1
|
Eleiwa NZH, Khalifa HAMI, Nazim HA. Research progress on rat model of drug-induced liver injury established by nonsteroidal anti-inflammatory drug (celecoxib) and royal jelly ameliorative effect. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:239-247. [PMID: 38281144 DOI: 10.1515/jcim-2023-0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
OBJECTIVES NSAIDs, like celecoxib, are widely used to treat pain, fever, and inflammation, with celecoxib being particularly effective in managing arthritis symptoms and acute or chronic pain especially with its favorable gastrointestinal tolerability. The study aimed at exploring the effect of chronic administration of celecoxib on hepatic tissues in male albino rats. It also examined the royal jelly celecoxib interplay. METHODS 50 male albino rats in 5 equal groups; Group 1: received no drug. Group 2: received celecoxib (50 mg/kg/day, orally), for 30 successive days. Group 3: received celecoxib plus royal jelly (300 mg/kg/day, orally) for 30 successive days. Group 4: received celecoxib, for 30 days, then were left untreated for another 30 days. Group 5: received celecoxib plus royal jelly for 30 days, then were left untreated for another 30 days. RESULTS Chronic celecoxib administration caused hepatotoxicity in male albino rats, with ameliorative effect of royal jelly. Celecoxib discontinuation significantly diminished the celecoxib-induced toxicity, and normal liver enzymes and serum protein levels were regained in the case of dual medications (celecoxib+RJ) discontinuation. CONCLUSIONS Long-term celecoxib administration caused hepatotoxicity, with ameliorative effects of royal jelly against celecoxib-induced oxidative and apoptotic stress. In addition, it could be concluded that royal jelly may prove a useful adjunct in patients being prescribed celecoxib.
Collapse
Affiliation(s)
| | | | - Heba Ahmed Nazim
- Department of Pharmacology, Faculty of Vet. Med., Zagazig University, Zagazig, Egypt
- Pharmacy Inspection, Egyptian Ministry of Health & Populations, Egyptian Drug Authority, Zagazig, Egypt
| |
Collapse
|
2
|
Eleiwa NZH, Khalifa HAMI, Nazim HA. Cardioprotective role of royal jelly in the prevention of celecoxib-mediated cardiotoxicity in adult male albino rats. J Cardiothorac Surg 2024; 19:135. [PMID: 38500210 PMCID: PMC10949770 DOI: 10.1186/s13019-024-02593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Celecoxib, a cyclooxygenase-2 selective inhibitor non-steroidal anti-inflammatory drugs, is used for the management of short- and long-term pain as well as in other inflammatory conditions. Unfortunately, its chronic use is highly associated with serious abnormal cardiovascular events. The current study was designed to explore the effect of long-term administration of celecoxib on the cardiac tissues of male albino rats. The study also examined the alleged cardioprotective effect of royal jelly. METHODS Thirty, male albino rats were randomly divided into 3 equal groups; 10 each: (1) rats served as the control group and received no drug; (2) rats received celecoxib (50 mg/kg/day, orally), for 30 consecutive days; (3) rats received celecoxib (50 mg/kg/day, orally) plus royal jelly (300 mg/kg/day, orally) for 30 consecutive days. Sera were collected to assay cardiac enzymes and oxidant/antioxidant status. Rats were euthanatized and cardiac tissues were dissected for quantitative estimation of apoptotic genes (Bax) and anti-apoptotic gene (Bcl-2). RESULTS Long-term celecoxib administration caused cardiotoxicity in male albino rats as manifested by significant elevation of serum levels of creatine phosphokinase (CPK), creatine kinase-MB (CK-MB), and lactate dehydrogenase (LDH), with ameliorative effects of royal jelly against celecoxib-induced cardiotoxicity as manifested by significantly decrease in serum CPK, CK-MB, and LDH levels. It also showed a significant decrease in the oxidative stress indicator malondialdehyde (MDA) levels and the bax gene. Additionally, it demonstrated significant increases in the bcl-2 gene and superoxide dismutase (SOD) levels, which contribute to its therapeutic effects against celecoxib-induced cardiotoxicity. CONCLUSION Long-term celecoxib administration caused cardiotoxicity in male albino rats with protective effect of royal jelly being given together. It could be concluded that royal jelly may prove a useful adjunct in patients being prescribed celecoxib. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Vet. Med, Zagazig University, Zagazig, 43511, Egypt
| | - Hesham A M I Khalifa
- Department of Pharmacology, Faculty of Vet. Med, Zagazig University, Zagazig, 43511, Egypt
| | - Heba A Nazim
- Department of Pharmacology, Faculty of Vet. Med, Zagazig University, Zagazig, 43511, Egypt.
| |
Collapse
|
3
|
Khalifa HAMI, Eleiwa NZH, Nazim HA. Royal Jelly, A Super Food, Protects Against Celecoxib-Induced Renal Toxicity in Adult Male Albino Rats. Can J Kidney Health Dis 2024; 11:20543581241235526. [PMID: 38476622 PMCID: PMC10929035 DOI: 10.1177/20543581241235526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/18/2024] [Indexed: 03/14/2024] Open
Abstract
Background Celecoxib is a COX-2 nonsteroidal anti-inflammatory drug (NSAID). It is widely used for the treatment of osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis. Objective This study aimed to explore the effect of long-term administration of celecoxib on kidney of male albino rats, and to study the potential effect of treatment discontinuation on such tissues. The study also examined the alleged ameliorative effect of royal jelly (RJ). Methods Fifty, male albino rats were divided into 5 equal groups; 10 each. Group 1: rats received no drug (control group). Group 2: rats received celecoxib (50 mg/kg/day, orally for 30 successive days). Group 3: rats received celecoxib (50 mg/kg/day, orally) and royal jelly (300 mg/kg/day, orally) for 30 successive days. Group 4: rats received celecoxib for 30 successive days, then rats were left untreated for another 30 days. Group 5: rats received celecoxib and RJ for 30 successive days, then rats were left untreated for another 30 days. Results Long-term celecoxib administration caused significant elevation in kidney function tests, with ameliorative effects of RJ against celecoxib-induced renal toxicity. Conclusion Long-term celecoxib administration caused renal toxicity in male albino rats, with ameliorative effects of RJ.
Collapse
Affiliation(s)
- Hesham A M I Khalifa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Heba A Nazim
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Pharmacy Inspection, Egyptian Ministry of Health and Populations, Egyptian Drug Authority, Zagazig, Egypt
| |
Collapse
|
4
|
Guerra Faura G, Wu B, Oyelere AK, France S. Synthetic Methodology-Enabled Discovery of a Tunable Indole Template for COX-1 Inhibition and Anti-cancer activity. Bioorg Med Chem 2022; 57:116633. [DOI: 10.1016/j.bmc.2022.116633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
|
5
|
Chavez-Dominguez R, Perez-Medina M, Aguilar-Cazares D, Galicia-Velasco M, Meneses-Flores M, Islas-Vazquez L, Camarena A, Lopez-Gonzalez JS. Old and New Players of Inflammation and Their Relationship With Cancer Development. Front Oncol 2021; 11:722999. [PMID: 34881173 PMCID: PMC8645998 DOI: 10.3389/fonc.2021.722999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens or genotoxic agents continuously affect the human body. Acute inflammatory reaction induced by a non-sterile or sterile environment is triggered for the efficient elimination of insults that caused the damage. According to the insult, pathogen-associated molecular patterns, damage-associated molecular patterns, and homeostasis-altering molecular processes are released to facilitate the arrival of tissue resident and circulating cells to the injured zone to promote harmful agent elimination and tissue regeneration. However, when inflammation is maintained, a chronic phenomenon is induced, in which phagocytic cells release toxic molecules damaging the harmful agent and the surrounding healthy tissues, thereby inducing DNA lesions. In this regard, chronic inflammation has been recognized as a risk factor of cancer development by increasing the genomic instability of transformed cells and by creating an environment containing proliferation signals. Based on the cancer immunoediting concept, a rigorous and regulated inflammation process triggers participation of innate and adaptive immune responses for efficient elimination of transformed cells. When immune response does not eliminate all transformed cells, an equilibrium phase is induced. Therefore, excessive inflammation amplifies local damage caused by the continuous arrival of inflammatory/immune cells. To regulate the overstimulation of inflammatory/immune cells, a network of mechanisms that inhibit or block the cell overactivity must be activated. Transformed cells may take advantage of this process to proliferate and gradually grow until they become preponderant over the immune cells, preserving, increasing, or creating a microenvironment to evade the host immune response. In this microenvironment, tumor cells resist the attack of the effector immune cells or instruct them to sustain tumor growth and development until its clinical consequences. With tumor development, evolving, complex, and overlapping microenvironments are arising. Therefore, a deeper knowledge of cytokine, immune, and tumor cell interactions and their role in the intricated process will impact the combination of current or forthcoming therapies.
Collapse
Affiliation(s)
- Rodolfo Chavez-Dominguez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Perez-Medina
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Manuel Meneses-Flores
- Departamento de Patología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Lorenzo Islas-Vazquez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
6
|
Abou-El-Naga IF, El-Temsahy MM, Mogahed NMFH, Sheta E, Makled S, Ibrahim EI. Effect of celecoxib against different developmental stages of experimental Schistosoma mansoni infection. Acta Trop 2021; 218:105891. [PMID: 33773944 DOI: 10.1016/j.actatropica.2021.105891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 01/18/2023]
Abstract
Due to the high prevalence of schistosomiasis and the wide use of praziquantel solely for mass drug administration to control the disease, there is a great concern about the potential emergence of reduced susceptibility strains. This, together with the concern that praziquantel is ineffective against juvenile worms highlight the importance of developing an alternative anti-schistosomal drug. Using nonsteroidal anti-inflammatory drugs against schistosome infection is considerable. The present study evaluated the effect of oral administration of five days celecoxib regimen (20 mg/kg/day) against different developmental stages of Schistosoma mansoni infection. This regimen induced significant reduction in worm burden, tissue egg count, individual female fecundity and the mean percentage of immature and mature eggs with increased mean percentage of dead eggs. More importantly, celecoxib was more potent than praziquantel in all these parasitological parameters (except in the worm burden when given against the adult stage where the difference was statistically non-significant). Scanning and transmission electron microscopy of the adult worms revealed severe tegumental damage, laceration of the muscular layers and oedema of the syncytial layer. There was disruption of the testicular, ovarian and vitelline glandular tissues with signs of apoptosis and abnormalities of the spermatozoa and the oocytes. Additionally, celecoxib induced reduction in the number and the size of the hepatic granulomata and also amelioration of the hepatic tissue pathology.
Collapse
|
7
|
Uram Ł, Misiorek M, Pichla M, Filipowicz-Rachwał A, Markowicz J, Wołowiec S, Wałajtys-Rode E. The Effect of Biotinylated PAMAM G3 Dendrimers Conjugated with COX-2 Inhibitor (celecoxib) and PPARγ Agonist (Fmoc-L-Leucine) on Human Normal Fibroblasts, Immortalized Keratinocytes and Glioma Cells in Vitro. Molecules 2019; 24:molecules24203801. [PMID: 31652556 PMCID: PMC6832538 DOI: 10.3390/molecules24203801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant type of central nervous system tumor that is resistant to all currently used forms of therapy. Thus, more effective GBM treatment strategies are being investigated, including combined therapies with drugs that may cross the blood brain barrier (BBB). Another important issue considers the decrease of deleterious side effects of therapy. It has been shown that nanocarrier conjugates with biotin can penetrate BBB. In this study, biotinylated PAMAM G3 dendrimers substituted with the recognized anticancer agents cyclooxygenase-2 (COX-2) inhibitor celecoxib and peroxisome proliferator-activated receptor γ (PPARγ) agonist Fmoc-L-Leucine (G3-BCL) were tested in vitro on human cell lines with different p53 status: glioblastoma (U-118 MG), normal fibroblasts (BJ) and immortalized keratinocytes (HaCaT). G3-BCL penetrated efficiently into the lysosomal and mitochondrial compartments of U-118 MG cells and induced death of U-118 MG cells via apoptosis and inhibited proliferation and migration at low IC50 = 1.25 µM concentration, considerably lower than either drug applied alone. Comparison of the effects of G3-BCL on expression of COX-2 and PPARγ protein and PGE2 production of three different investigated cell line phenotypes revealed that the anti-glioma effect of the conjugate was realized by other mechanisms other than influencing PPAR-γ expression and regardless of p53 cell status, it was dependent on COX-2 protein level and high PGE2 production. Similar G3-BCL cytotoxicity was seen in normal fibroblasts (IC50 = 1.29 µM) and higher resistance in HaCaT cells (IC50 = 4.49 µM). Thus, G3-BCL might be a good candidate for the targeted, local glioma therapy with limited site effects.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland.
| | - Maria Misiorek
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland.
| | - Monika Pichla
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland.
| | - Aleksandra Filipowicz-Rachwał
- Department of Cosmetics and Pharmaceutical Products Technology, Rzeszów University of Information Technology and Management, 2 Sucharskiego Str, 35-225 Rzeszów, Poland.
| | - Joanna Markowicz
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland.
| | - Stanisław Wołowiec
- Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszow, Poland.
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology,75 Koszykowa Str, 00-664 Warsaw, Poland.
| |
Collapse
|
8
|
Gurram B, Li M, Fan J, Wang J, Peng X. Near-infrared fluorescent probe for fast track of cyclooxygenase-2 in Golgi apparatus in cancer cells. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1796-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Gurram B, Zhang S, Li M, Li H, Xie Y, Cui H, Du J, Fan J, Wang J, Peng X. Celecoxib Conjugated Fluorescent Probe for Identification and Discrimination of Cyclooxygenase-2 Enzyme in Cancer Cells. Anal Chem 2018; 90:5187-5193. [PMID: 29587478 DOI: 10.1021/acs.analchem.7b05337] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an enzyme overexpressed in most types of cancers and has been used for an excellent targetable biomarker. Celecoxib is an effective inhibitor of COX-2, used in anti-inflammation. Herein we report a one and two-photon fluorescence probe (NP-C6-CXB) for COX-2, based on the conjugation of naphthalamide with Celecoxib, by using flexible hexylene linker. NP-C6-CXB is nonfluorescent in buffer solution and normal cells, while it shows bright fluorescence in solutions and cancer cells in the presence of COX-2 with an excellent selectivity. Interestingly, NP-C6-CXB can discriminate cancer cells (MCF-7) from normal cells (COS-7) in the single culture medium under confocal microscopy. Due to the selective binding affinity of NP-C6-CXB with a COX-2 enzyme, the intensity is proportional to the level of COX-2 enzyme in cancer cells. In vivo and in vitro experiments proved that NP-C6-CXB is a potential tool for identification of tumor and might be used in surgical resection of COX-2 expressed tumors.
Collapse
Affiliation(s)
- Bhaskar Gurram
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Shuangzhe Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Miao Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Yahui Xie
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Hongyan Cui
- Department School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Jingyun Wang
- Department School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| |
Collapse
|
10
|
Yeganeh PR, Leahy J, Spahis S, Patey N, Desjardins Y, Roy D, Delvin E, Garofalo C, Leduc-Gaudet JP, St-Pierre D, Beaulieu JF, Marette A, Gouspillou G, Levy E. Apple peel polyphenols reduce mitochondrial dysfunction in mice with DSS-induced ulcerative colitis. J Nutr Biochem 2018; 57:56-66. [PMID: 29674247 DOI: 10.1016/j.jnutbio.2018.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/02/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel diseases (IBDs) are multifaceted and relapsing immune disorders, which necessitate long-term dependence on powerful drugs. As the use of natural product-based therapies has emerged as a promising intervention, the present study aimed to further characterize dried apple peel powder (DAPP) mechanisms of action and evaluate the preventive and curative effects of DAPP on mitochondrial functions in a murine model. Induction of intestinal inflammation in mice is performed by oral administration of the dextran sodium sulfate (DSS) at 2.5% for 10 days. Doses of DAPP (200 or 400 mg/kg/day) were administered by gavage for 10 days pre- and 1 day after colitis induction simultaneously with DSS treatment for a period of 10 days. The preventive (200 mg/kg/day) and therapeutic (400 mg/kg/day) doses of DAPP limited DSS-induced histological lesions, improved macroscopic parameters and attenuated clinical signs. DAPP at the same conditions reduced massive infiltration of inflammatory cells and concomitantly displayed a robust potential of counteracting inflammation and oxidative stress in DSS mice. Moreover, DAPP partially restored mitochondrial abnormalities related to size, density, redox homeostasis, fatty acid β-oxidation, ATP synthesis, apoptosis and regulatory mitochondrial transcription factors. Our findings demonstrate the preventive and therapeutic impact of DAPP on experimental colitis while underlying the role of mitochondria. They also suggest that this natural DAPP product may represent an interesting candidate for further studies on the prevention/treatment of IBD.
Collapse
Affiliation(s)
- Pantea Rahmani Yeganeh
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada, G1V 0A6
| | - Jade Leahy
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada, G1V 0A6
| | - Schohraya Spahis
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada, G1V 0A6
| | - Natalie Patey
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5; Department of Pathology, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada, G1V 0A6
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada, G1V 0A6
| | - Edgard Delvin
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Carole Garofalo
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | | | - David St-Pierre
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5; Département des Sciences de l'activité Physique, Faculté des Sciences, UQAM, Quebec, Canada, H2X 1Y4
| | - Jean-François Beaulieu
- Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada, G1V 0A6; Quebec Heart and Lung Research Institute, Laval University, Quebec, Canada, G1V 4G5
| | - Gilles Gouspillou
- Département des Sciences de l'activité Physique, Faculté des Sciences, UQAM, Quebec, Canada, H2X 1Y4
| | - Emile Levy
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada, G1V 0A6; Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4.
| |
Collapse
|
11
|
Hitting the Bull's-Eye in Metastatic Cancers-NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death. Pharmaceuticals (Basel) 2015; 8:62-106. [PMID: 25688484 PMCID: PMC4381202 DOI: 10.3390/ph8010062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/08/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Tumor metastases that impede the function of vital organs are a major cause of cancer related mortality. Mitochondrial oxidative stress induced by hypoxia, low nutrient levels, or other stresses, such as genotoxic events, act as key drivers of the malignant changes in primary tumors to enhance their progression to metastasis. Emerging evidence now indicates that mitochondrial modifications and mutations resulting from oxidative stress, and leading to OxPhos stimulation and/or enhanced reactive oxygen species (ROS) production, are essential for promoting and sustaining the highly metastatic phenotype. Moreover, the modified mitochondria in emerging or existing metastatic cancer cells, by their irreversible differences, provide opportunities for selectively targeting their mitochondrial functions with a one-two punch. The first blow would block their anti-oxidative defense, followed by the knockout blow—promoting production of excess ROS, capitulating the terminal stage—activation of the mitochondrial permeability transition pore (mPTP), specifically killing metastatic cancer cells or their precursors. This review links a wide area of research relevant to cellular mechanisms that affect mitochondria activity as a major source of ROS production driving the pro-oxidative state in metastatic cancer cells. Each of the important aspects affecting mitochondrial function are discussed including: hypoxia, HIFs and PGC1 induced metabolic changes, increased ROS production to induce a more pro-oxidative state with reduced antioxidant defenses. It then focuses on how the mitochondria, as a major source of ROS in metastatic cancer cells driving the pro-oxidative state of malignancy enables targeting drugs affecting many of these altered processes and why the NSAIDs are an excellent example of mitochondria-targeted agents that provide a one-two knockout activating the mPTP and their efficacy as selective anticancer metastasis drugs.
Collapse
|