1
|
Pan X, Hou Z, Zhang T, Ding Z, Ye F, Wang Z, Huang C, Wang P, Li X. Efficacy and safety of intrapleural perfusion with hyperthermic chemotherapy for malignant pleural effusion: a meta-analysis. J Cardiothorac Surg 2024; 19:278. [PMID: 38711077 PMCID: PMC11075297 DOI: 10.1186/s13019-024-02751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE To evaluate the efficacy and safety of intrapleural perfusion with hyperthermic chemotherapy (IPHC) in treating malignant pleural effusion (MPE). METHODS PubMed, Embase, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Database (CBM), VIP Chinese Science and Technology Journal Full-text Database (VP-CSJFD), and Wanfang database were searched by computer from database establishment to January 17, 2024. Relevant randomized controlled articles with IPHC as the observational group and intrapleural perfusion chemotherapy (IPC) as the control group for MPE were included. Then, the methodological quality of the included articles was evaluated and statistically analyzed using Stata 16.0. RESULTS Sixteen trials with 647 patients receiving IPHC and 661 patients receiving IPC were included. The meta-analysis found that MPE patients in the IPHC group had a more significant objective response rate [RR = 1.31, 95%CI (1.23, 1.38), P < 0.05] and life quality improvement rate [RR = 2.88, 95%CI (1.95, 4.24), P < 0.05] than those in the IPC group. IPHC and IPC for MPE patients had similar incidence rates of asthenia, thrombocytopenia, hepatic impairment, and leukopenia. CONCLUSION Compared with IPC, IPHC has a higher objective response rate without significantly increasing adverse reactions. Therefore, IPHC is effective and safe. However, this study is limited by the quality of the literature. Therefore, more high-quality, multi-center, large-sample, rigorously designed randomized controlled clinical studies are still needed for verification and evaluation.
Collapse
Affiliation(s)
- Xue Pan
- School of Nursing and Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhichao Hou
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tangjuan Zhang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fei Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhulin Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chunyao Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Wang
- School of Nursing and Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Jiang X, Liu Z, Wan R, Cai R, Yang J, Li L, Hu H, Ou L, Zhang C, Liu Q. Research trends and hotspots of polyphyllin in high-incidence cancers: A bibliometric analysis. Heliyon 2024; 10:e27804. [PMID: 38510037 PMCID: PMC10950667 DOI: 10.1016/j.heliyon.2024.e27804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Background Polyphyllin, a natural compound derived primarily from the Paris genus, manifests its anticancer properties. Extensive research on its therapeutic potential in cancers has been reported. However, there is no systematical analysis of the general aspects of research on polyphyllin by bibliometric analysis. The aim of this study is to visualize emerging trends and hotspots and predict potential research directions in this field. Methods In this study, we collected relevant research articles from the Web of Science Core Collection Bibliometrics. Using R-bibliometrix, we analyzed the research status, hotspots, frontiers, and development trends of polyphyllin in high-incidence cancers. To conduct a comprehensive visual analysis, CiteSpace and VOSviewer were used for visual analysis of authors, countries, institutions, keywords, and co-cited references within the published articles. Results A total of 257 articles focusing on the research of polyphyllin in high-incidence cancers were retrieved from the WOSCC database, covering the period from 2005 to 2023. The analysis revealed a consistent increasing trend in annual publications during this timeframe. Notably, China emerged as the most productive country, with Tianjin University leading the institutions. The Journal of Ethnopharmacology stood out as the most prominent journal in this field, while Gao WY emerged as the most prolific author. Polyphyllin VI, polyphyllin II, and polyphyllin VII have emerged as the latest research hotspots. Additionally, the investigation of autophagy and its associated mechanisms has gained significant attention as a novel research direction. Conclusion This study presents a novel visualization of the research on polyphyllin saponins in the field of highly prevalent cancers using bibliometric analysis. The investigation of polyphyllin D has emerged as a primary focus in this field, with lung cancer, breast cancer, and liver cancer being the key areas of current research. Lastly, polyphyllin saponins show potential application in the field of cancer.
Collapse
Affiliation(s)
- Xin Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhen Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Renming Cai
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jiaxin Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Linfeng Li
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Huiling Hu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Lilan Ou
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Chun Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
3
|
Li J, Jia J, Zhu W, Chen J, Zheng Q, Li D. Therapeutic effects on cancer of the active ingredients in rhizoma paridis. Front Pharmacol 2023; 14:1095786. [PMID: 36895945 PMCID: PMC9989034 DOI: 10.3389/fphar.2023.1095786] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer is a major threat to human health, with high mortality and a low cure rate, continuously challenging public health worldwide. Extensive clinical application of traditional Chinese medicine (TCM) for patients with poor outcomes of radiotherapy and chemotherapy provides a new direction in anticancer therapy. Anticancer mechanisms of the active ingredients in TCM have also been extensively studied in the medical field. As a type of TCM against cancer, Rhizoma Paridis (Chinese name: Chonglou) has important antitumor effects in clinical application. The main active ingredients of Rhizoma Paridis (e.g., total saponins, polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII) have shown strong antitumor activities in various cancers, such as breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric cancer. Rhizoma Paridis also has low concentrations of certain other active ingredients with antitumor effects, such as saponins polyphyllin E, polyphyllin H, Paris polyphylla-22, gracillin, and formosanin-C. Many researchers have studied the anticancer mechanism of Rhizoma Paridis and its active ingredients. This review article describes research progress regarding the molecular mechanism and antitumor effects of the active ingredients in Rhizoma Paridis, suggesting that various active ingredients in Rhizoma Paridis may be potentially therapeutic against cancer.
Collapse
Affiliation(s)
- Jie Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jinhao Jia
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Weiwei Zhu
- Clinical Trial Agency, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Jianfei Chen
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Qiusheng Zheng
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Defang Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
4
|
Boron difluoride formazanate dye for high‐efficiency NIR‐II fluorescence imaging‐guided cancer photothermal therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Thapa CB, Paudel MR, Bhattarai HD, Pant KK, Devkota HP, Adhikari YP, Pant B. Bioactive secondary metabolites in Paris polyphylla Sm. and their biological activities: A review. Heliyon 2022; 8:e08982. [PMID: 35243100 PMCID: PMC8881664 DOI: 10.1016/j.heliyon.2022.e08982] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Paris polyphylla Sm. is an important medicinal plant used to treat a variety of diseases through traditional medicine systems such as Ayurveda, Tibetan traditional medicines, Chinese traditional medicines, and others around the world. The IUCN red list has designated it as "vulnerable" due to a decline in wild population by over-exploitation, habitat degradation, illegal collection for trade and traditional use. This review paper aims to summarize the bioactive secondary metabolites in Paris polyphylla. Paris saponins or steroidal saponins are the main bioactive chemical constituents from this plant that account for more than 80% of the total compounds. For instance, polyphyllin D, diosgenin, paris saponins I, II, VI, VII, and H are steroidal saponins having anticancer activity comparable to synthetic anticancer medicines. Antioxidant, anticancer, anti-leishmaniasis, antibacterial, antifungal, anthelmintic, antityrosinase, and antiviral effects of extracts and pure compounds were also demonstrated in vivo and in vitro. In conclusion, this review summarizes the bioactive components from the P. polyphylla which will be useful to researchers and scientists, and for the development of potential drugs.
Collapse
Affiliation(s)
- Chandra Bahadur Thapa
- Central Department of Botany, Tribhuvan University, Kirtipur, Nepal
- Butwal Multiple Campus, Tribhuvan University, Butwal, Nepal
| | - Mukti Ram Paudel
- Central Department of Botany, Tribhuvan University, Kirtipur, Nepal
| | | | | | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Bijaya Pant
- Central Department of Botany, Tribhuvan University, Kirtipur, Nepal
- Corresponding author.
| |
Collapse
|
6
|
Oudebrouckx G, Goossens J, Bormans S, Vandenryt T, Wagner P, Thoelen R. Integrating Thermal Sensors in a Microplate Format: Simultaneous Real-Time Quantification of Cell Number and Metabolic Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2440-2451. [PMID: 34990545 DOI: 10.1021/acsami.1c14668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplates have become a standard tool in the pharmaceutical industry and academia for a broad range of screening assays. One of the most commonly performed assays is the cell proliferation assay, which is often used for the purpose of drug discovery. Microplate readers play a crucial role in this field, as they enable high-throughput testing of large sample numbers. Common drawbacks of the most popular plate reader technologies are that they are end-point-based and most often require the use of detection reagents. As a solution, with this work, we aim to expand the possibilities of real-time and label-free monitoring of cell proliferation inside a microplate format by introducing a novel thermal-based sensing approach. For this purpose, we have developed thin-film sensors that can easily be integrated into the bottom of standard 96-well plates. First, the accuracy and precision of the sensors for measuring temperature and thermal effusivity are assessed via characterization experiments. These experiments highlight the fast response of the sensors to changes in temperature and thermal effusivity, as well as the excellent reproducibility between different sensors. Later, proof-of-principle measurements were performed on the proliferation of Saccharomyces cerevisiae. The proliferation measurements show that the thermal sensors were able to simultaneously detect relative changes in cell number as well as changes in metabolic activity. This dual functionality makes the presented sensor technology a promising candidate for monitoring microplate assays.
Collapse
Affiliation(s)
- Gilles Oudebrouckx
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Juul Goossens
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Seppe Bormans
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Thijs Vandenryt
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics, KU Leuven, 3001 Leuven, Belgium
| | - Ronald Thoelen
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| |
Collapse
|
7
|
Yang L, Liu ST, Yu H, Hou AJ, Man WJ, Zhang JX, Wang S, Wang XJ, Zheng SW, Su XL. A review of the pharmacology, application, ethnopharmacology, phytochemistry, quality control, processing, toxicology, and pharmacokinetics of Paridis Rhizoma. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
|
8
|
Chemical Constituents and Pharmacological Activities of Steroid Saponins Isolated from Rhizoma Paridis. J CHEM-NY 2021. [DOI: 10.1155/2021/1442906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rhizoma Paridis, the rhizome of liliaceous plants Paris polyphylla, is one of the most commonly used herbal drugs in China. Phytochemical and pharmacological studies have shown that steroid saponins were the major effective ingredients of Rhizoma Paridis to exert antitumor, anti-inflammatory, hemostasis, and antifibrosis functions. In this review, we discussed the chemical structures of steroid saponins and their related biological activity and mechanisms in cellular and animal models, aiming to provide a reference for future comprehensive exploitation and development of saponins.
Collapse
|
9
|
Ahmad B, Gamallat Y, Khan MF, Din SR, Israr M, Ahmad M, Tahir N, Azam N, Rahman KU, Xin W, Zexu W, Linjie P, Su P, Liang W. Natural Polyphyllins (I, II, D, VI, VII) Reverses Cancer Through Apoptosis, Autophagy, Mitophagy, Inflammation, and Necroptosis. Onco Targets Ther 2021; 14:1821-1841. [PMID: 33732000 PMCID: PMC7956893 DOI: 10.2147/ott.s287354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. Conventional therapies, including surgery, radiation, and chemotherapy, have limited success because of secondary resistance. Therefore, safe, non-resistant, less toxic, and convenient drugs are urgently required. Natural products (NPs), primarily sourced from medicinal plants, are ideal for cancer treatment because of their low toxicity and high success. NPs cure cancer by regulating different pathways, such as PI3K/AKT/mTOR, ER stress, JNK, Wnt, STAT3, MAPKs, NF-kB, MEK-ERK, inflammation, oxidative stress, apoptosis, autophagy, mitophagy, and necroptosis. Among the NPs, steroid saponins, including polyphyllins (I, II, D, VI, and VII), have potent pharmacological, analgesic, and anticancer activities for the induction of cytotoxicity. Recent research has demonstrated that polyphyllins (PPs) possess potent effects against different cancers through apoptosis, autophagy, inflammation, and necroptosis. This review summarizes the available studies on PPs against cancer to provide a basis for future research.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Biology, University of Haripur, KPK, I. R. Pakistan.,College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yaser Gamallat
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | | | - Syed Riaz Din
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Muhammad Israr
- Department of Biology, University of Haripur, KPK, I. R. Pakistan.,Biochemistry and Molecular Biology, College of Life Science, Hebei Normal University, Hebei, People's Republic of China
| | - Manzoor Ahmad
- Department of Chemistry, Malakand University, Chakdara, KPK, I. R. Pakistan
| | - Naeem Tahir
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Nasir Azam
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Khalil Ur Rahman
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Xin
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Zexu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Peng Linjie
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Pengyu Su
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Liang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical, Dalian City, Liaoning Province, 116011, People's Republic of China
| |
Collapse
|
10
|
Gao L, Shao T, Zheng W, Ding J. Curcumin suppresses tumor growth of gemcitabine-resistant non-small cell lung cancer by regulating lncRNA-MEG3 and PTEN signaling. Clin Transl Oncol 2021; 23:1386-1393. [PMID: 33566305 DOI: 10.1007/s12094-020-02531-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lung cancer is one of the most aggressive malignancies and the efficacy of chemotherapy or concurrent chemoradiation is limited in clinical application. Curcumin has been reported to block cancer development by modulating multiple signaling pathways. However, whether curcumin can inhibit gemcitabine-resistant non-small cell lung cancer through regulation of lncRNA and the involved molecular mechanisms are rarely reported. MATERIALS AND METHODS MTT assay, clonogenic assay, apoptosis assay, qRT-PCR, Western blotting, immunohistochemistry, xenograft experiment were carried out in the present study. RESULTS The results showed that curcumin suppressed gemcitabine-resistant non-small cell lung cancer cell proliferation and induced apoptosis. Curcumin upregulated the expression of lncRNA-MEG3 and PTEN, and MEG3 overexpression could increase the level of PTEN expression, while MEG3 knockdown decreased the level of PTEN expression in gemcitabine-resistant non-small cell lung cancer cells. Curcumin treatment failed to inhibit the proliferation and induce apoptosis in MEG3 knockdown or PTEN knockdown cells. CONCLUSIONS These findings show the antitumor activity of curcumin for potential clinical application in gemcitabine-resistant non-small cell lung cancer treatment.
Collapse
Affiliation(s)
- L Gao
- Department of Integrated Traditional Chinese and Western Medicine, First Ward of Oncology, Hangzhou Cancer Hospital, No.34 Yanguan Street, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - T Shao
- Department of Integrated Traditional Chinese and Western Medicine, First Ward of Oncology, Hangzhou Cancer Hospital, No.34 Yanguan Street, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - W Zheng
- Department of Integrated Traditional Chinese and Western Medicine, First Ward of Oncology, Hangzhou Cancer Hospital, No.34 Yanguan Street, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - J Ding
- Department of Integrated Traditional Chinese and Western Medicine, First Ward of Oncology, Hangzhou Cancer Hospital, No.34 Yanguan Street, Hangzhou, Zhejiang, 310000, People's Republic of China.
| |
Collapse
|
11
|
Combination Therapy with Cinnamaldehyde and Hyperthermia Induces Apoptosis of A549 Non-Small Cell Lung Carcinoma Cells via Regulation of Reactive Oxygen Species and Mitogen-Activated Protein Kinase Family. Int J Mol Sci 2020; 21:ijms21176229. [PMID: 32872198 PMCID: PMC7504317 DOI: 10.3390/ijms21176229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the largest cause of cancer-induced deaths. Non-small cell lung cancer (NSCLC) is the most frequently observed subtype of lung cancer. Although recent studies have provided many therapeutic options, there is still a need for effective and safe treatments. This paper reports the combined effects of cinnamaldehyde (CNM), a flavonoid from cinnamon, together with hyperthermia, a therapeutic option for cancer treatment, on the A549 NSCLC cell line. A hyperthermia treatment of 43 °C potentiated the cytotoxicity of CNM in A549 cells. This was attributed to an increase in the apoptosis markers and suppression of the survival/protective factors, as confirmed by Western blot assays. Flow cytometry supported this result because the apoptotic profile, cell health profile, and cell cycle profile were regulated by CNM and hyperthermia combination therapy. The changes in reactive oxygen species (ROS) and its downstream target pathway, mitogen-activated protein kinases (MAPK), were evaluated. The CNM and hyperthermia combination increased the generation of ROS and MAPK phosphorylation. N-acetylcysteine (NAC), a ROS inhibitor, abolished the apoptotic events caused by CNM and hyperthermia co-treatment, suggesting that the cytotoxic effect was dependent of ROS signaling. Therefore, we suggest CNM and hyperthermia combination as an effective therapeutic option for the NSCLC treatment.
Collapse
|
12
|
Zou J, Su H, Zou C, Liang X, Fei Z. Ginsenoside Rg3 suppresses the growth of gemcitabine-resistant pancreatic cancer cells by upregulating lncRNA-CASC2 and activating PTEN signaling. J Biochem Mol Toxicol 2020; 34:e22480. [PMID: 32104955 DOI: 10.1002/jbt.22480] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/22/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is one of the most fatal malignancies with high mortality. Gemcitabine (GEM)-based chemotherapy is the most important treatment. However, the development of GEM resistance leads to chemotherapy failure. Previous studies demonstrated the anticancer activity of ginsenoside Rg3 in a variety of carcinomas through modulating multiple signaling pathways. In the present study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, colony formation assay, flow cytometry apoptosis assay, Western blotting assay, xenograft experiment, and immunohistochemistry assay were performed in GEM-resistant pancreatic cancer cell lines. Ginsenoside Rg3 inhibited the viability of GEM-resistant pancreatic cancer cells in a time-dependent and concentration-dependent manner through induction of apoptosis. The level of long noncoding RNA cancer susceptibility candidate 2 (CASC2) and PTEN expression was upregulated by the ginsenoside Rg3 treatment, and CASC2/PTEN signaling was involved in the ginsenoside Rg3-induced cell growth suppression and apoptosis in GEM-resistant pancreatic cancer cells. Ginsenoside Rg3 could be an effective anticancer agent for chemoresistant pancreatic cancer.
Collapse
Affiliation(s)
- Jifeng Zou
- Department of Oncology, The First People's Hospital of Pinghu, Pinghu, China
| | - Huafang Su
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changling Zou
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liang
- Department of Pathology, Yancheng Hospital Affiliated Southeast University, Yancheng, China
| | - Zhenghua Fei
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Zang F, Rao Y, Zhu X, Wu Z, Jiang H. Shikonin suppresses NEAT1 and Akt signaling in treating paclitaxel-resistant non-small cell of lung cancer. Mol Med 2020; 26:28. [PMID: 32268876 PMCID: PMC7140387 DOI: 10.1186/s10020-020-00152-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Background The development of paclitaxel-resistance led to the tumor relapse and treatment failure of non-small cell lung cancer. Shikonin has been demonstrated to show anti-cancer activity in many cancer types. The present study aimed to investigate the anti-cancer activity of shikonin in paclitaxel-resistant non-small cell lung cancer treatment. Methods MTT, clonogenic assay, apoptotic cell death analysis, western blot, qRT-PCR, gene knockdown and overexpression, xenograft experiment, immunohistochemistry were performed. Results Shikonin decreased paclitaxel-resistant NSCLC cell viability and inhibited the growth of xenograft tumor. Shikonin induced apoptotic cell death of paclitaxel-resistant NSCLC cell lines and suppressed the level of NEAT1 and Akt signaling of paclitaxel-resistant NSCLC cell lines and xenograft tumors. Either low dose or high dose of shikonin considerably suppressed the cell growth and induced the cell apoptotic death in NEAT1 knockdown A549/PTX cells, and p-Akt expression was decreased. Conclusions Shikonin could be a promising candidate for paclitaxel-resistant NSCLC treatment.
Collapse
Affiliation(s)
- Farong Zang
- Department of Respiratory and Oncology, Changxing County People's Hospital, Changxing, Zhejiang, 313100, People's Republic of China
| | - Yuanquan Rao
- Department of Oncology, Zhejiang Hospital, No.12 Lingyin Road, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Xinhai Zhu
- Department of Oncology, Zhejiang Hospital, No.12 Lingyin Road, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Zhibing Wu
- Department of Oncology, Zhejiang Hospital, No.12 Lingyin Road, Hangzhou, Zhejiang, 310013, People's Republic of China.
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, No.12 Lingyin Road, Hangzhou, Zhejiang, 310013, People's Republic of China.
| |
Collapse
|
14
|
Fabijańska M, Orzechowska M, Rybarczyk-Pirek AJ, Dominikowska J, Bieńkowska A, Małecki M, Ochocki J. Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin. Int J Mol Sci 2020; 21:ijms21062116. [PMID: 32204470 PMCID: PMC7139614 DOI: 10.3390/ijms21062116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023] Open
Abstract
Following previous studies devoted to trans–Pt(3-af)2Cl2, in this paper, the molecular structure and intermolecular interactions of the title complex are compared with other cisplatin analogues of which the crystal structures are presented in the Cambridge Structural Database (CSD). Molecular Hirshfeld surface analysis and computational methods were used to examine a possible relationship between the structure and anticancer activity of trans–Pt(3-af)2Cl2. The purpose of the article was also to investigate the effect of hyperthermia on the anticancer activity of cisplatin, cytostatics used in the treatment of patients with ovarian cancer and a new analogue of cisplatin-trans–Pt(3-af)2Cl2. The study was conducted on two cell lines of ovarian cancer sensitive to Caov-3 cytostatics and the OVCAR-3 resistant cisplatin line. The study used the MTT (3-(4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide) cell viability assay, LDH (lactate dehydrogenase), and the quantitative evaluation method for measuring gene expression, i.e., qPCR with TagMan probes. Reduced survivability of OVCAR-3 and Caov-3 cells exposed to cytostatics at elevated temperatures (37 °C, 40 °C, 43 °C) was observed. Hyperthermia may increase the sensitivity of cells to platinum-based antineoplastic drugs and paclitaxel, which may be associated with the reduction of gene expression related to apoptotic processes.
Collapse
Affiliation(s)
- Małgorzata Fabijańska
- Department of Bioinorganic Chemistry, Medical University of Lodz, 1 Muszynskiego St., 90-151 Łódź, Poland
- Correspondence: (M.F.); (J.O.); Tel.: +48-(42)-6779220 (J.O.)
| | - Magdalena Orzechowska
- Department of Applied Pharmacy, Medical University of Warsaw, 1 Banacha St., 02–097 Warsaw, Poland; (M.O.); (A.B.); (M.M.)
| | - Agnieszka J. Rybarczyk-Pirek
- Theoretical and Structural Chemistry Group, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland; (A.J.R.-P.); (J.D.)
| | - Justyna Dominikowska
- Theoretical and Structural Chemistry Group, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland; (A.J.R.-P.); (J.D.)
| | - Alicja Bieńkowska
- Department of Applied Pharmacy, Medical University of Warsaw, 1 Banacha St., 02–097 Warsaw, Poland; (M.O.); (A.B.); (M.M.)
| | - Maciej Małecki
- Department of Applied Pharmacy, Medical University of Warsaw, 1 Banacha St., 02–097 Warsaw, Poland; (M.O.); (A.B.); (M.M.)
| | - Justyn Ochocki
- Department of Bioinorganic Chemistry, Medical University of Lodz, 1 Muszynskiego St., 90-151 Łódź, Poland
- Correspondence: (M.F.); (J.O.); Tel.: +48-(42)-6779220 (J.O.)
| |
Collapse
|
15
|
Chauhan A, Kumar R, Singh P, Jha SK, Kuanr BK. RF hyperthermia by encapsulated Fe3O4 nanoparticles induces cancer cell death via time-dependent caspase-3 activation. Nanomedicine (Lond) 2020; 15:355-379. [DOI: 10.2217/nnm-2019-0187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To explore the optimum temperature for cancer cell death using magnetic hyperthermia (MH), which in turn will affect the mode of cell death. Method: The focus of this study is to improve upon the existing methodology for the synthesis of chitosan encapsulated Fe3O4. MH was done at different temperatures. The cell death pathway was explored using flow cytometry and western blot. Results: Coated Fe3O4 exhibited low cytotoxicity, high stability and heating efficiency. MH at 43°C was the optimum temperature for robust cell death. Cell death pathway suggested that during the initial stages of recovery, apoptosis was the main mode of cell death. While at later stages, major apoptosis and minor necrosis were observed. Conclusion: It is important to find out the long-term effect of hyperthermia treatment on cancer cells and their consequences on surrounding healthy cells.
Collapse
Affiliation(s)
- Anjali Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pooja Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Bijoy Kumar Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
16
|
Lu CH, Chen WT, Hsieh CH, Kuo YY, Chao CY. Thermal cycling-hyperthermia in combination with polyphenols, epigallocatechin gallate and chlorogenic acid, exerts synergistic anticancer effect against human pancreatic cancer PANC-1 cells. PLoS One 2019; 14:e0217676. [PMID: 31150487 PMCID: PMC6544372 DOI: 10.1371/journal.pone.0217676] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperthermia (HT) has shown feasibility and potency as an anticancer therapy. Administration of HT in the chemotherapy has previously enhanced the cytotoxicity of drugs against pancreatic cancer. However, the drugs used when conducting these studies are substantially conventional chemotherapeutic agents that may cause unwanted side effects. Additionally, the thermal dosage in the treatment of cancer cells could also probably harm the healthy cells. The purpose of this work was to investigate the potential of the two natural polyphenolic compounds, epigallocatechin gallate (EGCG) and chlorogenic acid (CGA), as heat synergizers in the thermal treatment of the PANC-1 cells. Furthermore, we have introduced a unique strategy entitled the thermal cycling-hyperthermia (TC-HT) that is capable of providing a maximum synergy and minimal side effect with the anticancer compounds. Our results demonstrate that the combination of the TC-HT and the CGA or EGCG markedly exerts the anticancer effect against the PANC-1 cells, while none of the single treatment induced such changes. The synergistic activity was attributed to the cell cycle arrest at the G2/M phase and the induction of the ROS-dependent mitochondria-mediated apoptosis. These findings not only represent the first in vitro thermal synergistic study of natural compounds in the treatment of pancreatic cancer, but also highlight the potential of the TC-HT as an alternative strategy in thermal treatment.
Collapse
Affiliation(s)
- Chueh-Hsuan Lu
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Ting Chen
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Yi Kuo
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Yu Chao
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Applied Physics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Polydatin inhibits proliferation and promotes apoptosis of doxorubicin-resistant osteosarcoma through LncRNA TUG1 mediated suppression of Akt signaling. Toxicol Appl Pharmacol 2019; 371:55-62. [DOI: 10.1016/j.taap.2019.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 02/01/2023]
|
18
|
Hong F, Gu W, Jiang J, Liu X, Jiang H. Anticancer activity of polyphyllin I in nasopharyngeal carcinoma by modulation of lncRNA ROR and P53 signalling. J Drug Target 2019; 27:806-811. [PMID: 30601067 DOI: 10.1080/1061186x.2018.1561887] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Feilong Hong
- Department of Otorhinolaryngology, Hangzhou First People’s Hospital, Hangzhou, PR China
| | - Wenyue Gu
- Department of Pathology, Yancheng Hospital Affiliated Southeast University, Yancheng, PR China
| | - Jin Jiang
- Department of Medical Oncology, Jiaxing Key Subject of Medicine 04-F-14, The First Hospital of Jiaxing, Jiaxing, PR China
| | - Xinge Liu
- Department of Oncology, Zhejiang Hospital, Hangzhou, PR China
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, Hangzhou, PR China
| |
Collapse
|
19
|
Advances in the antitumor activities and mechanisms of action of steroidal saponins. Chin J Nat Med 2018; 16:732-748. [PMID: 30322607 DOI: 10.1016/s1875-5364(18)30113-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Indexed: 01/14/2023]
Abstract
The steroidal saponins are one of the saponin types that exist in an unbound state and have various pharmacological activities, such as anticancer, anti-inflammatory, antiviral, antibacterial and nerves-calming properties. Cancer is a growing health problem worldwide. Significant progress has been made to understand the antitumor effects of steroidal saponins in recent years. According to reported findings, steroidal saponins exert various antitumor activities, such as inhibiting proliferation, inducing apoptosis and autophagy, and regulating the tumor microenvironment, through multiple related signaling pathways. This article focuses on the advances in domestic and foreign studies on the antitumor activity and mechanism of actions of steroidal saponins in the last five years to provide a scientific basis and research ideas for further development and clinical application of steroidal saponins.
Collapse
|
20
|
Anti-tumor activity of Shikonin against afatinib resistant non-small cell lung cancer via negative regulation of PI3K/Akt signaling pathway. Biosci Rep 2018; 38:BSR20181693. [PMID: 30420490 PMCID: PMC6294622 DOI: 10.1042/bsr20181693] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/16/2022] Open
Abstract
Acquired resistance of afatinib is a significant challenge for non-small cell lung cancer (NSCLC) therapy and the mechanisms remain unclear. Aberrant activation of epidermal growth factor receptor (EGFR)-dependent downstream pathways, especially phosphatidylinositol-3-kinases/protein kinase B (PI3K/Akt) signaling pathway has been reported to be involved in the occurrence of afatinib resistance. Developing effective anti-cancer agents to overcome afatinib resistance by targetting PI3K/Akt signaling pathway will be a potential strategy for NSCLC treatment. Shikonin is a naphthoquinone compound isolated from the roots of Lithospermum erythrorhizon. In the present study, the anti-cancer activity of Shikonin was evaluated on afatinib-resistant NSCLC in vitro and in vivo. The data showed that Shikonin inhibited the proliferation and induced apoptosis of afatinib-resistant NSCLC cell line by activating apoptosis signaling pathway and negatively regulating PI3K/Akt signaling pathway. These results revealed that Shikonin was a potential apoptosis inducer in afatinib-resistant NSCLC and a promising candidate for treating patients clinically.
Collapse
|
21
|
Qin XJ, Ni W, Chen CX, Liu HY. Seeing the light: Shifting from wild rhizomes to extraction of active ingredients from above-ground parts of Paris polyphylla var. yunnanensis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:134-139. [PMID: 29792919 DOI: 10.1016/j.jep.2018.05.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/20/2018] [Accepted: 05/20/2018] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried rhizomes of Paris polyphylla var. yunnanensis are widely used in traditional Chinese medicine (TCM) as hemostatic, antitumor, and antimicrobial agents. More than 70 Chinese patent medicines are based on P. polyphylla var. yunnanensis rhizomes. Steroidal saponins are considered as the main active ingredients of these rhizomes. However, wild populations of P. polyphylla var. yunnanensis are greatly threatened due to the illegal wild harvest and over-utilization of the rhizomes. In contrast, the renewable above-ground parts (leaves and stems) of P. polyphylla var. yunnanensis are usually thrown away as waste material, whether from wild or cultivated material. AIM OF THE STUDY The aim of this study was to use HPLC analyses of chemical constituents and bioactive assays to assess whether the above-ground parts could be an alternative source of active ingredients to the rhizomes of P. polyphylla var. yunnanensis. MATERIALS AND METHODS The saponin components of the rhizomes and above-ground parts of P. polyphylla var. yunnanensis were analyzed by HPLC-UV. The total saponins extracted from the rhizomes and above-ground parts of P. polyphylla var. yunnanensis were evaluated for their hemostatic, cytotoxic, and antimicrobial activities by using the rabbit blood in vitro based on turbidimetric method, MTT assay method, and a dilution antimicrobial susceptibility test method, respectively. RESULTS Four bioactive spirostanol saponins (paris saponins I, II, VI, and VII) were detected in the total saponins from the rhizomes and above-ground parts of P. polyphylla var. yunnanensis, which indicated they should have similar pharmacological properties. The bioactive assays revealed that both the parts of P. polyphylla var. yunnanensis exhibited the same hemostatic, cytotoxic, and antimicrobial effects. CONCLUSION Our results revealed that based on saponin content in the above-ground parts of P. polyphylla var. yunnanensis and the requirements stipulated in 2015 of Chinese Pharmacopoeia, the above-ground parts (especially its leaves) can be an alternative and more sustainable source of active ingredients compared to the rhizomes.
Collapse
Affiliation(s)
- Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Wei Ni
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Chang-Xiang Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Hai-Yang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China.
| |
Collapse
|
22
|
Yang Q, Chen W, Xu Y, Lv X, Zhang M, Jiang H. Polyphyllin I modulates MALAT1/STAT3 signaling to induce apoptosis in gefitinib-resistant non-small cell lung cancer. Toxicol Appl Pharmacol 2018; 356:1-7. [DOI: 10.1016/j.taap.2018.07.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
|
23
|
Hu T, Gao Y. β-elemene against Burkitt's lymphoma via activation of PUMA mediated apoptotic pathway. Biomed Pharmacother 2018; 106:1557-1562. [PMID: 30119230 DOI: 10.1016/j.biopha.2018.07.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/14/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Burkitt's lymphoma is a type of highly aggressive Non-Hodgkin's lymphoma. Although advanced Burkitt's lymphoma is responsive to high-intensity chemotherapy regimens, increasing systemic toxicity, tumor recurrence and metastasis significantly reduce the patient survival. Thus, it is important to investigate novel antitumor agents with safety and effectiveness. β-elemene shows anti-proliferative effect on cancer cells by triggering apoptosis through regulating several molecular signaling pathways. However, its role in the suppression of Burkitt's lymphoma has not yet been fully elucidated. The inhibitory effect of β-elemene in Burkitt's lymphoma was studied in vitro and in vivo, as well as the involved molecular mechanism. The results demonstrated that β-elemene effectively inhibited the growth and induced the apoptosis of Burkitt's lymphoma cells through upregulation of PUMA expression and modulating PUMA related apoptotic signaling pathway. The in vivo data confirmed the anti-tumor effect of β-elemene in the xenografts, suggesting that β-elemene is associated with PUMA activation, leading to Bax and caspase induction and onset of mitochondrial apoptosis.
Collapse
Affiliation(s)
- Tonglin Hu
- Department of Hematology, Zhejiang Provincial Hospital of TCM, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Yu Gao
- Department of Hematology, Zhejiang Hospital, No.12 Lingyin Road, Hangzhou, Zhejiang, 310013, PR China.
| |
Collapse
|
24
|
Lu M, Fei Z, Zhang G. Synergistic anticancer activity of 20(S)-Ginsenoside Rg3 and Sorafenib in hepatocellular carcinoma by modulating PTEN/Akt signaling pathway. Biomed Pharmacother 2017; 97:1282-1288. [PMID: 29156516 DOI: 10.1016/j.biopha.2017.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 01/15/2023] Open
Abstract
Sorafenib, a multikinase inhibitor for hepatocellular carcinoma treatment, inhibits the Raf/MAPK/ERK signaling pathway. However, PI3K/Akt signaling pathway is activated by Sorafenib and cross-talks with the Raf/MAPK/ERK signaling pathway, leading to drug resistance. 20(S)-Ginsenoside Rg3 has been reported with significant anticancer effect to numerous carcinomas by inhibition of PI3K-Akt signaling pathway. Hence, we aim to examine the synergistic anticancer activity of 20(S)-Ginsenoside Rg3 and Sorafenib via modulation of PTEN/Akt signaling pathway. Human hepatocellular carcinoma cell lines HepG2 and Huh7 were used. Cell viability, clonogenic assay, apoptosis assay, western blot analysis, xenograft treatment and immunohistochemistry were carried out. The viability of hepatocellular carcinoma cells significantly decreased by the treatment of Sorafenib combined with 20(S)-Ginsenoside Rg3, as well as the enhanced apoptotic rates. The levels of PTEN, Bax and cleaved caspase-3 expression increased, while the levels of phospho-PDK1 and phospho-Akt expression decreased by the treatment of Sorafenib combined with 20(S)-Ginsenoside Rg3. In vivo, the tumor volumes and weight decreased in the Sorafenib combined with 20(S)-Ginsenoside Rg3 group. The results demonstrated the synergistic anticancer activity of 20(S)-Ginsenoside Rg3 and Sorafenib in HCC by modulating PTEN/Akt signaling pathway. These findings suggest a promising strategy for HCC treatment, which could be performed in a sufficiently frequent manner.
Collapse
Affiliation(s)
- Mingxia Lu
- Department of Infectious Disease, Jinhua People's Hospital, Jinhua, Zhejiang 321000, PR China
| | - Zhenghua Fei
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, Zhejiang 325000, PR China
| | - Ganlu Zhang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
25
|
Chemosensitive effects of Astragaloside IV in osteosarcoma cells via induction of apoptosis and regulation of caspase-dependent Fas/FasL signaling. Pharmacol Rep 2017; 69:1159-1164. [DOI: 10.1016/j.pharep.2017.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 11/24/2022]
|
26
|
Ginsenoside Rg3 enhances the anti-proliferative activity of erlotinib in pancreatic cancer cell lines by downregulation of EGFR/PI3K/Akt signaling pathway. Biomed Pharmacother 2017; 96:619-625. [PMID: 29035827 DOI: 10.1016/j.biopha.2017.10.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022] Open
Abstract
Erlotinib has shown activity in the management of pancreatic cancer. However, the benefit of EGFR blockade is limited due to EGFR independent PI3K/Akt signaling pathway. Studies have reported that Ginsenoside Rg3 strongly inhibited PI3K-Akt signaling pathway of many carcinomas. We aimed to investigate the activity of Ginsenoside Rg3 to sensitize erlotinib in treating pancreatic cancer in vitro and in vivo. Human pancreatic cancer cell lines BxPC-3 and AsPC-1 were used. Cell proliferation and colony formation assay, Annexin V/PI apoptosis analysis, Western blot analysis, immunohistochemistry and in vivo study were carried out. Ginsenoside Rg3 enhanced the anti-proliferative effects of erlotinib in BxPC-3 and AsPC-1 pancreatic cancer cells and xenograft. Ginsenoside Rg3 enhanced erlotinib-induced apoptosis and increased caspase-3,9 and PARP cleavage expression levels. Erlotinib/Ginsenoside Rg3 treatment decreased the levels of p-EGFR, p-PI3K, and p-Akt expression significantly. Ginsenoside Rg3 could enhance the efficacy of erlotinib to inhibit the proliferation of pancreatic cancer cells via induction of apoptosis and downregulation of the EGFR/PI3K/AKT pathway.
Collapse
|
27
|
Moussavi M, Haddad F, Matin MM, Iranshahi M, Rassouli FB. Efficacy of hyperthermia in human colon adenocarcinoma cells is improved by auraptene. Biochem Cell Biol 2017; 96:32-37. [PMID: 28915362 DOI: 10.1139/bcb-2017-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colon adenocarcinoma is one of the most common cancers worldwide, and resistance to current therapeutic modalities is a serious drawback in its treatment. Auraptene is a natural coumarin with considerable anticancer effects. The goal of this study was to introduce a novel combinatorial approach for treatment against colon adenocarcinoma cells. To do so, HT29 cells were pretreated with nontoxic auraptene and then hyperthermia was induced. Afterwards, the viability of the cells was assessed, changes induced in the cell cycle were analyzed, and the expression patterns of candidate genes were studied. Results from the MTT assay demonstrated significant (p < 0.01) decreases in cell viability when 20 μg/mL auraptene was used for 72 h, heat shock was induced, and cells were allowed to recover for 24 h. Flow cytometry analysis also indicated considerable changes in the distribution of cells between the sub-G1/G1 and G2/M phases of cell cycle after the combinatorial treatment. Real-time RT-PCR studies revealed significant (p < 0.01) up-regulation of P21 in the cells pretreated with auraptene after heat shock, whereas no significant change was observed in HSP27 expression. Our findings not only indicate, for the first time, that the efficacy of hyperthermia was improved by auraptene pretreatment, but also suggest that this coumarin could be used in the future to achieve more effective therapeutic outcomes.
Collapse
Affiliation(s)
- Mahdi Moussavi
- a Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farhang Haddad
- a Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- a Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,b Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Iranshahi
- c Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B Rassouli
- a Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,b Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
28
|
Wang H, Fei Z, Jiang H. Polyphyllin VII increases sensitivity to gefitinib by modulating the elevation of P21 in acquired gefitinib resistant non-small cell lung cancer. J Pharmacol Sci 2017; 134:190-196. [PMID: 28757172 DOI: 10.1016/j.jphs.2017.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Blockade of EGFR with reversible EGFR tyrosine kinase inhibitors (TKIs) is considered the frontline strategy for advanced NSCLC with EGFR mutations. However, acquired resistance to EGFR-TKI has been observed, resulting in disease progression and limited clinical benefit. Polyphyllin VII is the main member of polyphyllin family, which has been demonstrated to show strong anticancer activity against carcinomas. The sensitizing effect and underlying mechanism of Polyphyllin VII against acquired EGFR-TKI resistant NSCLC are still unexplored. In the present study, we aim to examined the sensitizing effect of Polyphyllin VII to gefitinib by modulating P21 signaling pathway in gefitinib acquired resistant NSCLC in vitro and in vivo. Gefitinib sensitive PC-9 cells and gefitinib acquired resistant H1975 cells were used. Cell proliferation and Clonogenic assay, Cell cycle analysis, Western blotting analysis and xenograft treatment were carried out. Polyphyllin VII enhanced the anti-proliferative effects of gefitinib and gefitinib-induced G1 phase arrest by modulation of P21 signaling pathway in acquired gefitinib resistant cells in vitro and in vivo. Polyphyllin VII elevated sensitization of gefitinib acquired resistant NSCLC cells to gefitinib through G1 phase arrest and modulation of P21 signaling pathway. It provides a potential new strategy to overcome gefitinib acquired resistance for EGFR-TKI resistant NSCLC.
Collapse
Affiliation(s)
- Honggang Wang
- Department of Respiration, Jinhua People's Hospital, Jinhua, Zhejiang 321000, PR China
| | - Zhenghua Fei
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, Zhejiang 325000, PR China
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
29
|
Shen Z, Xu L, Li J, Zhang N. Capilliposide C Sensitizes Esophageal Squamous Carcinoma Cells to Oxaliplatin by Inducing Apoptosis Through the PI3K/Akt/mTOR Pathway. Med Sci Monit 2017; 23:2096-2103. [PMID: 28463955 PMCID: PMC5424653 DOI: 10.12659/msm.901183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although platinum-based chemotherapy is the most effective strategy for esophageal cancer, toxicity and drug resistance limit the dose administration and the application of chemotherapy. Capilliposide C (CPS-C) is isolated from the Chinese herb Lysimachia capillipes Hemsl and is approved to be effective against carcinomas. However, the activity of CPS-C against esophageal cancer remains unclear. The present study was conducted to assess the chemosensitizing effects of CPS-C for enhancing the therapeutic efficacy of oxaliplatin in esophageal squamous carcinoma cells and explore the underlying mechanism. MATERIAL AND METHODS Human esophageal squamous cell carcinoma (ESCC) TE-1 and TE-2 were used. Several in vitro and in vivo analyses were carried out, including MTT, Annexin V/PI, Western blot, and TUNEL and immunohistochemistry in a xenograft model. RESULTS CPS-C significantly enhanced the proliferative inhibition and apoptotic effect of oxaliplatin in ESCC cells. Oxaliplatin combined with CPS-C decreased the expressions of PI3K, phospho-Akt, phospho-mTOR, Bcl-2, and Bcl-XL, and increased the expression of Bax and caspase-3 significantly compared to oxaliplatin-only treatment. Furthermore, in the ESCC xenograft model, CPS-C significantly enhanced the anti-cancer effects and apoptosis of oxaliplatin. CONCLUSIONS The results indicated that CPS-C enhanced the anti-proliferative and apoptotic effect of oxaliplatin by modulating the PI3K/Akt/mTOR pathway on ESCC in vitro and in vivo.
Collapse
Affiliation(s)
- Zhipeng Shen
- Department of Neurosurgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Lixia Xu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Juan Li
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Ni Zhang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
30
|
Yuan Z, Jiang H, Zhu X, Liu X, Li J. Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer. Biomed Pharmacother 2017; 89:227-232. [DOI: 10.1016/j.biopha.2017.02.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/11/2017] [Accepted: 02/11/2017] [Indexed: 01/24/2023] Open
|
31
|
Wu Z, Jing S, Li Y, Gao Y, Yu S, Li Z, Zhao Y, Piao J, Ma S, Chen X. The effects of SAHA on radiosensitivity in pancreatic cancer cells by inducing apoptosis and targeting RAD51. Biomed Pharmacother 2017; 89:705-710. [PMID: 28267674 DOI: 10.1016/j.biopha.2017.02.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/23/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
Abstract
Suberoyl anilide hydroxamic acid (SAHA) is one of the most promising Histone deacetylases(HDAC) inhibitors which has shown significant anti-tumor activity for many malignancies. We explored the potential mechanism of the radiosensitivity effect of SAHA in Panc-1 cells and attempted to develop SAHA as a systemic treatment strategy for pancreatic cancer. Growth inhibition was detected by CCK-8 assay. Radiosensitizing enhancement ratio was determined by clonogenic assay. The cell cycle and apoptosis assay was detected using flow cytometry and annexin-V/PI. The level of Bax, Bcl-2, Ku70, Ku86, RAD51, RAD54 protein expression were detected using Western blot analysis. Gene silencing was processed by lentiviral vector and qRT-PCR was performed to detect mRNA expression. The results revealed that SAHA inhibited the proliferation of Panc-1 cells. SAHA enhanced the radiosensitivity with a sensitization enhancement ratio(SER) of 1.10 of the Panc-1 cells. SAHA induced G2-M phase arrest and apoptosis of Panc-1 cells with radiation. SAHA upregulated Bax and downregulated Bcl-2, Ku70, Ku86, RAD51, RAD54 protein expression of irradiated Panc-1 cells. SAHA enhanced the radiosensitivity of Panc-1 cells by modulating RAD51 expression. SAHA enhanced radiosensitivity to pancreatic carcinoma Panc-1 cells. It was associated with the G2-M phase arrest and apoptosis via modulation of Bax and Bcl-2 expression. Downregulation of Ku70, Ku86, RAD51 and RAD54 expression caused suppression of HR-mediated DNA repair. SAHA is a good radiosensitizer for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Zhibing Wu
- Center of Hyperthermia Oncology, Nanjing Medical University Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, Zhejiang 310006, China; Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China; Key Laboratory of molecular oncology of Chinese medicine and Western medicine, Hangzhou, Zhejiang 310006, China.
| | - Saisai Jing
- Department of Oncology, Cixi People's Hospital, Cixi, Zhejiang 315300, China
| | - Yanhong Li
- Department of Oncology, Cixi People's Hospital, Cixi, Zhejiang 315300, China
| | - Yabo Gao
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China
| | - Shuhuan Yu
- Center of Hyperthermia Oncology, Nanjing Medical University Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, Zhejiang 310006, China
| | - Zhitian Li
- Center of Hyperthermia Oncology, Nanjing Medical University Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, Zhejiang 310006, China
| | - Yanyan Zhao
- Key Laboratory of molecular oncology of Chinese medicine and Western medicine, Hangzhou, Zhejiang 310006, China
| | - Jigang Piao
- Key Laboratory of molecular oncology of Chinese medicine and Western medicine, Hangzhou, Zhejiang 310006, China
| | - Shenglin Ma
- Center of Hyperthermia Oncology, Nanjing Medical University Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, Zhejiang 310006, China; Key Laboratory of molecular oncology of Chinese medicine and Western medicine, Hangzhou, Zhejiang 310006, China
| | - Xufeng Chen
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
32
|
Hu R, Jiang H, Li H, Wei D, Wang G, Ma S. Intrapleural perfusion thermo-chemotherapy for pleural effusion caused by lung carcinoma under VATS. J Thorac Dis 2017; 9:1317-1321. [PMID: 28616284 DOI: 10.21037/jtd.2017.04.65] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The aim of this study was to assess the effectiveness of intrapleural perfusion thermo-chemotherapy (IPTC) under video-assisted thoracoscopic surgery (VATS) for malignant pleural effusion (MPE) caused by lung carcinoma. METHODS In this retrospective study, fifty-four patients with moderate or large amounts of ipsilateral MPE secondary to non-small cell lung cancer (NSCLC) underwent pleural biopsy and IPTC under VATS. IPTC was performed by perfusing the pleural cavity with 43.0 °C saline solution containing cisplatin (200 mg/m2) using a devised circuit through mechanical circulation for 60 minutes. Blood pressure, heart rate, oxygen saturation (SpO2), and esophageal and rectal temperatures were monitored throughout the surgery. At the end of the perfusion, pleural biopsy was performed again for histological analysis. RESULTS The temperature at the pleural surface was stabilized at 43 °C, and pleural effusion was controlled in all patients. KPS scores increased in 89.3% of patients. No patient developed bone marrow suppression reactions with noticeable bleeding after treatment, and no liver and kidney malfunctions were observed. Apoptosis was detected by light and electron microscopy after IPTC. CEA markedly decreased in all patients 1 month after IPTC. The median survival time was 21.7 months, with a one-year survival rate of 74.1%. CONCLUSIONS IPTC under VATS is a new, safe, less invasive and more effective approach for MPE caused by lung carcinoma.
Collapse
Affiliation(s)
- Runlei Hu
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, China
| | - Hong Jiang
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, China
| | - Hu Li
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, China
| | - Dongshan Wei
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, China
| | - Guoqing Wang
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, China
| | - Shenglin Ma
- Department of Radiation Oncology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, China
| |
Collapse
|
33
|
Wu Z, Wang T, Zhang Y, Zheng Z, Yu S, Jing S, Chen S, Jiang H, Ma S. Anticancer effects of β-elemene with hyperthermia in lung cancer cells. Exp Ther Med 2017; 13:3153-3157. [PMID: 28588670 DOI: 10.3892/etm.2017.4350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/26/2017] [Indexed: 12/15/2022] Open
Abstract
β-elemene is a novel, plant-derived anticancer drug, which has been used to target multiple solid tumor types. Hyperthermia is an adjuvant therapeutic modality to treat cancer. However, the underlying mechanisms associated with the efficacy of these two treatments are largely unknown. The aim of the present study was to evaluate the effects of β-elemene combined with hyperthermia in lung cancer cell lines. An MTT assay was used to determine cell viability. The cell cycle and apoptosis were analyzed using flow cytometry. The morphology of cells during apoptosis was determined using a transmission electron microscope. The expression levels of P21, survivin, caspase-9, B-cell lymphoma 2 (Bcl-2) and Bcl-2-like protein 4 (Bax) mRNA were detected using quantitative polymerase chain reaction. β-elemene with hyperthermia treatment significantly inhibited the viability and increased the apoptosis rate of A549 cells compared with β-elemene treatment alone (P<0.01), and significantly decreased the proportion of cells in S phase compared with the control (P<0.01). Morphological observation using transmission electron microscopy indicated cross-sectional features of apoptosis: Chromatin condensation, reduced integrity of the plasma membrane, increased cellular granularity, nuclear collapse and the formation of apoptotic bodies. β-elemene with hyperthermia treatment significantly promoted P21 and Bax mRNA expression (P<0.01) and significantly decreased caspase-9, Bcl-2 and survivin mRNA expression (P<0.01) in A549 cells. In conclusion, β-elemene with hyperthermia has a significant inhibitory effect on A549 cells. This occurs through reducing S phase and inducing apoptosis, via an increase in P21 and Bax expression and a decrease in caspase-9, Bcl-2 and survivin expression.
Collapse
Affiliation(s)
- Zhibing Wu
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China.,Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China.,Key Laboratory of Molecular Oncology of Chinese Medicine and Western Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Ting Wang
- Department of Oncology, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Yanmei Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310005, P.R. China
| | - Zhishuang Zheng
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Shuhuan Yu
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Saisai Jing
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China.,Key Laboratory of Molecular Oncology of Chinese Medicine and Western Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Sumei Chen
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China.,Key Laboratory of Molecular Oncology of Chinese Medicine and Western Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Shenglin Ma
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China.,Key Laboratory of Molecular Oncology of Chinese Medicine and Western Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
34
|
Huang C, Yu Y. Synergistic Cytotoxicity of β-Elemene and Cisplatin in Gingival Squamous Cell Carcinoma by Inhibition of STAT3 Signaling Pathway. Med Sci Monit 2017; 23:1507-1513. [PMID: 28355175 PMCID: PMC5383012 DOI: 10.12659/msm.903783] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Cisplatin remains one of the most active agents and is the mainstay of combination chemotherapy regimens against gingival squamous cell carcinoma. However, the efficacy of cisplatin is limited by its high toxicity and the development of drug resistance. β-elemene, isolated from the Chinese herb Rhizoma zedoariahas, is highly effective against malignancies and has low toxicity, but the development of β-elemene sensitizing chemotherapy in targeting the STAT3 signaling pathway remains unexplored in gingival squamous cell carcinoma. The present study was conducted to assess the chemosensitizing effects of β-elemene for enhancing the cytotoxicity of cisplatin in gingival squamous cell carcinoma. Material/Methods The gingival squamous cell carcinoma YD-38 cell line was used. MTT assay, clonogenic assay, annexin V/PI apoptosis assay, Western blot analysis, and xenograft model treatment were carried out in vitro and in vivo. Results β-elemene significantly enhanced proliferative inhibition and cisplatin induced apoptosis in gingival squamous cell carcinoma. Cisplatin combined with β-elemene decreased the expressions of p-STAT3, p-JAK2, and Bcl-2, and increased the expressions of Bax and caspase-3 significantly compared to cisplatin only treatment, as well as in the xenograft model. Conclusions The results indicated that β-elemene promoted the anti-proliferative and apoptotic effect of cisplatin by inhibiting STAT3 and blocking the JAK2-STAT3 signaling pathway in GSCC in vitro and in vivo.
Collapse
Affiliation(s)
- Chengyi Huang
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yufeng Yu
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
35
|
Kim Y, Kim A, Sharip A, Sharip A, Jiang J, Yang Q, Xie Y. Reverse the Resistance to PARP Inhibitors. Int J Biol Sci 2017; 13:198-208. [PMID: 28255272 PMCID: PMC5332874 DOI: 10.7150/ijbs.17240] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022] Open
Abstract
One of the DNA repair machineries is activated by Poly (ADP-ribose) Polymerase (PARP) enzyme. Particularly, this enzyme is involved in repair of damages to single-strand DNA, thus decreasing the chances of generating double-strand breaks in the genome. Therefore, the concept to block PARP enzymes by PARP inhibitor (PARPi) was appreciated in cancer treatment. PARPi has been designed and tested for many years and became a potential supplement for the conventional chemotherapy. However, increasing evidence indicates the appearance of the resistance to this treatment. Specifically, cancer cells may acquire new mutations or events that overcome the positive effect of these drugs. This paper describes several molecular mechanisms of PARPi resistance which were reported most recently, and summarizes some strategies to reverse this type of drug resistance.
Collapse
Affiliation(s)
- Yevgeniy Kim
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Aleksei Kim
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Ainur Sharip
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Aigul Sharip
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Juhong Jiang
- Department of Pathology, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qing Yang
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Yingqiu Xie
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| |
Collapse
|
36
|
Zhou Z, Meng M, Ni H. Chemosensitizing Effect of Astragalus Polysaccharides on Nasopharyngeal Carcinoma Cells by Inducing Apoptosis and Modulating Expression of Bax/Bcl-2 Ratio and Caspases. Med Sci Monit 2017; 23:462-469. [PMID: 28124680 PMCID: PMC5291085 DOI: 10.12659/msm.903170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Platinum-based chemotherapy is the most effective regimen for nasopharyngeal carcinoma, which presents highly invasive and metastatic activity. However, the dose-related toxicity of chemotherapy agents limits the dose administration. Astragalus polysaccharide (APS) is the major active ingredient extracted from Chinese herb Radix Astragali and is proven to be active against carcinomas. We aimed to assess the chemosensitizing effects of Astragalus polysaccharides on nasopharyngeal carcinoma in vitro and in vivo and to explore the underlying mechanism. Material/Methods We used BALB/c nu/nu mice and human nasopharyngeal carcinoma cell lines CNE-1, CNE-2, and SUNE-1. MTT, Annexin V/PI, Western blot analysis, and TUNEL assay were carried out. Results APS significantly promoted anti-proliferative and apoptotic effects of cisplatin on nasopharyngeal carcinoma cells. APS also enhanced the anti-tumor effects and cisplatin-induced apoptosis in the xenograft model. The level of Bcl-2 decreased, while the levels of Bax, caspase-3, and caspase-9 increased in cisplatin combined with APS treatment compared to cisplatin only treatment. The ratio of Bax to Bcl-2 was significantly enhanced by the APS to cisplatin. Conclusions APS enhanced the anti-proliferative and apoptotic effect of cisplatin by modulating expression of Bax/Bcl-2 ratio and caspases on nasopharyngeal carcinoma cells and in the xenograft model.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Otolaryngology Head and Neck Surgery, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Minhua Meng
- Department of Otolaryngology Head and Neck Surgery, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Haifeng Ni
- Department of Otolaryngology Head and Neck Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
37
|
Zheng R, Deng Q, Liu Y, Zhao P. Curcumin Inhibits Gastric Carcinoma Cell Growth and Induces Apoptosis by Suppressing the Wnt/β-Catenin Signaling Pathway. Med Sci Monit 2017; 23:163-171. [PMID: 28077837 PMCID: PMC5248567 DOI: 10.12659/msm.902711] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Curcumin has well-known, explicit biological anti-tumor properties. The Wnt/β-catenin signaling pathway plays a central role in tumor cell proliferation and curcumin can regulate the Wnt/β-catenin signaling pathway of several carcinomas. The aim of this study was to investigate the impact of curcumin on the Wnt/β-catenin signaling pathway in human gastric cancer cells. Material/Methods We used 3 gastric cancer cell lines: SNU-1, SNU-5, and AGS. Research methods used were MTT assay, flow cytometry, clonogenic assay, annexin V/PI method, Western blotting analysis, tumor formation assay, and in vivo in the TUNEL assay. Results Curcumin markedly impaired tumor cell viability and induced apoptosis in vitro. Curcumin significantly suppressed the levels of Wnt3a, LRP6, phospho-LRP6, β-catenin, phospho-β-catenin, C-myc, and survivin. Xenograft growth in vivo was inhibited and the target genes of Wnt/β-catenin signaling were also reduced by curcumin treatment. Conclusions Curcumin exerts anti-proliferative and pro-apoptotic effect in gastric cancer cells and in a xenograft model. Inhibition of the Wnt/β-catenin signaling pathway and the subsequently reduced expression of Wnt target genes show potential as a newly-identified molecular mechanism of curcumin treatment.
Collapse
Affiliation(s)
- Ruzhen Zheng
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Qinghua Deng
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Yuehua Liu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Pengjun Zhao
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, Christmas island
| |
Collapse
|
38
|
Song S, Du L, Jiang H, Zhu X, Li J, Xu J. Paris Saponin I Sensitizes Gastric Cancer Cell Lines to Cisplatin via Cell Cycle Arrest and Apoptosis. Med Sci Monit 2016; 22:3798-3803. [PMID: 27755523 PMCID: PMC5081239 DOI: 10.12659/msm.898232] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Dose-related toxicity is the major restriction of cisplatin and cisplatin-combination chemotherapy, and is a challenge for advanced gastric cancer treatment. We explored the possibility of using Paris saponin I as an agent to sensitize gastric cancer cells to cisplatin, and examined the underlying mechanism. MATERIAL AND METHODS Growth inhibition was detected by MTT assay. The cell cycle and apoptosis were detected using flow cytometry and Annexin V/PI staining. The P21waf1/cip1, Bcl-2, Bax, and caspase-3 protein expression were detected using Western blot analysis. RESULTS The results revealed that PSI sensitized gastric cancer cells to cisplatin, with low toxicity. The IC50 value of cisplatin in SGC-7901 cell lines was decreased when combined with PSI. PSI promoted cisplatin-induced G2/M phase arrest and apoptosis in a cisplatin concentration-dependent manner. Bcl-2 protein expression decreased, but Bax, caspase-3, and P21waf1/cip1 protein expression increased with PSI treatment. CONCLUSIONS The underlying mechanism of Paris saponin I may be related to targeting the apoptosis pathway and cell cycle blocking, which suggests that PSI is a potential therapeutic sensitizer for cisplatin in treating gastric cancer.
Collapse
Affiliation(s)
- Shuichuan Song
- Department of Gastroenterology, 117 Hospital of People's Liberation Army, Hangzhou, Zhejiang, China (mainland)
| | - Leiwen Du
- Department of Gastroenterology, 117 Hospital of People's Liberation Army, Hangzhou, Zhejiang, China (mainland)
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jinhui Li
- Department of Chinese Medicine and Rehabilitation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Ji Xu
- Department of Surgery, Huashan Luxeme Medical Cosmetology Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
39
|
Liu Z, Zheng Q, Chen W, Wu M, Pan G, Yang K, Li X, Man S, Teng Y, Yu P, Gao W. Chemosensitizing effect of Paris Saponin I on Camptothecin and 10-hydroxycamptothecin in lung cancer cells via p38 MAPK, ERK, and Akt signaling pathways. Eur J Med Chem 2016; 125:760-769. [PMID: 27721159 DOI: 10.1016/j.ejmech.2016.09.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
Abstract
Paris Saponin I (PSI), a steroidal sponins isolated from plant, has been exhibited antitumor and many other biological activities. In this study, we investigated the role and underlying mechanisms of PSI in the synergistic regulation of antitumor activity of Camptothecin (CPT) and 10-hydroxycamptothecin (HCPT) in four types of lung cancer cells. The inhibitory evaluation showed that PSI could significantly reduce the CPT/HCPT-mediated cell proliferation and enhance the sensitivities of H1299, H460 and H446 lung cancer cells to CPT/HCPT. Mechanism study indicated that PSI improved the CPT/HCPT induced apoptosis in lung cancer cells through mitochondria pathway including cytochrome C release and activation of caspase-9 and -3 cascades. Furthermore, PSI plus CPT/HCPT also increased the up-regulation of Bax and down-regulation of Bcl-2 and Bcl-XL in H460 and H446 cells. Moreover, PSI enhanced CPT/HCPT-mediated inhibition of p38 MAPK and activation of phosphorylation of p38 MAPK in H1299 cells, and suppression of Akt and ERK pathways activation in H460 cells as well as in H446 cells. Collectively, our results demonstrated that PSI functions as a chemosensitizer by enhancing apoptosis through influencing p38 MAPK, ERK, and Akt pathways in lung cancer cells, and the combination with CPT/HCPT might be a promising strategy for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qi Zheng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenzhu Chen
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Meng Wu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Guojun Pan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ke Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuzhe Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
40
|
Zhu X, Jiang H, Li J, Xu J, Fei Z. Anticancer Effects of Paris Saponins by Apoptosis and PI3K/AKT Pathway in Gefitinib-Resistant Non-Small Cell Lung Cancer. Med Sci Monit 2016; 22:1435-41. [PMID: 27125283 PMCID: PMC4917328 DOI: 10.12659/msm.898558] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Paris saponins have been studied for their anticancer effects in various cancer types, but the mechanisms underlying the cytotoxic effects, especially in EGFR-TKI-resistant cells, are still unclear. We explored the potential mechanism of the antitumor effects of PSI, II, VI, VII in EGFR-TKI-resistant cells and attempted to develop PSI, II, VI, VII as a systemic treatment strategy for EGFR-TKI-resistant lung cancer. Material/Methods Growth inhibition was detected by MTT assay. The apoptosis assay was detected using annexin-V/PI and Hoechst staining. The level of PI3K, pAKT, Bax, Bcl-2, caspase-3, and caspase-9 protein expression were detected using Western blot analysis. Results The results revealed that PSI, II, VI, VII inhibited the proliferation of PC-9-ZD cells. Furthermore, PSI, II, VI, VII induced significant cell apoptosis. The levels of PI3K, pAKT, Bcl-2 protein decreased, while the Bax, caspase-3, and caspase-9 protein was increased by PSI, II, PSVI, PSVII treatment and resulted in increased sensitivity to gefitinib in PC-9-ZD cells. Conclusions The underlying mechanism of Paris saponins may be related to targeting the PI3K/AKT pathways to cause apoptosis. Our results suggest a therapeutic potential of Paris saponins in clinical settings for gefitinib-resistant NSCLC.
Collapse
Affiliation(s)
- XinHai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jinhui Li
- Department of Chinese Medicine and Rehabilitation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Ji Xu
- Department of Surgery, Huashan Luxeme Medical Cosmetology Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Zhenghua Fei
- Department of Oncology, The First Clinical Medical Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
41
|
ZHAO PENGJUN, SONG SHUICHUAN, DU LEIWEN, ZHOU GUOHUA, MA SHENGLIN, LI JINHUI, FENG JIANGUO, ZHU XINHAI, JIANG HAO. Paris Saponins enhance radiosensitivity in a gefitinib-resistant lung adenocarcinoma cell line by inducing apoptosis and G2/M cell cycle phase arrest. Mol Med Rep 2016; 13:2878-84. [DOI: 10.3892/mmr.2016.4865] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/21/2015] [Indexed: 11/06/2022] Open
|
42
|
Liu Z, Zheng Q, Chen W, Man S, Teng Y, Meng X, Zhang Y, Yu P, Gao W. Paris saponin I inhibits proliferation and promotes apoptosis through down-regulating AKT activity in human non-small-cell lung cancer cells and inhibiting ERK expression in human small-cell lung cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra13352e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PSI regulated AKT activity in NSCLC and inhibited ERK expression in SCLC.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Qi Zheng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Wenzhu Chen
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Shuli Man
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Xin Meng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Yongmin Zhang
- Université Pierre et Marie Curie-Paris 6
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232
- Paris
- France
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
43
|
Qin S, Xu C, Li S, Wang X, Sun X, Wang P, Zhang B, Ren H. Hyperthermia induces apoptosis by targeting Survivin in esophageal cancer. Oncol Rep 2015; 34:2656-64. [PMID: 26352384 DOI: 10.3892/or.2015.4252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/07/2015] [Indexed: 11/06/2022] Open
Abstract
Hyperthermia is considered the fifth pillar of cancer treatment. It induces cancer cell apoptosis, however, its molecular mechanisms remain unclear. In the present study, the role of Survivin in hyperthermia-induced apoptosis in esophageal cancer was investigated. Different temperatures were used to treat EC109 esophageal cancer cells, and their viability was found to be significantly inhibited with a concomitant increase in apoptosis and necrosis. Necrosis increased in a temperature‑dependent manner, whereas peak apoptosis was reached at 43˚C. The hyperthermia-induced apoptosis was due to the inhibition of Survivin and the activation of caspase-3. Subsequently, overexpression of Survivin inhibited the activation of caspase-3 and hyperthermia-induced apoptosis, however, this inhibition was reversed in the absence of XIAP. Immunoprecipitations showed that Survivin did not directly bind to caspase-3, whereas XIAP interacted with Survivin and caspase-3. Immunohistochemistry was performed to detect the expression of Survivin in esophageal cancer patient samples. A higher expression of Survivin in esophageal cancer tissues compared to normal tissues was observed, and a high expression correlated with poor prognosis. The results indicated that hyperthermia decreases the expression of Survivin, prevents its binding to XIAP, activates caspase-3 and induces apoptosis. Due to its correlation with poor prognosis, Survivin may be a target for hyperthermia in the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Sida Qin
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chongwen Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuo Li
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xifang Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Sun
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Peili Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Boxiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Ren
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|