyzed using simple-sample GSEA. RESULTS TMUB1 was significantly overexpressed in CRC tissues compared with normal controls. The high expression of TMUB1 in CRC was associated with T stage, neotype, and residual tumor. Moreover, TMUB1 was identified as an independent factor of poor disease-free survival (DFS) and short overall survival (OS). GSEA demonstrated that TMUB1 was related to hypoxia, angiogenesis, adipogenesis, inflammatory response, IL6-JAK-STAT3 signaling, apoptosis, mitotic spindle, and IL2-STAT5 signaling. The expression of TMUB1 negatively correlated with the abundance of T helper cells, Tcm cells, macrophages, and Th2 cells, whereas it positively correlated with the abundance of several immune cell types, including CD56bright and CD56dim NK cells. CONCLUSIONS The high expression of TMUB1 is closely related to a poor prognosis in patients with CRC. TMUB1 may be a potential prognostic biomarker and be used for therapeutic approaches in CRC.
Collapse
Affiliation(s)
- Tao Hao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Hanqiang Yu
- Department of Radiology, The Affiliated Hospital of Binzhou Medical College, Binzhou, 256600 Shandong Province, China
| | - Daqi Huang
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical College, Binzhou, 256600 Shandong Province, China
| | - Qian Liu
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical College, Binzhou, 256600 Shandong Province, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
3
|
Ferracchiato S, Di-Iacovo N, Scopetti D, Piobbico D, Castelli M, Pieroni S, Gargaro M, Manni G, Brancorsini S, Della-Fazia MA, Servillo G. Hops/Tmub1 Heterozygous Mouse Shows Haploinsufficiency Effect in Influencing p53-Mediated Apoptosis. Int J Mol Sci 2021; 22:ijms22137186. [PMID: 34281239 PMCID: PMC8269437 DOI: 10.3390/ijms22137186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
HOPS is a ubiquitin-like protein implicated in many aspects of cellular function including the regulation of mitotic activity, proliferation, and cellular stress responses. In this study, we focused on the complex relationship between HOPS and the tumor suppressor p53, investigating both transcriptional and non-transcriptional p53 responses. Here, we demonstrated that Hops heterozygous mice and mouse embryonic fibroblasts exhibit an impaired DNA-damage response to etoposide-induced double-strand breaks when compared to wild-type genes. Specifically, alterations in HOPS levels caused significant defects in the induction of apoptosis, including a reduction in p53 protein level and percentage of apoptotic cells. We also analyzed the effect of reduced HOPS levels on the DNA-damage response by examining the transcript profiles of p53-dependent genes, showing a suggestive deregulation of the mRNA levels for a number of p53-dependent genes. Taken together, these results show an interesting haploinsufficiency effect mediated by Hops monoallelic deletion, which appears to be enough to destabilize the p53 protein and its functions. Finally, these data indicate a novel role for Hops as a tumor-suppressor gene in DNA damage repair in mammalian cells.
Collapse
|
4
|
Papakonstantinou D, Paspala A, Pikoulis E, Perrea DN, Machairas A, Agrogiannis G, Machairas N, Patapis P, Zavras NJ. The Modulating Effect of Ursodeoxycholic Acid on Liver Tissue Cyclooxygenase-2 Expression Following Extended Hepatectomy. Cureus 2021; 13:e15500. [PMID: 34268031 PMCID: PMC8262578 DOI: 10.7759/cureus.15500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
Introduction: Hepatic regeneration is a complex process involving a multitude of well-timed molecular operations. Ursodeoxycholic acid (UDCA) is postulated to exert a protective effect against oxidative stress and enzymatic degradation of the extracellular matrix, in turn potentiating the regenerative response. The aim of the present animal study is to evaluate the impact of UDCA administration in liver tissue expression of cyclooxygenase-2 (COX-2) in a setting of acute liver failure achieved by 80% hepatectomy. Materials and methods: Twenty-four adult male Sprague-Dawley rats were randomly assigned to an experimental (UDCA) and a control group. Animals in the UDCA received oral pretreatment with UDCA for 14 days via feeding tube, while animals in the control group received saline. All animals underwent resection of approximately 80% of the liver parenchyma. Tissue and blood sample collection were performed 48 hours postoperatively. Results: The postoperative mitotic index and Ki-67 levels were found to be elevated in the UDCA group (43±11.4 and 13.7±24.7 versus 31±16.7 and 7.6±5.7), albeit without any statistical significance. Pretreatment with UDCA significantly decreased COX-2 expression levels (p=0.28) as well as serum tumor necrosis factor α (TNFα) levels (37.3±10.9 pg/mL versus 75.4±14.4 pg/mL, p=0.004). COX-2 expression score was observed to be weakly correlated to Ki-67 levels in both groups. Although COX-2 expression score was not correlated with serum TNFα levels in the control group, animals pretreated with UDCA exhibited moderate correlation (r=0.45). Conclusion: Preoperative administration of UDCA exerts a suppressive effect on tissue expression of COX-2 following 80% hepatectomy and enforces a positive correlation between COX-2 and serum TNFα levels, suggesting that UDCA preconditions liver tissue to display an enhanced regenerative response to circulating cytokines, most notably TNFα. The weak association of COX-2 with Ki-67 expression levels suggests that COX-2 may be of secondary importance during the early phases of liver regeneration.
Collapse
Affiliation(s)
- Dimitrios Papakonstantinou
- Third Department of Surgery, "Attikon" University General Hospital/National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| | - Anna Paspala
- Third Department of Surgery, "Attikon" University General Hospital/National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| | - Emmanouil Pikoulis
- Third Department of Surgery, "Attikon" University Hospital/National and Kapodistrian University of Athens, Athens, GRC.,Third Department of Surgery, National and Kapodistrian University of Athens, Athens, GRC.,Surgery, Attikon University Hospital, Athens, GRC
| | - Despoina N Perrea
- Laboratory of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Anastasios Machairas
- Third Department of Surgery, "Attikon" University General Hospital/National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| | - Georgios Agrogiannis
- First Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| | - Nikolaos Machairas
- Laboratory of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Paulos Patapis
- Third Department of Surgery, "Attikon" General University Hospital/National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| | - Nikolaos J Zavras
- Department of Pediatric Surgery, "Attikon" University General Hospital/National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| |
Collapse
|
5
|
Bellet MM, Pieroni S, Castelli M, Piobbico D, Fallarino F, Romani L, Della-Fazia MA, Servillo G. HOPS/Tmub1 involvement in the NF-kB-mediated inflammatory response through the modulation of TRAF6. Cell Death Dis 2020; 11:865. [PMID: 33060567 PMCID: PMC7567074 DOI: 10.1038/s41419-020-03086-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022]
Abstract
HOPS/Tmub1 is a ubiquitously expressed transmembrane ubiquitin-like protein that shuttles between nucleus and cytoplasm during cell cycle progression. HOPS causes cell cycle arrest in G0/G1 phase, an event associated to stabilization of p19Arf, an important tumor suppressor protein. Moreover, HOPS plays an important role in driving centrosomal assembly and maintenance, mitotic spindle proper organization, and ultimately a correct cell division. Recently, HOPS has been described as an important regulator of p53, which acts as modifier, stabilizing p53 half-life and playing a key role in p53 mediating apoptosis after DNA damage. NF-κB is a transcription factor with a central role in many cellular events, including inflammation and apoptosis. Our experiments demonstrate that the transcriptional activity of the p65/RelA NF-κB subunit is regulated by HOPS. Importantly, Hops−/− cells have remarkable alterations of pro-inflammatory responses. Specifically, we found that HOPS enhances NF-κB activation leading to increase transcription of inflammatory mediators, through the reduction of IκBα stability. Notably, this effect is mediated by a direct HOPS binding to the E3 ubiquitin ligase TRAF6, which lessens TRAF6 stability ultimately leading increased IKK complex activation. These findings uncover a previously unidentified function of HOPS/Tmub1 as a novel modulator of TRAF6, regulating inflammatory responses driven by activation of the NF-κB signaling pathway. The comprehension on how HOPS/Tmub1 takes part to the inflammatory processes in vivo and whether this function is important in the control of proliferation and tumorigenesis could establish the basis for the development of novel pharmacological strategies.
Collapse
Affiliation(s)
- Marina Maria Bellet
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Stefania Pieroni
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Marilena Castelli
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy.
| |
Collapse
|
6
|
Della-Fazia MA, Castelli M, Piobbico D, Pieroni S, Servillo G. The Ins and Outs of HOPS/TMUB1 in biology and pathology. FEBS J 2020; 288:2773-2783. [PMID: 32860479 DOI: 10.1111/febs.15539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Liver regeneration represents an outstanding tool to study not only proliferation, but also other important processes such as inflammation, regenerative response or stem cell biology. Several novel genes have been identified as being involved in the proliferation of residual hepatocytes. One of them, HOPS/TMUB1, is proving to be a significant player in the control of proliferation, both contributing to genomic stability and as a partner of essential molecules. HOPS is an ubiquitin-like protein, shuttling from nucleus to cytoplasm, and it is engaged in a number of biological and physiopathological functions. HOPS overexpression in tumour cell lines strongly reduces proliferation, arresting cell cycle in G0 /G1 . HOPS is involved in centrosome assembly and maintenance, and its knockdown causes genomic instability. Moreover, a direct interaction of HOPS with nucleophosmin (NPM) and p19Arf has been established, resulting in proper control of p19Arf stability and localization. These data indicate that HOPS acts as a functional bridge in the interaction between NPM and p19Arf , providing new mechanistic insight into how NPM and p19Arf will oppose cell proliferation. HOPS exerts a control in p53 stability, directing p53 mitochondrial apoptosis and cytoplasmic localization. HOPS plays a direct role as novel post-translational modifier of p53, much like SUMO or NEDD. HOPS is overexpressed in a high number of human tumours in patients affected by large intestinal, CNS, liver and oesophageal tumours. This review highlights HOPS involvement in distinct cellular functions, establishing its role as a key player in cell biology and pathology in a broader context.
Collapse
Affiliation(s)
| | | | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, Italy
| | - Stefania Pieroni
- Department of Experimental Medicine, University of Perugia, Italy
| | | |
Collapse
|
7
|
Chen Y, Fu H, Zhang Y, Chen P. Transmembrane and Ubiquitin-Like Domain Containing 1 Protein (TMUB1) Negatively Regulates Hepatocellular Carcinoma Proliferation via Regulating Signal Transducer and Activator of Transcription 1 (STAT1). Med Sci Monit 2019; 25:9471-9482. [PMID: 31827061 PMCID: PMC6927239 DOI: 10.12659/msm.920319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignancy, but the pathogenesis of HCC is unclear. TMUB1 has an inhibitory effect on normal hepatocytes, but its role in HCC has not been reported. Material/Methods We used immunohistochemistry to observe the expression of transmembrane and ubiquitin-like domain containing 1 protein (TMUB1) and signal transducer and activator of transcription 1 (STAT1) in 132 HCC tissue specimens. The expression of TMUB1, STAT1, and CCND1 in HCC cells were detected by quantitative polymerase chain reaction (qPCR) and western blotting. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2′-deoxyuridine (EdU) assays were used for detecting HCC cells proliferation, and Transwell assays were used for observing the invasion and migration of HCC cells. Results TMUB1 was negatively correlated with HCC pathological malignancy; low expression of TMUB1 indicated poor prognosis. TMUB1 inhibited proliferation but not metastasis in HCC cells. TMUB1 expression was positively correlated with STAT1 in 132 HCC tissues, TMUB1 promoted the expression of STAT1, and suppressed the expression of CCND1 in HCC cells. Conclusions TMUB1 negatively regulates hepatocellular carcinoma proliferation via regulating STAT1.
Collapse
Affiliation(s)
- Yin Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China (mainland).,Department of Gynaecology and Obstetrics, The 958th Hospital, Southwest Hospital, Army Medical University, Chongqing, China (mainland)
| | - Hangwei Fu
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Yida Zhang
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| |
Collapse
|
8
|
Fu H, Dong R, Zhang Y, Xu J, Liu M, Chen P. Tmub1 negatively regulates liver regeneration via inhibiting STAT3 phosphorylation. Cell Signal 2019; 55:65-72. [PMID: 30610893 DOI: 10.1016/j.cellsig.2018.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Tmub1 (transmembrane and ubiquitin-like domain-containing 1) plays negative roles in rat hepatocyte proliferation, but its underlying molecular mechanisms in liver regeneration regulation have yet to be revealed. Here, we show that in vivo transfection of Tmub1 overexpression vectors impaired mouse liver regeneration after partial hepatectomy (PHx). Loss- and gain-of-function analyses in human hepatocyte Lo2 cells indicated that Tmub1 inhibits the phosphorylation of STAT3 and the activation of STAT3 signaling. Furthermore, the inhibitory effect of Tmub1 overexpression on hepatocyte proliferation can be reversed by the STAT3 activator OSM, while the promotive effect of Tmub1 knockdown can be abolished by the STAT3 inhibitor stattic. Coimmunoprecipitation assays revealed interaction between Tmub1 and STAT3. Finally, we present data from chromatin immunoprecipitation and luciferase reporter gene assays and report that STAT3 binds to and activates the promoter of Tmub1, suggesting a putative negative feedback loop between Tmub1 and STAT3 signaling. Taken together, the results of our study suggest that Tmub1 is an important negative regulator of hepatocyte proliferation in liver regeneration through STAT3 signaling. These findings provide a potential strategy for the management of liver regeneration.
Collapse
Affiliation(s)
- Hangwei Fu
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Rui Dong
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Yida Zhang
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jianhua Xu
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), Third Military Medical University (Army Medical University), Chongqing 400042, China.
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), Third Military Medical University (Army Medical University), Chongqing 400042, China.
| |
Collapse
|
9
|
MiR-27a/b Regulates Liver Regeneration by Posttranscriptional Modification of Tmub1. Dig Dis Sci 2018; 63:2362-2372. [PMID: 29777440 DOI: 10.1007/s10620-018-5113-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/04/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transmembrane and ubiquitin-like domain-containing 1 protein (Tmub1) negatively regulates liver regeneration. However, whether this regulation involves posttranscriptional modification of Tmub1 expression is unknown. AIM The aim of the study was to investigate whether microRNA (miR)-27a/b regulates posttranscriptional modification of Tmub1 and cell proliferation during liver regeneration. METHODS Tmub1 mRNA 3'-untranslated region (UTR) sequences were analyzed using online software. A luciferase assay was used to verify the relationship between miR-27a/b and the 3'-UTR of Tmub1. Rat partial hepatectomy models were used to investigate miR-27a/b and Tmub1 levels after partial hepatectomy. MiR-27a/b expression was down- and up-regulated with mimics and inhibitors, respectively, to observe the effects of miR-27a/b on Tmub1 expression. Quantitative RT-PCR and Western blot analyses were used to measure miR-27a/b and Tmub1 expression. Hepatocyte proliferation was measured using the CCK8 method for BRL-3A liver cells and proliferating cell nuclear antigen and histone H3 phosphorylation in the regenerating liver. RESULTS A potential binding site of miR-27a/b was found in the 3'-UTR sequence of Tmub1. Our luciferase assay confirmed that the Tmub1 mRNA 3'-UTR was the target of miR-27a/b. We observed a temporal correlation between miR-27a/b and Tmub1 expression during liver regeneration. MiR-27a/b down-regulated Tmub1 expression both in vivo and in vitro. MiR-27a/b regulated hepatocyte proliferation during liver regeneration. CONCLUSION MiR-27a/b regulates hepatocyte proliferation by controlling posttranscriptional modification of Tmub1 during liver regeneration.
Collapse
|
10
|
Lan X, Fu H, Li G, Zeng W, Lin X, Zhu Y, Liu M, Chen P. TMUB1 Inhibits BRL-3A Hepatocyte Proliferation by Interfering with the Binding of CAML to Cyclophilin B through its TM1 Hydrophobic Domain. Sci Rep 2018; 8:9917. [PMID: 29967478 PMCID: PMC6028644 DOI: 10.1038/s41598-018-28339-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Transmembrane and ubiquitin-like domain-containing 1 (Tmub1) encodes a protein (TMUB1) containing an ubiquitin-like domain and plays a negative regulatory role during hepatocyte proliferation, but its mechanism in this process is still unknown. Here, TMUB1 interfered with the binding of calcium-modulating cyclophilin ligand (CAML) to cyclophilin B, which may represent a key role in the negative regulatory process of TMUB1 in hepatocyte proliferation. Co-immunoprecipitation assays in rat BRL-3A cells confirmed the interaction between TMUB1 and CAML; significant regulation of the influx of Ca2+ ([Ca2+]i) and hepatocyte proliferation occurred following TMUB1 overexpression or knockout. Deletion of the TM1 hydrophobic domain of TMUB1 completely abolished this interaction and led to loss of TMUB1's regulatory effects on cytological behavior. Furthermore, overexpression of TMUB1 completely abolished the interaction between CAML and its downstream protein cyclophilin B, which can act upstream of calcineurin by increasing [Ca2+]i during cell proliferation. Taken together, our results indicate that TMUB1 regulates BRL-3A hepatocyte proliferation by interacting with CAML and further interferes with the binding of CAML to cyclophilin B to decrease cellular [Ca2+]i.
Collapse
Affiliation(s)
- Xiang Lan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China
| | - Hangwei Fu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China
| | - Guangyao Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China
| | - Wei Zeng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China
| | - Xia Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China
| | - Yuanxin Zhu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China
| | - Menggang Liu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China.
| | - Ping Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China.
| |
Collapse
|
11
|
Xie L, He Y, Zhou X, Li X, Jin X, Wang X, Shi D. Porcine interleukin-6 enhances the expression of CYP2C33 through a constitutive androstane receptor/retinoid X receptor-mediated pathway. Xenobiotica 2018; 49:257-264. [DOI: 10.1080/00498254.2018.1438686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Lixia Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yucheng He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiaoqiao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiue Jin
- Hubei Provincial Institute of Veterinary Drug Control, Wuhan, People’s Republic of China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
12
|
Fu H, Xu J, Chen J, Li G, Zhao X, Chen P. Microarray analysis reveals Tmub1 as a cell cycle-associated protein in rat hepatocytes. Mol Med Rep 2018; 17:4337-4344. [PMID: 29344642 PMCID: PMC5802207 DOI: 10.3892/mmr.2018.8451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022] Open
Abstract
Transmembrane and ubiquitin-like domain containing protein 1 (Tmub1), formerly known as hepatocyte odd protein shuttling (HOPS) has been recognized as a ubiquitously expressed shuttling protein that moves between the nucleus and cytoplasm in hepatocytes. Tmub1 is involved in liver regeneration and functions as a bridging protein in tumor cell proliferation. To investigate the transcriptional profile and potential biological processes affected by Tmub1 expression in normal rat hepatocytes, microarray and bioinformatics experiments were used to identify 127 mRNAs differentially expressed between Tmub1-overexpression, Tmub1-knockdown and normal BRL-3A cells (fold-change ≥2.5). The expression levels of 17 key node genes associated with the cell cycle were confirmed by reverse transcription-quantitative polymerase chain reaction analysis. Flow cytometry, 5-Ethynyl-20-deoxyuridine, Cell Counting Kit-8 and western blotting experiments revealed the effects on the cell cycle and the inhibition of proliferation in BRL-3A cells overexpressing Tmub1. Further co-immunoprecipitation assays demonstrated that Tmub1 interacts with cyclin A2 during the cell cycle and that the overexpression of Tmub1 may postpone cyclin A2 and cyclin B1 degradation in the M phase. The results of the present study indicated that Tmub1 functions as a cell proliferation inhibitor and cell cycle-associated protein.
Collapse
Affiliation(s)
- Hangwei Fu
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jianhua Xu
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jian Chen
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Guangyao Li
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiaobiao Zhao
- Department of Hepatobiliary Surgery, 187 Military Hospital, Haikou, Hainan 571159, P.R. China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
13
|
Liu M, Chen P. Proliferation‑inhibiting pathways in liver regeneration (Review). Mol Med Rep 2017; 16:23-35. [PMID: 28534998 DOI: 10.3892/mmr.2017.6613] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022] Open
Abstract
Liver regeneration, an orchestrated process, is the primary compensatory mechanism following liver injury caused by various factors. The process of liver regeneration consists of three stages: Initiation, proliferation and termination. Proliferation‑promoting factors, which stimulate the recovery of mitosis in quiescent hepatocytes, are essential in the initiation and proliferation steps of liver regeneration. Proliferation‑promoting factors act as the 'motor' of liver regeneration, whereas proliferation inhibitors arrest cell proliferation when the remnant liver reaches a suitable size. Certain proliferation inhibitors are also expressed and activated in the first two steps of liver regeneration. Anti‑proliferation factors, acting as a 'brake', control the speed of proliferation and determine the terminal point of liver regeneration. Furthermore, anti‑proliferation factors function as a 'steering‑wheel', ensuring that the regeneration process proceeds in the right direction by preventing proliferation in the wrong direction, as occurs in oncogenesis. Therefore, proliferation inhibitors to ensure safe and stable liver regeneration are as important as proliferation‑promoting factors. Cytokines, including transforming growth factor‑β and interleukin‑1, and tumor suppressor genes, including p53 and p21, are important members of the proliferation inhibitor family in liver regeneration. Certain anti‑proliferation factors are involved in the process of gene expression and protein modification. The suppression of liver regeneration led by metabolism, hormone activity and pathological performance have been reviewed previously. However, less is known regarding the proliferation inhibitors of liver regeneration and further investigations are required. Detailed information regarding the majority of known anti‑proliferation signaling pathways also remains fragmented. The present review aimed to understand the signalling pathways that inhbit proliferation in the process of liver regeneration.
Collapse
Affiliation(s)
- Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
14
|
de Souza DA, Borges AC, Santana AC, Oliver C, Jamur MC. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors. PLoS One 2015; 10:e0144081. [PMID: 26633538 PMCID: PMC4669151 DOI: 10.1371/journal.pone.0144081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7) in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.
Collapse
Affiliation(s)
- Devandir Antonio de Souza
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Carlos Borges
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Carolina Santana
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|