1
|
Wang T, Wang H, Chu Y, Bao M, Li X, Zhang G, Feng J. Daily Brain Metabolic Rhythms of Wild Nocturnal Bats. Int J Mol Sci 2024; 25:9850. [PMID: 39337348 PMCID: PMC11432702 DOI: 10.3390/ijms25189850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Circadian rhythms are found in a wide range of organisms and have garnered significant research interest in the field of chronobiology. Under normal circadian function, metabolic regulation is temporally coordinated across tissues and behaviors within a 24 h period. Metabolites, as the closest molecular regulation to physiological phenotype, have dynamic patterns and their relationship with circadian regulation remains to be fully elucidated. In this study, untargeted brain metabolomics was employed to investigate the daily rhythms of metabolites at four time points corresponding to four typical physiological states in Vespertilio sinensis. Key brain metabolites and associated physiological processes active at different time points were detected, with 154 metabolites identified as rhythmic. Analyses of both metabolomics and transcriptomics revealed that several important physiological processes, including the pentose phosphate pathway and oxidative phosphorylation, play key roles in regulating rhythmic physiology, particularly in hunting and flying behaviors. This study represents the first exploration of daily metabolic dynamics in the bat brain, providing insights into the complex regulatory network of circadian rhythms in mammals at a metabolic level. These findings serve as a valuable reference for future studies on circadian rhythms in nocturnal mammals.
Collapse
Affiliation(s)
- Tianhui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Yujia Chu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Mingyue Bao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Xintong Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Guoting Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
2
|
PER2: a potential molecular marker for hematological malignancies. Mol Biol Rep 2021; 48:7587-7595. [PMID: 34642831 DOI: 10.1007/s11033-021-06751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/16/2021] [Indexed: 11/27/2022]
Abstract
Circadian rhythm is a periodic change of organism according to the law of external environment, which is manifested in metabolism, cell proliferation, physiology and behavior. In recent years, the role of circadian genes in the occurrence and progression of hematological malignancies have been continuously demonstrated. PER2 is the core component of the circadian rhythm playing an important role in regulating the circadian rhythm of the biological clock. This review summarizes the research progress of PER2 in hematological malignancies, especially leukemia, in order to better understand its role in hematological malignancies, and provide new ideas for clinical diagnosis and treatment.
Collapse
|
3
|
Song Y, Meng QX, Wu K, Hua R, Song ZJ, Song Y, Qin X, Cao JL, Zhang YM. Disinhibition of PVN-projecting GABAergic neurons in AV region in BNST participates in visceral hypersensitivity in rats. Psychoneuroendocrinology 2020; 117:104690. [PMID: 32417623 DOI: 10.1016/j.psyneuen.2020.104690] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
Abstract
Ample evidence suggests that early life stress (ELS) is a high-risk factor for the development of visceral pain disorders, whereas the mechanism underlying neuronal circuit remains elusive. Herein, we employed neonatal colorectal distension (CRD) to induce visceral hypersensitivity in rats. A combination of electrophysiology, pharmacology, behavioral test, molecular biology, chemogenetics and optogenetics confirmed that CRD in neonatal rats could predispose the elevated firing frequency of the parvocellular corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of hypothalamus (PVN) in adulthood, with the CRH neurons activated and the frequency of spontaneous inhibitory postsynaptic currents (sIPSC) diminished, both contributing to chronic visceral hypersensitivity. Moreover, following administration of exogenous GABA (300 mM/0.5 μL) and GABAA receptor agonist muscimol (3 mM/0.5 μL) in PVN, visceral hyperalgesia was abrogated. In addition, the PVN-projecting GABAergic neurons were mainly distributed in the anterior ventral (AV) region in the bed nucleus of stria terminalis (BNST), and the excitability of these GABAergic neurons was weakened in visceral hypersensitivity. Specific depletion of the GABAergic neurons in AV region precipitated visceral hyperalgesia. Moreover, chemogenetic activation of the PVN-projecting neurons alleviated the visceral hypersensitivity. Photoactivation of PVN-projecting GABAergic neurons abated the visceral hypersensitivity in neonatal-CRD rats, whereas photoinhibition evoked visceral hyperalgesia in naïve rats. Our findings demonstrated that disinhibition of the PVN-projecting GABAergic neurons in AV region contributed to the excitation of CRH neurons, thereby mediating visceral hypersensitivity. Our study might provide a novel insight into the neuronal circuits involved in the ELS-induced visceral hypersensitivity.
Collapse
Affiliation(s)
- Yu Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Qing-Xiang Meng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Ke Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Zhi-Jing Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Ying Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xia Qin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
4
|
A New Theory of Gender Dysphoria Incorporating the Distress, Social Behavioral, and Body-Ownership Networks. eNeuro 2019; 6:ENEURO.0183-19.2019. [PMID: 31792116 PMCID: PMC6911960 DOI: 10.1523/eneuro.0183-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
When postmortem studies related to transgender individuals were first published, little was known about the function of the various identified nuclei. Now, over 2 decades later, significant progress has been made associating function with specific brain regions, as well as in identifying networks associated with groups of behaviors. However, much of this progress has not been integrated into the general conceptualization of gender dysphoria in humans. When postmortem studies related to transgender individuals were first published, little was known about the function of the various identified nuclei. Now, over 2 decades later, significant progress has been made associating function with specific brain regions, as well as in identifying networks associated with groups of behaviors. However, much of this progress has not been integrated into the general conceptualization of gender dysphoria in humans. I hypothesize that in individuals with gender dysphoria, the aspects of chronic distress, gender atypical behavior, and incongruence between perception of gender identity and external primary sex characteristics are all directly related to functional differences in associated brain networks. I evaluated previously published neuroscience data related to these aspects and the associated functional networks, along with other relevant information. I find that the brain networks that give individuals their ownership of body parts, that influence gender typical behavior, and that are involved in chronic distress are different in individuals with and without gender dysphoria, leading to a new theory—that gender dysphoria is a sensory perception condition, an alteration in the sense of gender influenced by the reflexive behavioral responses associated with each of these networks. This theory builds upon previous work that supports the relevance of the body-ownership network and that questions the relevance of cerebral sexual dimorphism in regard to gender dysphoria. However, my theory uses a hierarchical executive function model to incorporate multiple reflexive factors (body ownership, gender typical/atypical behavior, and chronic distress) with the cognitive, reflective process of gender identity.
Collapse
|
5
|
dela Peña IJI, dela Peña I, de la Peña JB, Kim HJ, Sohn A, Shin CY, Han DH, Kim BN, Ryu JH, Cheong JH. Transcriptional profiling of SHR/NCrl prefrontal cortex shows hyperactivity-associated genes responsive to amphetamine challenge. GENES BRAIN AND BEHAVIOR 2017; 16:664-674. [DOI: 10.1111/gbb.12388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/05/2017] [Accepted: 04/16/2017] [Indexed: 12/15/2022]
Affiliation(s)
- I. J. I. dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| | - I. dela Peña
- Department of Pharmaceutical and Administrative Sciences; Loma Linda University; Loma Linda CA USA
| | - J. B. de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| | - H. J. Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| | - A. Sohn
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| | - C. Y. Shin
- Department of Neuroscience, School of Medicine; Konkuk University; Seoul Republic of Korea
| | - D. H. Han
- Department of Psychiatry; Chung-Ang University Medical School; Seoul Republic of Korea
| | - B.-N. Kim
- Department of Research Planning, Mental Health Research Institute; National Center for Mental Health; Seoul Republic of Korea
| | - J. H. Ryu
- Department of Life and Nanopharmaceutical Science; College of Pharmacy, Kyung Hee University; Seoul Republic of Korea
- Department of Oriental Pharmaceutical Science; College of Pharmacy, Kyung Hee University; Seoul Republic of Korea
| | - J. H. Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| |
Collapse
|
6
|
Wang Q, Ao Y, Yang K, Tang H, Chen D. Circadian clock gene Per2 plays an important role in cell proliferation, apoptosis and cell cycle progression in human oral squamous cell carcinoma. Oncol Rep 2016; 35:3387-94. [PMID: 27035749 DOI: 10.3892/or.2016.4724] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that the aberrant expression of period circadian clock 2 (Per2) is closely related to the occurrence and development of cancers, but the specific mechanism remains unclear. In the present study, we used shRNA to downregulate Per2 in oral squamous cell carcinoma (OSCC) Tca8113 cells, and then detected the alterations in cell cycle, cell proliferation and apoptosis by flow cytometric analysis and mRNA expression alterations in all the important genes in the cyclin/cyclin-dependent protein kinase (CDK)/cyclin-dependent kinase inhibitor (CKI) cell cycle network by RT-qPCR. We found that in the Tca8113 cells, after Per2 downregulation, the mRNA expression levels of cyclin A2, B1 and D1, CDK4, CDK6 and E2F1 were significantly increased (P<0.05), the mRNA expression levels of p53, p16 and p21 were significantly decreased (P<0.05), cell proliferation was significantly higher (P<0.05), apoptosis was significantly lower (P<0.05) and the number of cells in the G1/G0 phase was significantly decreased (P<0.05). The present study proves that in OSCC, clock gene Per2 plays an important role in cell cycle progression and the balance of cell proliferation and apoptosis by regulation of the cyclin/CDK/CKI cell cycle network. Further research on Per2 may provide a new effective molecular target for cancer treatments.
Collapse
Affiliation(s)
- Qingqing Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing 400017, P.R. China
| | - Yiran Ao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dan Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
7
|
Abstract
The main Zeitgeber, the day-night cycle, synchronizes the central oscillator which determines behaviors rhythms as sleep-wake behavior, body temperature, the regulation of hormone secretion, and the acquisition and processing of memory. Thus, actions such as acquisition, consolidation, and retrieval performed in the hippocampus are modulated by the circadian system and show a varied dependence on light and dark. To investigate changes in the hippocampus' cellular mechanism invoked by the day and night in a diurnal primate, this study analyzed the expression of PER2 and the calcium binding proteins (CaBPs) calbindin, calretinin and parvalbumin in the hippocampus of Sapajus apella, a diurnal primate, at two different time points, one during the day and one during the dark phase. The PER2 protein expression peaked at night in the antiphase described for the suprachiasmatic nucleus (SCN) of the same primate, indicating that hippocampal cells can present independent rhythmicity. This hippocampal rhythm was similar to that presented by diurnal but not nocturnal rodents. The CaBPs immunoreactivity also showed day/night variations in the cell number and in the cell morphology. Our findings provide evidence for the claim that the circadian regulation in the hippocampus may involve rhythms of PER2 and CaBPs expression that may contribute to the adaptation of this species in events and activities relevant to the respective periods.
Collapse
|