1
|
Raqib R, Sarker P. Repurposed Drugs and Plant-Derived Natural Products as Potential Host-Directed Therapeutic Candidates for Tuberculosis. Biomolecules 2024; 14:1497. [PMID: 39766204 PMCID: PMC11673177 DOI: 10.3390/biom14121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death due to infectious disease. It is a treatable disease; however, conventional treatment requires a lengthy treatment regimen with severe side effects, resulting in poor compliance among TB patients. Intermittent drug use, the non-compliance of patients, and prescription errors, among other factors, have led to the emergence of multidrug-resistant TB, while the mismanagement of multidrug-resistant TB (MDR-TB) has eventually led to the development of extensively drug-resistant tuberculosis (XDR-TB). Thus, there is an urgent need for new drug development, but due to the enormous expenses and time required (up to 20 years) for new drug research and development, new therapeutic approaches to TB are required. Host-directed therapies (HDT) could be a most attractive strategy, as they target the host defense processes instead of the microbe and thereby may prevent the alarming rise of MDR- and XDR-TB. This paper reviews the progress in HDT for the treatment of TB using repurposed drugs which have been investigated in clinical trials (completed or ongoing) and plant-derived natural products that are in clinical or preclinical trial stages. Additionally, this review describes the existing challenges to the development and future research directions in the implementation of HDT.
Collapse
Affiliation(s)
- Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Unit, Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh;
| | | |
Collapse
|
2
|
Huang X, Lowrie DB, Fan XY, Hu Z. Natural products in anti-tuberculosis host-directed therapy. Biomed Pharmacother 2024; 171:116087. [PMID: 38171242 DOI: 10.1016/j.biopha.2023.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Given that the disease progression of tuberculosis (TB) is primarily related to the host's immune status, it has been gradually realized that chemotherapy that targets the bacteria may never, on its own, wholly eradicate Mycobacterium tuberculosis, the causative agent of TB. The concept of host-directed therapy (HDT) with immune adjuvants has emerged. HDT could potentially interfere with infection and colonization by the pathogens, enhance the protective immune responses of hosts, suppress the overwhelming inflammatory responses, and help to attain a state of homeostasis that favors treatment efficacy. However, the HDT drugs currently being assessed in combination with anti-TB chemotherapy still face the dilemmas arising from side effects and high costs. Natural products are well suited to compensate for these shortcomings by having gentle modulatory effects on the host immune responses with less immunopathological damage at a lower cost. In this review, we first summarize the profiles of anti-TB immunology and the characteristics of HDT. Then, we focus on the rationale and challenges of developing and implementing natural products-based HDT. A succinct report of the medications currently being evaluated in clinical trials and preclinical studies is provided. This review aims to promote target-based screening and accelerate novel TB drug discovery.
Collapse
Affiliation(s)
- Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| |
Collapse
|
3
|
Role of curcumin in ameliorating hypertension and associated conditions: a mechanistic insight. Mol Cell Biochem 2022; 477:2359-2385. [DOI: 10.1007/s11010-022-04447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
|
4
|
Alesci A, Aragona M, Cicero N, Lauriano ER. Can nutraceuticals assist treatment and improve covid-19 symptoms? Nat Prod Res 2022; 36:2672-2691. [PMID: 33949266 DOI: 10.1080/14786419.2021.1914032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral diseases have always played an important role in public and individual health. Since December 2019, the world is facing a pandemic of SARS-CoV-2, a coronavirus that results in a syndrome known as COVID-19. Several studies were conducted to implement antiviral drug therapy, until the arrival of SARS-CoV-2 vaccines. Numerous scientific investigations have considered some nutraceuticals as an additional treatment of COVID-19 patients to improve their clinical picture. In this review, we would like to emphasize the studies conducted to date about this issue and try to understand whether the use of nutraceuticals as a supplementary therapy to COVID-19 may be a valid and viable avenue. Based on the results obtained so far, quercetin, astaxanthin, luteolin, glycyrrhizin, lactoferrin, hesperidin and curcumin have shown encouraging data suggesting their use to prevent and counteract the symptoms of this pandemic infection.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Borde S, Hegde P, Prathipati P, North J, Kumari D, Chauhan H. Formulation and characterization of ternary amorphous solid dispersions of a highly potent anti-tubercular agent and curcumin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Effects of Curcumin and Its Analogues on Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:75-101. [PMID: 34331685 DOI: 10.1007/978-3-030-56153-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infectious diseases (IDs) are life-threatening illnesses, which result from the spread of pathogenic microorganisms such as bacteria, viruses, fungi, and parasites. IDs are a major challenge for the healthcare systems around the world, leading to a wide variety of clinical manifestations and complications. Despite the capability of frontline-approved medications to partially prevent or mitigate the invasion and subsequent damage of IDs to host tissues and cells, problems such as drug resistance, insufficient efficacy, unpleasant side effects, and high expenses stand in the way of their beneficial applications. One strategy is to evaluate currently explored and available bioactive compounds as possible anti-microbial agents. The natural polyphenol curcumin has been postulated to possess various properties including anti-microbial activities. Studies have shown that it possess pleiotropic effects against bacterial- and parasitic-associating IDs including drug-resistant strains. Curcumin can also potentiate the efficacy of available anti-bacterial and anti-parasitic drugs in a synergistic fashion. In this review, we summarize the findings of these studies along with reported controversies of native curcumin and its analogues, alone and in combination, toward its application in future studies as a natural anti-bacterial and anti-parasitic agent.
Collapse
|
7
|
Babaei F, Nassiri‐Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr 2020; 8:5215-5227. [PMID: 33133525 PMCID: PMC7590269 DOI: 10.1002/fsn3.1858] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
In late December 2019, the outbreak of respiratory illness emerged in Wuhan, China, and spreads worldwide. World Health Organization (WHO) named this disease severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by a new member of beta coronaviruses. Several medications are prescribed to patients, and some clinical trials are underway. Scientists are trying to find a specific drug against this virus. In this review, we summarize the pathogenesis, clinical features, and current treatments of coronavirus disease 2019 (COVID-19). Then, we describe the possible therapeutic effects of curcumin and its molecular mechanism against coronavirus-19. Curcumin, as an active constituent of Curcuma longa (turmeric), has been studied in several experimental and clinical trial studies. Curcumin has some useful clinical effects such as antiviral, antinociceptive, anti-inflammatory, antipyretic, and antifatigue effects that could be effective to manage the symptoms of the infected patient with COVID-19. It has several molecular mechanisms including antioxidant, antiapoptotic, and antifibrotic properties with inhibitory effects on Toll-like receptors, NF-κB, inflammatory cytokines and chemokines, and bradykinin. Scientific evidence suggests that curcumin could have a potential role to treat COVID-19. Thus, the use of curcumin in the clinical trial, as a new treatment option, should be considered.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Clinical BiochemistrySchool of Medicine, Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | - Marjan Nassiri‐Asl
- Department of Pharmacology and Neurobiology Research CenterSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
8
|
Tomioka H, Tatano Y, Shimizu T, Sano C. Clinical and Basic Studies on Therapeutic Efficacy of Herbal Medicines against Mycobacterial Infections. MEDICINES 2019; 6:medicines6020067. [PMID: 31248144 PMCID: PMC6630501 DOI: 10.3390/medicines6020067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
The high incidence of tuberculosis (TB) in developing countries, the resurgence of TB in industrialized countries, and the worldwide increase in the prevalence of Mycobacterium avium complex infections are important global health concerns. However, the development of novel antimycobacterial drugs is currently making very slow progress. Therefore, it is considered that devising improved administration protocols for clinical treatment against intractable mycobacteriosis using existing chemotherapeutics is more practical than awaiting the development of new antimycobacterial drugs. The regulation of host immune responses using immunoadjunctive agents may increase the efficacy of antimicrobial treatment against mycobacteriosis. In particular, the mild and long-term up-regulation of host immune reactions against mycobacterial pathogens using herbal medicines may be beneficial for such immunoadjunctive therapy. This review focuses on the current status regarding basic and clinical studies on protocols using herbal medicines, including medicinal plants, useful for the clinical treatment of intractable mycobacterial infections.
Collapse
Affiliation(s)
- Haruaki Tomioka
- Department of Basic Medical Science for Nursing, Department of Primary Education, Yasuda Women's University, Hiroshima 731-0153, Japan.
- Department of Microbiology and Immunology, Shimane University School of Medicine, Izumo 693-8501, Japan.
| | - Yutaka Tatano
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Otawara 324-8501, Japan.
| | - Toshiaki Shimizu
- Department of Nutritional Sciences, Yasuda Women's University, Hiroshima 731-0153, Japan.
| | - Chiaki Sano
- Department of Community Medicine Management, Shimane University School of Medicine, Izumo 693-8501, Japan.
| |
Collapse
|
9
|
Non-antibiotic adjunctive therapy: A promising approach to fight tuberculosis. Pharmacol Res 2019; 146:104289. [PMID: 31152788 DOI: 10.1016/j.phrs.2019.104289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is currently a clinical and public health problem. There is a concern about the emergence and development of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) species. Additionally, the lack of effective vaccines is another limitation to control the related infections. To overcome these problems various approaches have been pursued such as finding novel drug candidates with a new mechanism of action or repurposing conventional antibiotics. However, these strategies are still far from clinical application. Hence, the use of adjunctive therapy has been suggested for TB. In this paper, we review non-antibiotic adjunctive treatment options for TB. Natural products, vitamins, micronutrients, and trace elementals, as well as non-antibiotic drugs, are examples of agents which have been used as adjunctive therapies. The use of these adjunctive therapies has been shown to improve disease outcomes and reduce the adverse effects of antibiotic drugs. Employing these agents, either alone or in combination with antibiotics, might be considered as a promising approach to control TB infections and achieve better clinical outcomes. However, supportive evidence from randomized controlled trials is still scant and merits further investigations.
Collapse
|
10
|
Guan G, Lei L, Lv Q, Gong Y, Yang L. Curcumin attenuates palmitic acid-induced cell apoptosis by inhibiting endoplasmic reticulum stress in H9C2 cardiomyocytes. Hum Exp Toxicol 2019; 38:655-664. [PMID: 30859861 DOI: 10.1177/0960327119836222] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetic cardiomyopathy is mediated by multiple molecular mechanisms including endoplasmic reticulum (ER) stress. Curcumin, a phenolic compound, has cytoprotective properties, but its potential protective action against diabetic cardiomyopathy and the related molecular mechanisms are not fully elucidated. In this study, we evaluated the effects of curcumin on cell viability and apoptosis in palmitic acid (PA)-treated H9C2 cardiomyocytes and investigated the signaling pathways involved. Treatment with PA reduced cell viability, induced apoptosis, enhanced apoptosis-related protein expression (Caspase 3 and BCL-2 associated X protein (BAX)), and activated ER stress marker protein expression (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Curcumin attenuated PA-induced reduction in cell viability and activation of apoptosis, Caspase 3 activity, BAX, CHOP, and GRP78 expression. 4-Phenylbutyric acid (4-PBA) attenuated the PA-induced effects on cell viability and apoptosis, similar to curcumin. Both curcumin and 4-PBA also attenuated PA-induced increase in ER stress protein (CHOP and GRP78) expression. Curcumin also protected against cytotoxicity, apoptosis, and ER stress induced by thapsigargin. These findings indicate that PA triggers apoptosis in H9C2 cells via ER stress pathways and curcumin protects against this phenomenon.
Collapse
Affiliation(s)
- G Guan
- 1 Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, Jiangxi, China.,2 Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi, China
| | - L Lei
- 1 Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, Jiangxi, China.,2 Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi, China
| | - Q Lv
- 3 College of Biology and Pharmacy, Yulin Normal University, Yulin, Guangxi, China
| | - Y Gong
- 1 Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, Jiangxi, China.,4 College of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, China
| | - L Yang
- 2 Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi, China.,4 College of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
11
|
Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem 2018; 66:1-16. [PMID: 30660832 DOI: 10.1016/j.jnutbio.2018.12.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/04/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
Monocytes and macrophages are important cells of the innate immune system that have diverse functions, including defense against invading pathogens, removal of dead cells by phagocytosis, antigen presentation in the context of MHC class I and class II molecules, and production of various pro-inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1. In addition, pro-inflammatory (M1) and anti-inflammatory (M2) macrophages clearly play important roles in the progression of several inflammatory diseases. Therefore, therapies that target macrophage polarization and function by either blocking their trafficking to sites of inflammation, or skewing M1 to M2 phenotype polarization may hold clinical promise in several inflammatory diseases. Dietary-derived polyphenols have potent natural anti-oxidative properties. Within this group of polyphenols, curcumin has been shown to suppress macrophage inflammatory responses. Curcumin significantly reduces co-stimulatory molecules and also inhibits MAPK activation and the translocation of NF-κB p65. Curcumin can also polarize/repolarize macrophages toward the M2 phenotype. Curcumin-treated macrophages have been shown to be highly efficient at antigen capture and endocytosis via the mannose receptor. These novel findings provide new perspectives for the understanding of the immunopharmacological role of curcumin, as well as its therapeutic potential for impacting macrophage polarization and function in the context of inflammation-related disease. However, the precise effects of curcumin on the migration, differentiation, polarization and immunostimulatory functions of macrophages remain unknown. Therefore, in this review, we summarized whether curcumin can influence macrophage polarization, surface molecule expression, cytokine and chemokine production and their underlying pathways in the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Cellular & Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, University of Western Australia, Perth, Australia.
| |
Collapse
|
12
|
xCT increases tuberculosis susceptibility by regulating antimicrobial function and inflammation. Oncotarget 2018; 7:31001-13. [PMID: 27129162 PMCID: PMC5058734 DOI: 10.18632/oncotarget.9052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
The physiological functions of macrophage, which plays a central role in the pathogenesis of tuberculosis, depend on its redox state. System xc-, a cystine-glutamate transporter, which consists of xCT and CD98, influences many ROS-dependent pathways by regulating the production of the antioxidant glutathione. xCT's ability to alter this critical host redox balance by increasing the glutathione synthesis aspect of phagocyte physiology suggested that it might influence tuberculosis pathogenesis. In this study, we found that the xCT expression was increased in peripheral blood monocyte of active tuberculosis. xCT expression in macrophage was induced by Mycobacterium tuberculosis (Mtb) through TLR2/Akt- and p38-dependent signaling pathway. Importantly, xCT deficiency conferred protection against tuberculosis, as xCT knock out mice displayed increased Mtb load and reduced pulmonary pathology in lung compared to wild type mice. xCT disruption enhanced the mycobateriacidal activity of macrophage through increasing the mycothiol oxidation. Importantly, chemical inhibition of xCT with sulfasalazine, a specific xCT inhibitor that is already approved by the FDA for treatment of inflammatory bowel disease, produces similar protective effects in vivo and in vitro, indicating xCT might be a novel and useful target for host-directed TB treatment strategy.
Collapse
|
13
|
Tomioka H. Usefulness of Chinese Herbal Medicines as Host-Directed Therapeutics against Mycobacterial Infections: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1597-1611. [PMID: 29121801 DOI: 10.1142/s0192415x17500860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The high incidence of tuberculosis (TB) in developing countries, the resurgence of TB in industrialized countries, and the worldwide increase in the prevalence of Mycobacterium avium complex infections have prompted the quest for new antimycobacterial drugs. However, the development of such chemotherapeutics is currently making very slow progress. It therefore appears that devising improved administration protocols for clinical treatment against intractable mycobacteriosis using existing chemotherapeutics is more practical than awaiting the development of novel antimycobacterial drugs. The modulation of host immune responses using immunoadjunctive agents may increase the efficacy of antimicrobial treatment against mycobacteriosis. Particularly, the mild and long-term up-regulation of host immune reactions against mycobacterial pathogens using Chinese herbal medicines (CHMs) may be beneficial for immunoadjunctive therapy. This review focuses on the current status and future prospects regarding the development of CHMs that can be useful for the clinical control of intractable mycobacterial infections.
Collapse
Affiliation(s)
- Haruaki Tomioka
- 1 Department of Basic Medical Science for Nursing, Department of Primary Education, Yasuda Women's University, Hiroshima, Japan.,2 Shimane University School of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
14
|
Wang S, Ye Q, Tu J, Zhang M, Ji B. Curcumin protects against hypertension aggravated retinal ischemia/reperfusion in a rat stroke model. Clin Exp Hypertens 2017; 39:711-717. [PMID: 28678631 DOI: 10.1080/10641963.2017.1313854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Saibin Wang
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, China
| | - Qian Ye
- Department of Cardiology, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, China
| | - Junwei Tu
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, China
| | - Mingying Zhang
- Department of Cardiology, Wenzhou Municipal Central Hospital, Wenzhou, China
| | - Bin Ji
- Department of Anesthesiology, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Lee GH, Lee HY, Choi MK, Chung HW, Kim SW, Chae HJ. Protective effect of Curcuma longa L. extract on CCl 4-induced acute hepatic stress. BMC Res Notes 2017; 10:77. [PMID: 28143589 PMCID: PMC5286822 DOI: 10.1186/s13104-017-2409-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Curcuma longa L. (CLL) rhizome has long been used to treat patients with hepatic dysfunction. CLL is a member of the ginger family of spices that are widely used in China, India, and Japan, and is a common spice, coloring, flavoring, and traditional medicine. This study was performed to evaluate the hepatoprotective activity of CLL extract and its active component curcumin in an acute carbon tetrachloride (CCl4)-induced liver stress model. METHODS Acute hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) in rats. CLL extract was administered once a day for 3 days at three dose levels (100, 200, and 300 mg/kg/day) and curcumin was administered once a day at the 200 mg/kg/day. We performed alanine transaminase (ALT) and aspartate transaminase (AST). activity analysis and also measured total lipid, triglyceride, and cholesterol levels, and lipid peroxidation. RESULTS At 100 g CLL, the curcuminoid components curcumin (901.63 ± 5.37 mg/100 g), bis-demethoxycurcumin (108.28 ± 2.89 mg/100 g), and demethoxycurcumin (234.85 ± 1.85 mg/100 g) were quantified through high liquid chromatography analysis. In CCl4-treated rats, serum AST and ALT levels increased 2.1- and 1.2-fold compared with the control. AST but not ALT elevation induced by CCl4 was significantly alleviated in CLL- and curcumin-treated rats. Peroxidation of membrane lipids in the liver was significantly prevented by CLL (100, 200, and 300 mg/kg/day) on tissue lipid peroxidation assay and immunostaining with anti-4HNE antibody. We found that CLL extract and curcumin exhibited significant protection against liver injury by improving hepatic superoxide dismutase (p < 0.05) and glutathione peroxidase activity, and glutathione content in the CCl4-treated group (p < 0.05), leading to a reduced lipid peroxidase level. CONCLUSION Our data suggested that CLL extract and curcumin protect the liver from acute CCl4-induced injury in a rodent model by suppressing hepatic oxidative stress. Therefore, CLL extract and curcumin are potential therapeutic antioxidant agents against acute hepatotoxicity.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180 Republic of Korea
| | - Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180 Republic of Korea
| | - Min-Kyung Choi
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180 Republic of Korea
| | - Han-Wool Chung
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180 Republic of Korea
| | - Seung-Wook Kim
- CS1 Center, Ottogi Research Center, Ottogi Corporation, Kyeonggi-do, 14060 Republic of Korea
- Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752 Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180 Republic of Korea
| |
Collapse
|
16
|
The inhibition of PI3K and NFκB promoted curcumin-induced cell cycle arrest at G2/M via altering polyamine metabolism in Bcl-2 overexpressing MCF-7 breast cancer cells. Biomed Pharmacother 2015; 77:150-60. [PMID: 26796279 DOI: 10.1016/j.biopha.2015.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Bcl-2 protein has been contributed with number of genes which are involved in oncogenesis. Among the many targets of Bcl-2, NFκB have potential role in induction of cell cycle arrest. Curcumin has potential therapeutic effects against breast cancer through multiple signaling pathways. In this study, we investigated the role of curcumin in induction of cell cycle arrest via regulating of NFκB and polyamine biosynthesis in wt and Bcl-2+ MCF-7 cells. To examine the effect of curcumin on cell cycle regulatory proteins, PI3K/Akt, NFκB pathways and polyamine catabolism, we performed immunoblotting assay. In addition, cell cycle analysis was performed by flow cytometry. The results indicated that curcumin induced cell cycle arrest at G2/M phase by downregulation of cyclin B1 and Cdc2 and inhibited colony formation in MCF-7wt cells. However, Bcl-2 overexpression prevented the inhibition of cell cycle associated proteins after curcumin treatment. The combination of LY294002, PI3K inhibitor, and curcumin induced cell cycle arrest by decreasing CDK4, CDK2 and cyclin E2 in Bcl-2+ MCF-7 cells. Moreover, LY294002 further inhibited the phosphorylation of Akt in Bcl-2+ MCF-7 cells. Curcumin could suppress the nuclear transport of NFκB through decreasing the interaction of P-IκB-NFκB. The combination of wedelolactone, NFκB inhibitor, and curcumin acted different on SSAT expression in wt MCF-7 and Bcl-2+ MCF-7 cells. NFκB inhibition increased the SSAT after curcumin treatment in Bcl-2 overexpressed MCF-7 cells. Inhibition of NFκB activity as well as suppression of ROS generation with NAC resulted in the partial relief of cells from G2/M checkpoint after curcumin treatment in wt MCF-7 cells. In conclusion, the potential role of curcumin in induction of cell cycle arrest is related with NFκB-regulated polyamine biosynthesis.
Collapse
|
17
|
Zhang X, Sha M, Yao Y, Da J, Jing D. Increased B-type-natriuretic peptide promotes myocardial cell apoptosis via the B-type-natriuretic peptide/long non-coding RNA LSINCT5/caspase-1/interleukin 1β signaling pathway. Mol Med Rep 2015; 12:6761-7. [PMID: 26323562 PMCID: PMC4626192 DOI: 10.3892/mmr.2015.4247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 08/06/2015] [Indexed: 01/23/2023] Open
Abstract
Chronic heart failure (CHF) is the final stage of various heart diseases, and is increasingly recognized as a major health problem in the elderly. Previous studies demonstrated that B-type-natriuretic peptide (BNP) is an established biomarker of CHF. Furthermore, BNP also regulates cell proliferation, differentiation and apoptosis. Recent evidence has revealed that BNP affects myocardial cell apoptosis during myocardial ischemia-reperfusion injury. Long non-coding RNAs (lncRNAs) are emerging as novel molecular compounds involved in gene regulation, and have important roles in numerous human diseases. However, the mechanism underlying the BNP and lncRNA-induced regulation of myocardial cell apoptosis remains to be elucidated. The present study reported that lncRNA LSINCT5, upregulated by BNP, is able to regulate myocardial cell apoptosis via the activation of the caspase-1/interleukin (IL)-1β signaling pathway. BNP-induced apoptosis of HCM cells was observed using flow cytometry, and involved caspase-1. In addition, expression profiling using a human lncRNA polymerase chain reaction array revealed that LSINCT5 was highly expressed in BNP-treated myocardial cells, as compared with untreated cells. The role of lncRNA LSINCT5 in HCM cell apoptosis was also investigated. The results of the present study indicated that LSINCT5 silencing by small interfering RNA inhibits caspase-1/IL-1β signaling, and suppresses apoptosis in BNP-treated HCM cells. Therefore, high expression levels of BNP promote the apoptosis of myocardial cells through the lncRNA LSINCT5 mediator, which activates the caspase-1/IL-1β signaling pathway. These findings uncovered a novel pathogenic mechanism, and provided a potential therapeutic target for CHF.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Geriatrics, Shanghai First People's Hospital, Shanghai 200080, P.R. China
| | - Minglei Sha
- Department of Geriatrics, Shanghai First People's Hospital, Shanghai 200080, P.R. China
| | - Yuting Yao
- Department of Geriatrics, Shanghai First People's Hospital, Shanghai 200080, P.R. China
| | - Jia Da
- Department of Geriatrics, Shanghai First People's Hospital, Shanghai 200080, P.R. China
| | - Dadao Jing
- Department of Geriatrics, Shanghai First People's Hospital, Shanghai 200080, P.R. China
| |
Collapse
|