1
|
Lee AY, Park JY, Hwang SJ, Jang KH, Jo CH. Effects of Late-Passage Small Umbilical Cord-Derived Fast Proliferating Cells on Tenocytes from Degenerative Rotator Cuff Tears under an Interleukin 1β-Induced Tendinopathic Environment. Tissue Eng Regen Med 2024; 21:1217-1231. [PMID: 39500862 PMCID: PMC11589062 DOI: 10.1007/s13770-024-00673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Tendinopathy is a chronic tendon disease. Mesenchymal stem cells (MSCs), known for their anti-inflammatory properties, may lose effectiveness with extensive culturing. Previous research introduced "small umbilical cord-derived fast proliferating cells" (smumf cells), isolated using a novel minimal cube explant method. These cells maintained their MSC characteristics through long-term culture. Thus, the purpose of the present study was to assess the anti-inflammatory effects of late-passage smumf cells at P10 on tenocytes derived from degenerative rotator cuff tears in a tendinopathic environment. METHODS The mRNA expression with respect to aging of MSCs and secretion of growth factors (GFs) by smumf cells at P10 were measured. mRNA and protein synthesis in tenocytes with respect to the tenocyte phenotype, inflammatory cytokines, and matrix- degradation enzymes were measured. The inflammatory signal pathways involving nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) in tenocytes were also investigated. The proliferative response of degenerative tenocytes to co-culture with smumf cells over 7 days in varying IL-1β induced tendinopathic environments was investigated. RESULTS smumf cells at P10 showed no signs of aging compared to those at P3. smumf cells at P10, secreting 2,043 pg/ml of hepatocyte growth factor (HGF), showed a 1.88-fold (p = .002) increase in HGF secretion in a tendinopathic environment. Degenerative tenocytes co-cultured with smumf cells showed significantly increased protein expression levels of collagen type I (Col I) and the Col I/III ratio by 1.46-fold (p < .001) and 1.66-fold (p < .001), respectively. The smumf cells at P10 reduced both mRNA and protein expression levels of matrix metalloproteinases-1, -2, -3, -8, -9, and -13 in tenocytes and attenuated NF-κB (phosphorylated IκBα/IκBα and phosphorylated p65/p65) and MAPK (phosphorylated p38/p38 and phosphorylated JNK/JNK) pathways activated by IL-1β. Removal of IL-1β from the co-culture accelerated the growth of tenocytes by 1.42-fold (p < .001). Removal of IL-1β accelerated tenocyte growth in co-cultures. CONCULSION Late-passage smumf cells exert anti-inflammatory effects on tenocytes derived from degenerative rotator cuff tears under a tendinopathic environment, primarily through the secretion of growth factors (GFs).
Collapse
Affiliation(s)
- Ah-Young Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Dongjak-Gu, Seoul, 07061, Korea
- Institute of Reproductive Medicine and Population, Medical Research Center at, Seoul National University, Jongno-Gu, Seoul, 03087, Korea
| | - Ju-Young Park
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Dongjak-Gu, Seoul, 07061, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Jongno-Gu, Seoul, 03080, Korea
| | - Sam Joongwon Hwang
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Dongjak-Gu, Seoul, 07061, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Jongno-Gu, Seoul, 03080, Korea
| | - Kwi-Hoon Jang
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Dongjak-Gu, Seoul, 07061, Korea
| | - Chris Hyunchul Jo
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Dongjak-Gu, Seoul, 07061, Korea.
- Institute of Reproductive Medicine and Population, Medical Research Center at, Seoul National University, Jongno-Gu, Seoul, 03087, Korea.
- Department of Translational Medicine, Seoul National University College of Medicine, Jongno-Gu, Seoul, 03080, Korea.
| |
Collapse
|
2
|
Van Grouw A, Colonna MB, Maughon TS, Shen X, Larey AM, Moore SG, Yeago C, Fernández FM, Edison AS, Stice SL, Bowles-Welch AC, Marklein RA. Development of a Robust Consensus Modeling Approach for Identifying Cellular and Media Metabolites Predictive of Mesenchymal Stromal Cell Potency. Stem Cells 2023; 41:792-808. [PMID: 37279550 PMCID: PMC10427967 DOI: 10.1093/stmcls/sxad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/03/2023] [Indexed: 06/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise in regenerative medicine applications due in part to their ability to modulate immune cells. However, MSCs demonstrate significant functional heterogeneity in terms of their immunomodulatory function because of differences in MSC donor/tissue source, as well as non-standardized manufacturing approaches. As MSC metabolism plays a critical role in their ability to expand to therapeutic numbers ex vivo, we comprehensively profiled intracellular and extracellular metabolites throughout the expansion process to identify predictors of immunomodulatory function (T-cell modulation and indoleamine-2,3-dehydrogenase (IDO) activity). Here, we profiled media metabolites in a non-destructive manner through daily sampling and nuclear magnetic resonance (NMR), as well as MSC intracellular metabolites at the end of expansion using mass spectrometry (MS). Using a robust consensus machine learning approach, we were able to identify panels of metabolites predictive of MSC immunomodulatory function for 10 independent MSC lines. This approach consisted of identifying metabolites in 2 or more machine learning models and then building consensus models based on these consensus metabolite panels. Consensus intracellular metabolites with high predictive value included multiple lipid classes (such as phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins) while consensus media metabolites included proline, phenylalanine, and pyruvate. Pathway enrichment identified metabolic pathways significantly associated with MSC function such as sphingolipid signaling and metabolism, arginine and proline metabolism, and autophagy. Overall, this work establishes a generalizable framework for identifying consensus predictive metabolites that predict MSC function, as well as guiding future MSC manufacturing efforts through identification of high-potency MSC lines and metabolic engineering.
Collapse
Affiliation(s)
- Alexandria Van Grouw
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Maxwell B Colonna
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Ty S Maughon
- School of Chemical, Materials, and Biomedical Engineering, Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Xunan Shen
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Andrew M Larey
- School of Chemical, Materials, and Biomedical Engineering, Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Samuel G Moore
- Systems Mass Spectrometry Core, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Carolyn Yeago
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Arthur S Edison
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Steven L Stice
- Regenerative Bioscience Center, Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Annie C Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Wright A, Snyder OL, He H, Christenson LK, Fleming S, Weiss ML. Procoagulant Activity of Umbilical Cord-Derived Mesenchymal Stromal Cells' Extracellular Vesicles (MSC-EVs). Int J Mol Sci 2023; 24:ijms24119216. [PMID: 37298168 DOI: 10.3390/ijms24119216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Many cell types, including cancer cells, release tissue factor (TF)-exposing extracellular vesicles (EVs). It is unknown whether MSC-EVs pose a thromboembolism risk due to TF expression. Knowing that MSCs express TF and are procoagulant, we hypothesize that MSC-EVs also might. Here, we examined the expression of TF and the procoagulant activity of MSC-EVs and the impact of EV isolation methods and cell culture expansion on EV yield, characterization, and potential risk using a design of experiments methodology. MSC-EVs were found to express TF and have procoagulant activity. Thus, when MSC-derived EVs are employed as a therapeutic agent, one might consider TF, procoagulant activity, and thromboembolism risk and take steps to prevent them.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Orman Larry Snyder
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Hong He
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Lane K Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sherry Fleming
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
4
|
Azaryan E, Mortazavi-Derazkola S, Alemzadeh E, Emadian Razavi F, Yousefi M, Hanafi-Bojd MY, Naseri M. Effects of hydroxyapatite nanorods prepared through Elaeagnus Angustifolia extract on modulating immunomodulatory/dentin-pulp regeneration genes in DPSCs. Odontology 2023; 111:461-473. [PMID: 36350427 DOI: 10.1007/s10266-022-00761-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Dental pulp stem cells (DPSCs) are a new type of mesenchymal stem cells (MSCs) found in the oral cavity with immunomodulation and tissue regeneration capacities. This study determined the impacts of nano-hydroxyapatite (nHA) prepared through Elaeagnus Angustifolia extract (EAE) to enhance the relative expression of immunomodulatory/dentin-pulp regeneration genes in DPSCs. To produce nHA and modified nHA via EAE (nHAEA), the sol-gel technique was used. The functional groups of nanoparticles (NPs), morphological, and optical features were determined using Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) together with energy-dispersive X-ray analysis (EDAX), and Transmission electron microscopy (TEM). The cell viability was then determined using the MTT method in the presence of various EAE, nHA, and nHAEA concentrations. Target gene expression was quantified using a real-time PCR procedure after treating DPSCs with an optimally non-toxic dose of EAE and NPs. The presence of the HA phase was reported with the XRD and FTIR results. According to the results of SEM and TEM, the rod-like NPs could be fabricated. nHAEAs were found to be characterized with low crystallite size, reduced diameter, lengthier, needle-like, and less agglomerated particles compared with nHA. The real-time PCR results demonstrated that nHAEA remarkably increased the expression of human leukocyte antigen-G5 (HLA-G5), vascular endothelial growth factor (VEGF), dentin sialophosphoprotein (DSPP), and interleukin6 (IL6) genes compared to the nHA group. These findings suggest that nHAEAs might have the potential application in the stemness capability of DPSCs for the treatment of inflamed/damaged pulp.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Sobhan Mortazavi-Derazkola
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Esmat Alemzadeh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Yousefi
- Department of Microbiology, Faculty of Medicine, Birjand University of Medical Science, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
5
|
Sardana Y, Bhatti GK, Singh C, Sharma PK, Reddy PH, Bhatti JS. Progression of pre-rheumatoid arthritis to clinical disease of joints: Potential role of mesenchymal stem cells. Life Sci 2023; 321:121641. [PMID: 36997059 DOI: 10.1016/j.lfs.2023.121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Rheumatoid arthritis (RA) related autoimmunity is developed at mucosal sites due to the interplay between genetic risk factors and environmental triggers. The pre-RA phase that leads to anti-citrullinated protein antibodies, rheumatoid factor, and other autoantibodies spread in the systemic circulation may not affect articular tissue for years until a mysterious second hit triggers the localization of RA-related autoimmunity in joints. Several players in the joint microenvironment mediate the synovial innate and adaptive immunological processes, eventually leading to clinical synovitis. There still exists a gap in the early phase of RA pathogenesis, i.e., the progression of diseases from the systemic circulation to joints. The lack of better understanding of these events results in the inability to answer questions about why only after a certain point of time the disease appears in joints and why in some cases, it simply remains latent and doesn't affect joints at all. In the current review, we focused on the immunomodulatory and regenerative role of mesenchymal stem cells and associated exosomes in RA pathology. We also highlighted the age-related dysregulations in activities of mesenchymal stem cells and how that might trigger homing of systemic autoimmunity to joints.
Collapse
Affiliation(s)
- Yogesh Sardana
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Uttarakhand, India
| | | | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
6
|
Luo W, Geng Y, Gao M, Cao M, Wang J, Yang J, Sun C, Yan X. Isolation and Identification of Bone Marrow Mesenchymal Stem Cells from Forest Musk Deer. Animals (Basel) 2022; 13:ani13010017. [PMID: 36611625 PMCID: PMC9817501 DOI: 10.3390/ani13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The forest musk deer (Moschus berezovskii) is an endangered animal that produces musk that is utilized for medical applications worldwide, and this species primarily lives in China. Animal-derived musk can be employed as an important ingredient in Chinese medicine. To investigate the properties of bone marrow mesenchymal stem cells (MSCs) obtained from the bone marrow of forest deer for future application, MSCs were isolated and cultivated in vitro. The properties and differentiation of these cells were assessed at the cellular and gene levels. The results show that 81,533 expressed genes were detected by RNA sequencing, and marker genes of MSCs were expressed in the cells. Karyotype analysis of the cells determined the karyotype to be normal, and marker proteins of MSCs were observed to be expressed in the cell membranes. Cells were differentiated into osteoblasts, adipocytes, and chondroblasts. The expression of genes related to osteoblasts, adipocytes, and chondroblasts was observed to be increased. The results of this study demonstrate that the properties of the cells isolated from bone marrow were in keeping with the characteristics of MSCs, providing a possible basis for future research.
Collapse
|
7
|
Tang TT, Wang B, Lv LL, Dong Z, Liu BC. Extracellular vesicles for renal therapeutics: State of the art and future perspective. J Control Release 2022; 349:32-50. [PMID: 35779658 DOI: 10.1016/j.jconrel.2022.06.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/21/2022]
Abstract
With the ever-increasing burden of kidney disease, the need for developing new therapeutics to manage this disease has never been greater. Extracellular vesicles (EVs) are natural membranous nanoparticles present in virtually all organisms. Given their excellent delivery capacity in the body, EVs have emerged as a frontier technology for drug delivery and have the potential to usher in a new era of nanomedicine for kidney disease. This review is focused on why EVs are such compelling drug carriers and how to release their fullest potentiality in renal therapeutics. We discuss the unique features of EVs compared to artificial nanoparticles and outline the engineering technologies and steps in developing EV-based therapeutics, with an emphasis on the emerging approaches to target renal cells and prolong kidney retention. We also explore the applications of EVs as natural therapeutics or as drug carriers in the treatment of renal disorders and present our views on the critical challenges in manufacturing EVs as next-generation renal therapeutics.
Collapse
Affiliation(s)
- Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China; Department of Pathology and Pathophysiology, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China.
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China.
| |
Collapse
|
8
|
Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022; 185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
The strategy of using mesenchymal stem cells (MSCs) as a living carrier for active delivery of therapeutic agents targeting tumor sites has been attempted in a wide range of studies to validate the feasibility and efficacy for tumor treatment. This approach reveals powerful tumor targeting and tumor penetration. In addition, MSCs have been confirmed to actively participate in immunomodulation of the tumor microenvironment. Thus, MSCs are not inert delivery vehicles but have a strong impact on the fate of tumor cells. In this review, these active properties of MSCs are addressed to highlight the advantages and challenges of using MSCs for tumor-targeted delivery. In addition, some of the latest examples of using MSCs to carry a variety of anti-tumor agents for tumor-targeted therapy are summarized. Recent technologies to improve the performance and safety of this delivery strategy will be introduced. The advances, applications, and challenges summarized in this review will provide a general understanding of this promising strategy for actively delivering drugs to tumor tissues.
Collapse
|
9
|
One of the Primary Functions of Tissue-Resident Pluripotent Pericytes Cells May Be to Regulate Normal Organ Growth and Maturation: Implications for Attempts to Repair Tissues Later in Life. Int J Mol Sci 2022; 23:ijms23105496. [PMID: 35628309 PMCID: PMC9146368 DOI: 10.3390/ijms23105496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Adult mesenchymal stem cells were reported more than 30 years ago. Since then, their potential to repair and regenerate damaged or diseased tissues has been studied intensively in both preclinical models and human trials. Most of the need for such tissue repair/regeneration is in older populations, so much of the effort has been performed with autologous cells in older patients. However, success has been difficult to achieve. In the literature, it has been noted that such progenitor cells from younger individuals often behave with more vigorous activity and are functionally enhanced compared to those from older individuals or animals. In addition, cells with the characteristics of mesenchymal stem cells or pluripotent mesenchymal regulatory cells exist in nearly all tissues and organs as pericytes since fetal life. Such evidence raises the possibility that one of the primary roles of these organ-specific cells is to regulate organ growth and maturation, and then subsequently play a role in the maintenance of organ integrity. This review will discuss the evidence to support this concept and the implications of such a concept regarding the use of these progenitor cells for the repair and regeneration of tissues damaged by injury or disease later in life. For the latter, it may be necessary to return the organ-specific progenitor cells to the functional state that contributed to their effectiveness during growth and maturation rather than attempting to use them after alterations imposed during the aging process have been established and their function compromised.
Collapse
|
10
|
Mönch D, Koch J, Dahlke MH. Are Mesenchymal Stem Cells Fibroblasts with Benefits? CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
SDF-1 α Facilitates Mesenchymal Stem Cells to Induce Regulatory B Cell Differentiation from Patients with Immune Thrombocytopenia. Stem Cells Int 2021; 2021:3254488. [PMID: 34790240 PMCID: PMC8592740 DOI: 10.1155/2021/3254488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
B cells play a central role in the pathogenesis of immune thrombocytopenia (ITP) by participating in humoral immunity. Meanwhile, regulatory B cells (Bregs), one subset of B cells, express negative regulatory effect on ITP. Mesenchymal stem cells (MSCs) have been demonstrated in the ability to induce immunosuppression, and stromal cell-derived factor-1α (SDF-1α) plays an important role in the migration and survival of MSCs. To investigate the mechanism of SDF-1α in controlling umbilical cord-derived MSCs (UC-MSCs) in inducing regulatory B cell differentiation of patients with ITP, we reconfirmed that SDF-1α promotes the proliferation of MSCs at the low doses of 0.05 μg/mL and 0.1 μg/mL but inhibits the proliferation and promotes the apoptosis of UC-MSCs at the high doses 0.5 μg/mL and 1 μg/mL; when UC-MSCs are cocultured with SDF-1α at 0.1 μg/mL, the decreased proportion of CD19+/CD24hi/CD38hi cells and IL-10-producing B cells (B 10 cell), considered as the Breg subset from ITP significantly enhanced, and the content of IL-10 in the supernatant is also obviously increased. The proportion of Bregs and the IL-10 secretion could be further promoted by the UC-MSCs treated with 0.1 μg/mL SDF-1α, which could also promote the miRNA-133 expression of UC-MSCs in an exosome-dependent manner; moreover, while the UC-MSCs were transfected with the miR-133 inhibitor, the proportion of induced Bregs decreased obviously when cocultured with peripheral blood mononuclear cells (PBMCs) of ITP. We conclude that UC-MSCs could effectively enhance the decreased proportion of Bregs from ITP; at appropriate concentrations, SDF-1α may promote the proliferating and survival ability of UC-MSCs and improve the production of Bregs induced by UC-MSCs through controlling miRNA-133 expression in the exosomes.
Collapse
|
12
|
Li SW, Cai Y, Mao XL, He SQ, Chen YH, Yan LL, Zhou JJ, Song YQ, Ye LP, Zhou XB. The Immunomodulatory Properties of Mesenchymal Stem Cells Play a Critical Role in Inducing Immune Tolerance after Liver Transplantation. Stem Cells Int 2021; 2021:6930263. [PMID: 34531915 PMCID: PMC8440082 DOI: 10.1155/2021/6930263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
Although liver transplantation is considered to be the best choice for patients with end-stage liver diseases, postoperative immune rejection still cannot be overlooked. Patients with liver transplantation have to take immunosuppressive drugs for a long time or even their entire lives, in which heavy economic burden and side effects caused by the drugs have become the major impediment for liver transplantation. There is a growing body of evidences indicating that mesenchymal stem cell (MSC) transplantation, a promising tool in regenerative medicine, can be used as an effective way to induce immune tolerance after liver transplantation based on their huge expansion potential and unique immunomodulatory properties. MSCs have been reported to inhibit innate immunity and adaptive immunity to induce a tolerogenic microenvironment. In in vitro studies, transplanted MSCs show plasticity in immune regulation by altering their viability, migration, differentiation, and secretion in the interactions with the surrounding host microenvironment. In this review, we aim to provide an overview of the current understanding of immunomodulatory properties of MSCs in liver transplantation, to elucidate the potential mechanisms behind MSCs regulating immune response, especially in vivo and the influence of the microenvironment, and ultimately to discuss the feasible strategies to improve the clinical prognosis of liver transplantation. Only after exhaustive understanding of potential mechanisms of the MSC immunomodulation can we improve the safety and effectiveness of MSC treatment and achieve better therapeutic effects.
Collapse
Affiliation(s)
- Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Sai-qin He
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-ling Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jing-jing Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-qi Song
- Taizhou Hospital, Zhejiang University, Linhai, Zhejiang, China
| | - Li-ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xian-bin Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
13
|
Szydlak R. Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells. World J Stem Cells 2021; 13:619-631. [PMID: 34249231 PMCID: PMC8246245 DOI: 10.4252/wjsc.v13.i6.619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a population of primary and non-specialized cells, which can be isolated from various tissues. Currently, MSCs are key players in cellular therapy and regenerative medicine. However, the possibility of using MSCs in the treatment of many diseases needs to be preceded, though, by in-depth analysis of their properties, especially by determining the mechanism of tissue homing as well as the mechanism, due to which cells contribute to tissue regeneration. This review is intended to present information on recent findings regarding the mechanism of recruitment and tissue homing by MSCs and discuss current hypotheses for how MSCs can reach target tissues.
Collapse
Affiliation(s)
- Renata Szydlak
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-034, Poland
| |
Collapse
|
14
|
Ahn H, Lee SY, Jung WJ, Lee KH. Alopecia treatment using minimally manipulated human umbilical cord-derived mesenchymal stem cells: Three case reports and review of literature. World J Clin Cases 2021; 9:3741-3751. [PMID: 34046478 PMCID: PMC8130094 DOI: 10.12998/wjcc.v9.i15.3741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alopecia areata (AA) is a common autoimmune disease characterized by hair loss. AA appears in extensive forms, such as progressive and diffusing hair loss (diffuse AA), a total loss of scalp hair (alopecia totalis), and complete loss of hair over the entire body (alopecia universalis). Recently, mesenchymal stem cells (MSCs) have been identified as a therapeutic alternative for autoimmune diseases. For this reason, preclinical and case studies of AA and related diseases using MSCs have been conducted.
CASE SUMMARY Case 1: A 55-year-old woman suffered from AA in two areas of the scalp. She was given 15 rounds of minimally manipulated umbilical cord-MSCs (MM-UC-MSCs) over 6 mo. The AA gradually improved 3 mo after the first round. The patient was cured, and AA did not recur. Case 2: A 30-year-old woman, with history of local steroid hormone injections, suffered from AA in one area on the scalp. She was given two rounds of MM-UC-MSCs over 1 mo. The AA immediately improved after the first round. The patient was cured, and AA did not recur. Case 3: A 20-year-old woman, who was diagnosed with alopecia universalis at the age of 12, was given 14 rounds of MM-UC-MSCs over 12 mo. Her hair began to grow about 3 mo after the first round. The patient was cured, and alopecia universalis did not recur.
CONCLUSION MM-UC-MSC transplantation potentially treats patients who suffer from AA and related diseases.
Collapse
Affiliation(s)
- Hyunjun Ahn
- bio Beauty&Health Company (bBHC) - Stem Cell Treatment & Research Institute (STRI), Seoul 04420, South Korea
- Department of Functional Genomics, University of Science and Technology KRIBB School, Deajeon 34113, South Korea
| | - Sang Yeon Lee
- bio Beauty&Health Company (bBHC) - Stem Cell Treatment & Research Institute (STRI), Seoul 04420, South Korea
| | - Won Ju Jung
- 97.7 Beauty&Health (B&H) Clinics, Seoul 04420, South Korea
| | - Kye-Ho Lee
- bio Beauty&Health Company (bBHC) - Stem Cell Treatment & Research Institute (STRI), Seoul 04420, South Korea
| |
Collapse
|
15
|
Shahani P, Datta I. Mesenchymal stromal cell therapy for coronavirus disease 2019: which? when? and how much? Cytotherapy 2021; 23:861-873. [PMID: 34053857 PMCID: PMC8084615 DOI: 10.1016/j.jcyt.2021.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/27/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
Mesenchymal stromal cells (MSCs) are under active consideration as a treatment strategy for controlling the hyper-inflammation and slow disease progression associated with coronavirus disease 2019 (COVID-19). The possible mechanism of protection through their immunoregulatory and paracrine action has been reviewed extensively. However, the importance of process control in achieving consistent cell quality, maximum safety and efficacy—for which the three key questions are which, when and how much—remains unaddressed. Any commonality, if it exists, in ongoing clinical trials has yet to be analyzed and reviewed. In this review, the authors have therefore compiled study design data from ongoing clinical trials to address the key questions of “which” with regard to tissue source, donor profile, isolation technique, culture conditions, long-term culture and cryopreservation of MSCs; “when” with regard to defining the transplantation window by identifying and staging patients based on their pro-inflammatory profile; and “how much” with regard to the number of cells in a single administration, number of doses and route of transplantation. To homogenize MSC therapy for COVID-19 on a global scale and to make it readily available in large numbers, a shared understanding and uniform agreement with respect to these fundamental issues are essential.
Collapse
Affiliation(s)
- Pradnya Shahani
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
16
|
Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Chang HC, Huang YH, Ling TY. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci 2021; 28:28. [PMID: 33849537 PMCID: PMC8043779 DOI: 10.1186/s12929-021-00725-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a promising resource for cell-based therapy because of their high immunomodulation ability, tropism towards inflamed and injured tissues, and their easy access and isolation. Currently, there are more than 1200 registered MSC clinical trials globally. However, a lack of standardized methods to characterize cell safety, efficacy, and biodistribution dramatically hinders the progress of MSC utility in clinical practice. In this review, we summarize the current state of MSC-based cell therapy, focusing on the systemic safety and biodistribution of MSCs. MSC-associated risks of tumor initiation and promotion and the underlying mechanisms of these risks are discussed. In addition, MSC biodistribution methodology and the pharmacokinetics and pharmacodynamics of cell therapies are addressed. Better understanding of the systemic safety and biodistribution of MSCs will facilitate future clinical applications of precision medicine using stem cells.
Collapse
Affiliation(s)
- Wei-Zhan Zhuang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yi-Heng Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, 10041, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital Yunlin Branch, Yunlin, 64041, Taiwan
| | - Long-Jyun Su
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Meng-Shiue Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Yin Jeng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Comprehensive Cancer Center of Taipei Medical University, Taipei, 11031, Taiwan. .,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
17
|
Mesenchymal stromal cells for the treatment of ocular autoimmune diseases. Prog Retin Eye Res 2021; 85:100967. [PMID: 33775824 DOI: 10.1016/j.preteyeres.2021.100967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells, commonly referred to as MSCs, have emerged as a promising cell-based therapy for a range of autoimmune diseases thanks to several therapeutic advantages. Key among these are: 1) the ability to modulate innate and adaptive immune responses and to promote tissue regeneration, 2) the ease of their isolation from readily accessible tissues and expansion at scale in culture, 3) their low immunogenicity enabling use as an allogeneic "off-the-shelf" product, and 4) MSC therapy's safety and feasibility in humans, as demonstrated in more than one thousand clinical trials. Evidence from preclinical studies and early clinical trials indicate the therapeutic potential of MSCs and their derivatives for efficacy in ocular autoimmune diseases such as autoimmune uveoretinitis and Sjögren's syndrome-related dry eye disease. In this review, we provide an overview of the current understanding of the therapeutic mechanisms of MSCs, and summarize the results from preclinical and clinical studies that have used MSCs or their derivatives for the treatment of ocular autoimmune diseases. We also discuss the challenges to the successful clinical application of MSC therapy, and suggest strategies for overcoming them.
Collapse
|
18
|
Zhang T, Huang T, Su Y, Gao J. Mesenchymal Stem Cells‐Based Targeting Delivery System: Therapeutic Promises and Immunomodulation against Tumor. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tianyuan Zhang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Ting Huang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Yuanqin Su
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Jianqing Gao
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Cancer Center of Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| |
Collapse
|
19
|
Liu Y, Li F, Cai Z, Wang D, Hou R, Zhang H, Zhang M, Yie S, Wu K, Zeng C, An J. Isolation and characterization of mesenchymal stem cells from umbilical cord of giant panda. Tissue Cell 2021; 71:101518. [PMID: 33676235 DOI: 10.1016/j.tice.2021.101518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Umbilical cord-derived mesenchymal stem cells (UC-MSCs) constitute a class of cells with significant self-renewal and multilineage differentiation properties and have great potential for therapeutic applications and the genetic conservation of endangered animals. In this study, we successfully isolated and cultured UC-MSCs from the blood vessels of giant panda umbilical cord (UC). The cells were arranged in a vortex or cluster pattern and exhibited a normal karyotype, showing the morphological characteristics of fibroblasts. In addition, we found that basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promoted cell proliferation, whereas stem cell factor (SCF) did not promote cell proliferation. Cultured UC-MSCs were negative for CD34 (hematopoietic stem cell marker) and CD31 (endothelial cell marker), but positive for MSC markers (CD44, CD49f, CD105, and CD73) and stem cell markers (KLF4, SOX2, and THY1). Similar to other MSCs, giant panda UC-MSCs have multiple differentiation ability and can differentiate into adipocytes, osteoblasts and chondrocytes. Giant panda UC-MSCs are new resources for basic research as cell models following their differentiation into different cell types and for future clinical treatments of giant panda diseases.
Collapse
Affiliation(s)
- Yuliang Liu
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China; Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Feiping Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Zhigang Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Donghui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Hao Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China
| | - Ming Zhang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Shangmian Yie
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Kongju Wu
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Changjun Zeng
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China.
| | - Junhui An
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China.
| |
Collapse
|
20
|
Baharlooi H, Nouraei Z, Azimi M, Moghadasi AN, Tavassolifar MJ, Moradi B, Sahraian MA, Izad M. Umbilical cord mesenchymal stem cells as well as their released exosomes suppress proliferation of activated PBMCs in multiple sclerosis. Scand J Immunol 2020; 93:e13013. [PMID: 33338274 DOI: 10.1111/sji.13013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/28/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) degenerative disorder which is caused by a targeted autoimmune-mediated attack on myelin proteins. Previously, mesenchymal stem cells were considered as a novel and successful treatment of MS. One of the underlying mechanisms behind their immunomodulatory function is the release of extracellular vesicles, particularly exosomes. In this study, we aimed to evaluate the suppressive efficacy of MSCs and their exosomes on the proliferation of peripheral mononuclear blood cells (PBMC) in relapsing-remitting MS (RRMS) patients and healthy subjects. To do, mesenchymal stem cells were derived from human umbilical cord tissues and used for exosome isolation through ultracentrifugation. Suppressive function of MSCs and MSC-derived exosomes was examined in a coculture with CFSE-labelled PBMCs in vitro. PBMC proliferation of the patients and healthy individuals was measured using flow cytometry. We first demonstrated that proliferation of PBMCs decreased in the presence of MSCs and suppression was more efficient by MSC-derived exosomes, with a minimum alloreaction rate. However, suppression capacity of MSCs and their exosomes significantly decreased during extensive sub-culturing. The present study showed that MSC-derived exosomes as an effective cell-free therapy could prevent proliferation of PBMCs. However, further evaluations are need to move towards a functional approach that can be translated to the clinic.
Collapse
Affiliation(s)
- Hussein Baharlooi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zeynab Nouraei
- Department of Obstetrics and Gynecology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Azimi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Batool Moradi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Izad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
21
|
Yea JH, Park JK, Kim IJ, Sym G, Bae TS, Jo CH. Regeneration of a full-thickness defect of rotator cuff tendon with freshly thawed umbilical cord-derived mesenchymal stem cells in a rat model. Stem Cell Res Ther 2020; 11:387. [PMID: 32894193 PMCID: PMC7487485 DOI: 10.1186/s13287-020-01906-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND It is difficult to immediately use mesenchymal stem cells (MSCs) for the patient with rotator cuff disease because isolation and culture time are required. Thus, the MSCs would be prepared in advanced in cryopreserved condition for an "off-the-shelf" usage in clinic. This study investigated the efficacy of freshly thawed MSCs on the regeneration of a full-thickness tendon defect (FTD) of rotator cuff tendon in a rat model. METHODS We evaluated morphology, viability, and proliferation of cultured umbilical cord-derived MSCs (C-UC MSCs) and freshly thawed umbilical cord-derived MSCs (T-UC MSCs) at passage 10 in vitro. In animal experiments, we created a FTD in the supraspinatus of rats and injected the injured tendon with saline, cryopreserved agent (CPA; control), C-UC MSCs, and T-UC MSCs, respectively. Two and 4 weeks later, macroscopic, histological, biomechanical, and cell trafficking were evaluated. T test and ANOVA were used with SPSS. Differences with p < .05 were considered statistically significant. RESULTS T-UC MSCs had fibroblast-like morphology and showed greater than 97% viability and stable proliferation comparable to the C-UC MSCs at passage 10. In animal experiments, compared with the control group, the macroscopic appearance of the T-UC MSCs was more recovered at 2 and 4 weeks such as inflammation, defect size, neighboring tendon, swelling/redness, the connecting surrounding tissue and slidability. Histologically, the nuclear aspect ratio, orientation angle of fibroblasts, collagen organization, and fiber coherence were improved by 33.33%, 42.75%, 1.86-fold, and 1.99-fold at 4 weeks, and GAG-rich area decreased by 88.13% and 94.70% at 2 and 4 weeks respectively. Further, the T-UC MSCs showed enhanced ultimate failure load by 1.55- and 1.25-fold compared with the control group at both 2 and 4 weeks. All the improved values of T-UC MSCs were comparable to those of C-UC MSCs. Moreover, T-UC MSCs remained 8.77% at 4 weeks after injury, and there was no significant difference between C-UC MSCs and T-UC MSCs. CONCLUSIONS The morphology, viability, and proliferation of T-UC MSCs were comparable to those of C-UC MSCs. Treatment with T-UC MSCs could induce tendon regeneration of FTD at the macroscopic, histological, and biomechanical levels comparable to treatment with C-UC MSCs.
Collapse
Affiliation(s)
- Ji-Hye Yea
- Department of Translational Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Jin-Kyung Park
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - In Ja Kim
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Gayoung Sym
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Tae-Soo Bae
- Department of Biomedical Engineering, Collage of Science and Engineering, Jungwon University, 85, Munmu-ro, Goesan-eup, Goesan-gun, Chungcheongbuk-do, 367-805, Korea
| | - Chris Hyunchul Jo
- Department of Translational Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea.
| |
Collapse
|
22
|
Lo JHT, U KP, Yiu T, Ong MTY, Lee WYW. Sarcopenia: Current treatments and new regenerative therapeutic approaches. J Orthop Translat 2020; 23:38-52. [PMID: 32489859 PMCID: PMC7256062 DOI: 10.1016/j.jot.2020.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia is characterized by loss of muscle and reduction in muscle strength that contributes to higher mortality rate and increased incidence of fall and hospitalization in the elderly. Mitochondria dysfunction and age-associated inflammation in muscle are two of the main attributors to sarcopenia progression. Recent clinical trials on sarcopenia therapies such as physical exercise, nutraceutical, and pharmaceutical interventions have revealed that exercise is the only effective strategy shown to alleviate sarcopenia. Unlike nutraceutical and pharmaceutical interventions that showed controversial results in sarcopenia alleviation, exercise was found to restore mitochondria homeostasis and dampen inflammatory responses via a complex exchange of myokines and osteokines signalling between muscle and bone. However, as exercise have limited benefit to immobile patients, the use of stem cells and their secretome are being suggested to be novel therapeutics that can be catered to a larger patient population owing to their mitochondria restoration effects and immune modulatory abilities. As such, we reviewed the potential pros and cons associated with various stem cell types/secretome in sarcopenia treatment and the regulatory and production barriers that need to be overcome to translate such novel therapeutic agents into bedside application. Translational potential: This review summarizes the causes underlying sarcopenia from the perspective of mitochondria dysfunction and age-associated inflammation, and the progress of clinical trials for the treatment of sarcopenia. We also propose therapeutic potential of stem cell therapy and bioactive secretome for sarcopenia.
Collapse
Affiliation(s)
- Jessica Hiu-Tung Lo
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Kin Pong U
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Tszlam Yiu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Michael Tim-Yun Ong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| |
Collapse
|
23
|
Cassidy FC, Shortiss C, Murphy CG, Kearns SR, Curtin W, De Buitléir C, O’Brien T, Coleman CM. Impact of Type 2 Diabetes Mellitus on Human Bone Marrow Stromal Cell Number and Phenotypic Characteristics. Int J Mol Sci 2020; 21:ijms21072476. [PMID: 32252490 PMCID: PMC7177361 DOI: 10.3390/ijms21072476] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Human bone marrow-derived mesenchymal stromal cells (MSCs) have been investigated in numerous disease settings involving impaired regeneration because of the crucial role they play in tissue maintenance and repair. Considering the number of comorbidities associated with type 2 diabetes mellitus (T2DM), the hypothesis that MSCs mediate these comorbidities via a reduction in their native maintenance and repair activities is an intriguing line of inquiry. Here, it is demonstrated that the number of bone marrow-derived MSCs in people with T2DM was reduced compared to that of age-matched control (AMC) donors and that this was due to a specific decrease in the number of MSCs with osteogenic capacity. There were no differences in MSC cell surface phenotype or in MSC expansion, differentiation, or angiogenic or migratory capacity from donors living with T2DM as compared to AMCs. These findings elucidate the basic biology of MSCs and their potential as mediators of diabetic comorbidities, especially osteopathies, and provide insight into donor choice for MSC-based clinical trials. This study suggests that any role of bone marrow MSCs as a mediator of T2DM comorbidity is likely due to a reduction in the osteoprogenitor population size and not due to a permanent alteration to the MSCs' capacity to maintain tissue homeostasis through expansion and differentiation.
Collapse
Affiliation(s)
- Féaron C. Cassidy
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
- Correspondence:
| | - Ciara Shortiss
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
| | - Colin G. Murphy
- Department of Trauma and Orthopaedics, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - Stephen R. Kearns
- Department of Trauma and Orthopaedics, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - William Curtin
- Department of Trauma and Orthopaedics, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - Ciara De Buitléir
- Saolta University Healthcare Group, Galway University Hospital, H91 YR71 Galway, Ireland
| | - Timothy O’Brien
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
- Saolta University Healthcare Group, Galway University Hospital, H91 YR71 Galway, Ireland
- CÚRAM Centre for Research in Medical Devices, College of Medicine, Nursing and Health Sciences, School of Medicine, NUI Galway, H91 FD82 Galway, Ireland
| | - Cynthia M. Coleman
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
| |
Collapse
|
24
|
Cheng Y, Lin K, Young T, Cheng N. The influence of fibroblast growth factor 2 on the senescence of human adipose-derived mesenchymal stem cells during long-term culture. Stem Cells Transl Med 2020; 9:518-530. [PMID: 31840944 PMCID: PMC7103622 DOI: 10.1002/sctm.19-0234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) exhibit great potential in regenerative medicine, and in vitro expansion is frequently necessary to obtain a sufficient number of ASCs for clinical use. Fibroblast growth factor 2 (FGF2) is a common supplement in the ASC culture medium to enhance cell proliferation. To achieve clinical applicability of ASC-based products, prolonged culture of ASCs is sometimes required to obtain sufficient quantity of ASCs. However, the effect of FGF2 on ASCs during prolonged culture has not been previously determined. In this study, ASCs were subjected to prolonged in vitro culture with or without FGF2. FGF2 maintained the small cell morphology and expedited proliferation kinetics in early ASC passages. After prolonged in vitro expansion, FGF2-treated ASCs exhibited increased cell size, arrested cell proliferation, and increased cellular senescence relative to the control ASCs. We observed an upregulation of FGFR1c and enhanced expression of downstream STAT3 in the initial passages of FGF2-treated ASCs. The application of an FGFR1 or STAT3 inhibitor effectively blocked the enhanced proliferation of ASCs induced by FGF2 treatment. FGFR1c upregulation and enhanced STAT3 expression were lost in the later passages of FGF2-treated ASCs, suggesting that the continuous stimulation of FGF2 becomes ineffective because of the refractory downstream FGFR1 and the STAT3 signaling pathway. In addition, no evidence of tumorigenicity was noted in vitro and in vivo after prolonged expansion of FGF2-cultured ASCs. Our data indicate that ASCs have evolved a STAT3-dependent response to continuous FGF2 stimulation which promotes the initial expansion but limits their long-term proliferation.
Collapse
Affiliation(s)
- Yin Cheng
- Department of SurgeryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
| | - Kai‐Hsuan Lin
- Department of SurgeryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
| | - Tai‐Horng Young
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Nai‐Chen Cheng
- Department of SurgeryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
- Research Center for Developmental Biology and Regenerative MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
25
|
Buyl K, Merimi M, Rodrigues RM, Moussa Agha D, Melki R, Vanhaecke T, Bron D, Lewalle P, Meuleman N, Fahmi H, Rogiers V, Lagneaux L, De Kock J, Najar M. The Impact of Cell-Expansion and Inflammation on The Immune-Biology of Human Adipose Tissue-Derived Mesenchymal Stromal Cells. J Clin Med 2020; 9:jcm9030696. [PMID: 32143473 PMCID: PMC7141238 DOI: 10.3390/jcm9030696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background: As a cell-based therapeutic, AT-MSCs need to create an immuno-reparative environment appropriate for tissue repair. In the presence of injury, MSCs may have to proliferate and face inflammation. Clinical application requires repeated administrations of a high number of cells with a well-established immune profile. Methods: We have established an immuno-comparative screening by determining the expression of 28 molecules implicated in immune regulation. This screening was performed during cell-expansion and inflammatory priming of AT-MSCs. Results: Our study confirms that AT-MSCs are highly expandable and sensitive to inflammation. Both conditions have substantially modulated the expression of a panel of immunological marker. Specifically, CD34 expression was substantially decreased upon cell-passaging. HLA-ABC, CD40 CD54, CD106, CD274 and CD112 were significantly increased by inflammation. In vitro cell-expansion also significantly altered the expression profile of HLA-DR, CD40, CD62L, CD106, CD166, HLA-G, CD200, HO-1, CD155 and ULBP-3. Conclusion: This study points out the response and characteristics of MSCs following expansion and inflammatory priming. It will strength our knowledge about the molecular mechanisms that may improve or hamper the therapeutic potential of MSCs. These immunological changes need to be further characterized to guarantee a safe cellular product with consistent quality and high therapeutic efficacy.
Collapse
Affiliation(s)
- Karolien Buyl
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
- Correspondence:
| | - Robim M. Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Rahma Melki
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dominique Bron
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), 900 Saint-Denis, R11.424, Montreal, QC H2X 0A9, Canada
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 808 Route de Lennik, 1070 Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Mehdi Najar
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), 900 Saint-Denis, R11.424, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
26
|
Rezaei Kahmini F, Shahgaldi S, Moazzeni SM. Mesenchymal stem cells alter the frequency and cytokine profile of natural killer cells in abortion-prone mice. J Cell Physiol 2020; 235:7214-7223. [PMID: 32037542 DOI: 10.1002/jcp.29620] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
Abstract
Natural killer cells, which play a pivotal role in the establishment and maintenance of normal pregnancy, are the most abundant leukocytes at the fetomaternal interface that their subsets frequencies and cytokine profile are influential factors in the preservation of the decidual tolerogenic microenvironment. Any imbalance in NK cells' frequency and functions could be associated with pregnancy failure. Mesenchymal stem cells (MSCs) are shown to have immunomodulatory effects on NK cells and their cytokine profile. The purpose of this study is to evaluate the impact of MSCs therapy on the cytokine profiles and subpopulations of NK cells in a murine model of recurrent pregnancy loss. Adipose-derived MSCs were injected intraperitoneally to the abortion-prone mice on Day 4.5 of gestation. The abortion rate was determined after MSCs administration and the frequency and cytokine profiles of the different subsets of NK cells were determined using the flow cytometry. Our results showed that, in abortion-prone mice, the frequency of CD49b+ NK cells was significantly higher than normal pregnant mice that decreased after therapy. We also demonstrated that MSCs downregulated the production of IFN-γ and upregulated IL-4 and IL-10 production by uNK cells. These findings indicate that MSCs can decrease the infiltration of CD49b+ NK cells to the fetomaternal interface and modulate the cytokine profile of NK cells from inflammatory to tolerogenic profile and thereby improve the tolerogenic microenvironment at the fetomaternal interface in benefit of pregnancy maintenance.
Collapse
Affiliation(s)
- Fatemeh Rezaei Kahmini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahab Shahgaldi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Mechanism and therapeutic effect of umbilical cord mesenchymal stem cells in inflammatory bowel disease. Sci Rep 2019; 9:17646. [PMID: 31776475 PMCID: PMC6881332 DOI: 10.1038/s41598-019-54194-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a persistent and chronic disease that is characterized by destructive gastrointestinal (GI) inflammation. Researchers are trying to identify and develop new and more effective treatments with no side effects. Acute and chronic mouse models of IBD were established using dextran sulfate sodium (DSS) solution. To evaluate the efficacy and mechanism, umbilical cord mesenchymal stem cells (UCMSCs) were obtained from Kunming (KM) mice and humans. In the chronic IBD study, the survival rates of the normal control, model, mouse UCMSC (mUCMSC) and human UCMSC (hUCMSC) groups were 100%, 40%, 86.7%, and 100%, respectively. The histopathological scores of the normal control, intraperitoneal injection, intravenous treatment, and model groups were 0.5 ± 0.30, 5.9 ± 1.10, 8.7 ± 1.39, and 8.8 ± 1.33 (p = 0.021). UCMSCs promoted the expression of the intestinal tight junction protein occludin, downregulated the protein expression of the autophagy marker LC3A/B in colon tissue, and upregulated the expression of VEGF-A and VEGFR-1 at the injured site. This study provides an experimental model for elucidating the therapeutic effects of UCMSCs in IBD. We provide a theoretical basis and method for the clinical treatment of IBD using UCMSCs.
Collapse
|
28
|
You Y, Wen DG, Gong JP, Liu ZJ. Research Status of Mesenchymal Stem Cells in Liver Transplantation. Cell Transplant 2019; 28:1490-1506. [PMID: 31512503 PMCID: PMC6923564 DOI: 10.1177/0963689719874786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation has been deemed the best choice for end-stage liver disease
patients but immune rejection after surgery is still a serious problem. Patients have to
take immunosuppressive drugs for a long time after liver transplantation, and this often
leads to many side effects. Mesenchymal stem cells (MSCs) gradually became of interest to
researchers because of their powerful immunomodulatory effects. In the past, a large
number of in vitro and in vivo studies have demonstrated the great potential of MSCs for
participation in posttransplant immunomodulation. In addition, MSCs also have properties
that may potentially benefit patients undergoing liver transplantation. This article aims
to provide an overview of the current understanding of the immunomodulation achieved by
the application of MSCs in liver transplantation, to discuss the problems that may be
encountered when using MSCs in clinical practice, and to describe some of the underlying
capabilities of MSCs in liver transplantation. Cell–cell contact, soluble molecules, and
exosomes have been suggested to be critical approaches to MSCs’ immunoregulation in vitro;
however, the exact mechanism, especially in vivo, is still unclear. In recent years, the
clinical safety of MSCs has been proven by a series of clinical trials. The obstacles to
the clinical application of MSCs are decreasing, but large sample clinical trials
involving MSCs are still needed to further study their clinical effects.
Collapse
Affiliation(s)
- Yu You
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Di-Guang Wen
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Jian-Ping Gong
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| | - Zuo-Jin Liu
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
29
|
Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, Wang Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 2019; 14:493-507. [PMID: 29895977 DOI: 10.1038/s41581-018-0023-5] [Citation(s) in RCA: 728] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs; also referred to as mesenchymal stromal cells) have attracted much attention for their ability to regulate inflammatory processes. Their therapeutic potential is currently being investigated in various degenerative and inflammatory disorders such as Crohn's disease, graft-versus-host disease, diabetic nephropathy and organ fibrosis. The mechanisms by which MSCs exert their therapeutic effects are multifaceted, but in general, these cells are thought to enable damaged tissues to form a balanced inflammatory and regenerative microenvironment in the presence of vigorous inflammation. Studies over the past few years have demonstrated that when exposed to an inflammatory environment, MSCs can orchestrate local and systemic innate and adaptive immune responses through the release of various mediators, including immunosuppressive molecules, growth factors, exosomes, chemokines, complement components and various metabolites. Interestingly, even nonviable MSCs can exert beneficial effects, with apoptotic MSCs showing immunosuppressive functions in vivo. Because the immunomodulatory capabilities of MSCs are not constitutive but rather are licensed by inflammatory cytokines, the net outcomes of MSC activation might vary depending on the levels and the types of inflammation within the residing tissues. Here, we review current understanding of the immunomodulatory mechanisms of MSCs and the issues related to their therapeutic applications.
Collapse
Affiliation(s)
- Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China. .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Keli Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianquan Hou
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
30
|
Hong SH, Lee MH, Koo MA, Seon GM, Park YJ, Kim D, Park JC. Stem cell passage affects directional migration of stem cells in electrotaxis. Stem Cell Res 2019; 38:101475. [PMID: 31176110 DOI: 10.1016/j.scr.2019.101475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
Stem cells can differentiate into various body tissues and organs and thus are considered as promising tools for cell therapy and tissue engineering. Early passage stem cells have high differentiation ability compared to late passage stem cells. Thus, it is important to use early passage stem cells in cell therapy. Here, we investigated whether cell migration could be used to compare young and senescent cells. We used 'electrotaxis' where cells under electric treatment move towards the anode or cathode. Without an electric stimulus, stem cells moved randomly. However, under a direct electric current, the cells moved with directionality. Under stimulation with a direct electric current, early passage stem cells moved towards the anode; when the cells became senescent with increasing passages, the percentage of cells migrating to the anode decreased. These results suggest that the behavior of stem cells under the influence of a direct electric current is also related to their passage number. Therefore, electrotaxis migration analysis can be used to distinguish between young cell and senescent cells.
Collapse
Affiliation(s)
- Seung Hee Hong
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min-Ah Koo
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Gyeung Mi Seon
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ye Jin Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Medical Device Industry, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dohyun Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Medical Device Industry, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
31
|
Rezaei F, Moazzeni SM. Comparison of The Therapeutic Effect of Syngeneic, Allogeneic, and Xenogeneic Adipose Tissue-Derived Mesenchymal Stem Cells on Abortion Rates in A Mouse Model. CELL JOURNAL 2018; 21:92-98. [PMID: 30507094 PMCID: PMC6275426 DOI: 10.22074/cellj.2019.5954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/03/2018] [Indexed: 12/15/2022]
Abstract
Objective Mesenchymal stem cells (MSCs), due to their immunomodulatory functions, are an ideal candidate
for the treatment of immune-related diseases. Recurrent spontaneous abortion (RSA) is one of the most common
complications of pregnancy which in many cases is related to the immune system disorders. Our previous study has
shown that the abortion rate was decreased following the syngeneic MSCs therapy in abortion-prone mice. In this
study, the therapeutic effect of syngeneic, allogeneic, and xenogeneic MSCs was compared in a mouse model of RSA.
Materials and Methods In this experimental study, MSCs were isolated from adipose tissue (ASCs) of CBA/J and
BALB/c mice and human. After characterization, ASCs were injected (IP) at day 4 of gestation to female CBA/J mice
following their mating with DBA/2 male mice. In the control group, phosphate-buffered saline (PBS) was injected and
CBA/J×BALB/c mating was also used as the normal pregnancy control. On day 14.5 of pregnancy, embryo resorption
rate was determined.
Results The abortion rate significantly decreased following the ASCs therapy from syngeneic (6.31%), allogeneic
(6.54%), and xenogeneic group (12.36%) compared to ASCs non-treated group (34.4%). There was no statistical
difference between ASCs treated groups, however syngeneic and allogeneic ASCs reduced the abortion rate more
efficiently than xenogeneic ASC.
Conclusion The abortion rate was significantly decreased following the intraperitoneal administration of ASCs from
various donated sources in abortion-prone mice. These results indicated that the immunogenicity of allogeneic and
xenogeneic ASCs is not a contradictory problem for their therapeutic effects on RSA.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| |
Collapse
|
32
|
Pham TTM, Kato H, Yamaza H, Masuda K, Hirofuji Y, Sato H, Nguyen HTN, Han X, Zhang Y, Taguchi T, Nonaka K. Altered development of dopaminergic neurons differentiated from stem cells from human exfoliated deciduous teeth of a patient with Down syndrome. BMC Neurol 2018; 18:132. [PMID: 30170556 PMCID: PMC6117917 DOI: 10.1186/s12883-018-1140-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/24/2018] [Indexed: 11/10/2022] Open
Abstract
Background Down syndrome (DS) is a common developmental disorder resulting from the presence of an additional copy of chromosome 21. Abnormalities in dopamine signaling are suggested to be involved in cognitive dysfunction, one of the symptoms of DS, but the pathophysiological mechanism has not been fully elucidated at the cellular level. Stem cells from human exfoliated deciduous teeth (SHED) can be prepared from the dental pulp of primary teeth. Importantly, SHED can be collected noninvasively, have multipotency, and differentiate into dopaminergic neurons (DN). Therefore, we examined dopamine signaling in DS at the cellular level by isolating SHED from a patient with DS, differentiating the cells into DN, and examining development and function of DN. Methods Here, SHED were prepared from a normal participant (Ctrl-SHED) and a patient with DS (DS-SHED). Initial experiments were performed to confirm the morphological, chromosomal, and stem cell characteristics of both SHED populations. Next, Ctrl-SHED and DS-SHED were differentiated into DN and morphological analysis of DN was examined by immunostaining. Functional analysis of DN was performed by measuring extracellular dopamine levels under basal and glutamate-stimulated conditions. In addition, expression of molecules involved in dopamine homeostasis was examined by quantitative real-time polymerase chain reaction and immunostaining. Statistical analysis was performed using two-tailed Student’s t-tests. Results Compared with Ctrl-SHED, DS-SHED showed decreased expression of nestin, a neural stem-cell marker. Further, DS-SHED differentiated into DN (DS-DN) exhibiting decreased neurite outgrowth and branching compared with Ctrl-DN. In addition, DS-DN dopamine secretion was lower than Ctrl-DN dopamine secretion. Moreover, aberrant expression of molecules involved in dopaminergic homeostasis was observed in DS-DN. Conclusions Our results suggest that there was developmental abnormality and DN malfunction in the DS-SHED donor in this study. In the future, to clarify the detailed mechanism of dopamine-signal abnormality due to DN developmental and functional abnormalities in DS, it is necessary to increase the number of patients for analysis. Non-invasively harvested SHED may be very useful in the analysis of DS pathology. Electronic supplementary material The online version of this article (10.1186/s12883-018-1140-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thanh Thi Mai Pham
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Haruyoshi Yamaza
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuta Hirofuji
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Sato
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Huong Thi Nguyen Nguyen
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Xu Han
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yu Zhang
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kazuaki Nonaka
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
33
|
Mun CH, Kang MI, Shin YD, Kim Y, Park YB. The Expression of Immunomodulation-Related Cytokines and Genes of Adipose- and Bone Marrow-Derived Human Mesenchymal Stromal Cells from Early to Late Passages. Tissue Eng Regen Med 2018; 15:771-779. [PMID: 30603595 DOI: 10.1007/s13770-018-0147-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are multipotent stem cells that can differentiate into several cell types. In addition, many studies have shown that MSCs modulate the immune response. However, little information is currently available regarding the maintenance of immunomodulatory characteristics of MSCs through passages. Therefore, we investigated and compared cytokine and gene expression levels from adipose (AD) and bone marrow (BM)-derived MSCs relevant to immune modulation from early to late passages. METHODS MSC immunophenotype, growth characteristics, cytokine expressions, and gene expressions were analyzed. RESULTS AD-MSCs and BM-MSCs had similar cell morphologies and surface marker expressions from passage 4 to passage 10. Cytokines secreted by AD-MSCs and BM-MSCs were similar from early to late passages. AD-MSCs and BM-MSCs showed similar immunomodulatory properties in terms of cytokine secretion levels. However, the gene expressions of tumor necrosis factor-stimulated gene (TSG)-6 and human leukocyte antigen (HLA)-G were decreased and gene expressions of galectin-1 and -3 were increased in both AD- and BM-MSCs with repeated passages. CONCLUSION Our study showed that the immunophenotype and expression of immunomodulation-related cytokines of AD-MSCs and BM-MSCs immunomodulation through the passages were not significantly different, even though the gene expressions of both MSCs were different.
Collapse
Affiliation(s)
- Chin Hee Mun
- 1Division of Rheumatology, Department of Internal Medicine, and Department of Medical Sciences, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea.,2BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea.,3Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Mi-Il Kang
- 4Division of Rheumatology, Department of Internal Medicine, Dankook University College of Medicine, 201 Manghyang-ro, Dongnam-gu, Cheonan, Chung Nam Republic of Korea
| | - Yong Dae Shin
- 1Division of Rheumatology, Department of Internal Medicine, and Department of Medical Sciences, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea.,2BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Yeseul Kim
- 1Division of Rheumatology, Department of Internal Medicine, and Department of Medical Sciences, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Yong-Beom Park
- 1Division of Rheumatology, Department of Internal Medicine, and Department of Medical Sciences, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea.,2BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea.,3Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
34
|
Balgi-Agarwal S, Winter C, Corral A, Mustafa SB, Hornsby P, Moreira A. Comparison of Preterm and Term Wharton's Jelly-Derived Mesenchymal Stem Cell Properties in Different Oxygen Tensions. Cells Tissues Organs 2018; 205:137-150. [PMID: 29949803 PMCID: PMC6117836 DOI: 10.1159/000489256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/15/2018] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have shown promise as therapeutic agents in treating morbidities associated with premature birth. MSCs derived from the human umbilical cord are easy to isolate and have low immunogenicity and a robust ability to secrete paracrine factors. To date, there are no studies evaluating preterm versus term umbilical cord tissue-derived MSCs. Therefore, our aim was twofold: (1) to compare stem cell properties in preterm versus term MSCs and (2) to examine the impact of oxygen tension on stem cell behavior. Umbilical cord tissue was obtained from 5 preterm and 5 term neonates. The cells were isolated and characterized as MSCs in accordance with the International Society for Cellular Therapy. We exposed MSCs to different oxygen tensions to examine the impact of environmental factors on cell performance. We studied the following stem cell properties: (i) motility, (ii) proliferation, (iii) senescence, (iv) cell viability, (v) colony-forming unit efficiency, and (vi) inflammatory cytokine expression. Under normoxia (21% O2), cells from preterm and term infants had similar properties. Under hypoxic conditions (1% O2), term MSCs had better cell proliferation; however, cells exposed to hyperoxia (90% O2) had the slowest motility and lowest cell viability (p < 0.05). There was no difference in the expression of senescence or cytokine expression between the groups. The term cells demonstrated more colony-forming efficiency than the preterm cells. In sum, our preliminary findings suggest that MSCs derived from term and preterm umbilical cords have similar characteristics, offering the potential of future autologous/allogeneic MSC transplants in neonates.
Collapse
Affiliation(s)
- Saloni Balgi-Agarwal
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Caitlyn Winter
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Alexis Corral
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Shamimunisa B Mustafa
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Peter Hornsby
- Department of Cellular and Integrative Physiology, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Alvaro Moreira
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| |
Collapse
|
35
|
Characterization of Senescence of Human Adipose-Derived Stem Cells After Long-Term Expansion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1084:109-128. [PMID: 30242785 DOI: 10.1007/5584_2018_235] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Since the 1980s, adipose-derived stem cells (ASCs) have become a powerful and potential source for stem cell-based therapy, regenerative medicine, and even drug delivery in cancer treatment. The development of off-the-shelf mesenchymal stem cells (MSCs), including ASCs, has rapidly advanced in recent years with several clinical trials and approved products. In this technology, ASCs should be expanded long term in order to harvest higher cell number. In this study, senescence of ASCs after long-term expansion was evaluated. METHODS Human ASCs (hASCs) were isolated and cultured continuously at a density of 103 cells/cm2 up to passage 15. The cells were assessed for aging via changes in the following: characteristics of MSCs, mitochondrial activity, accumulation of beta-galactosidase, and expression of tumor suppressor genes. RESULTS The results showed that following in vitro expansion to the 15th passage, ASCs did not show changes in immunophenotype, except for decreased expression of CD105. However, the cells increased in size and in shape and complexity (toward the "fried egg" morphology). They also almost ceased to proliferate in passage 15. Nonetheless, they maintained in vitro differentiation potential toward osteoblasts, chondrocytes, and adipocytes. Expression of tumor suppressor genes p53 and p16 did not significantly change, while p27 was significantly downregulated. Mitochondrial activities also decreased slightly in culture from passage 5 to passage 10 and remained stable to passage 15. ASCs also showed increased accumulation of beta-galactosidase in culture, but it was negligible. CONCLUSION In conclusion, hASCs exhibited some particular characteristics of aged stem cells when the number of subculture cells increased. However, up to passage 10, ASCs also retained almost all of the characteristics of MSCs.
Collapse
|
36
|
Therapeutic Benefit for Late, but Not Early, Passage Mesenchymal Stem Cells on Pain Behaviour in an Animal Model of Osteoarthritis. Stem Cells Int 2017; 2017:2905104. [PMID: 29434641 PMCID: PMC5757143 DOI: 10.1155/2017/2905104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/07/2017] [Indexed: 12/29/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have a therapeutic potential for the treatment of osteoarthritic (OA) joint pathology and pain. The aims of this study were to determine the influence of a passage number on the effects of MSCs on pain behaviour and cartilage and bone features in a rodent model of OA. Methods Rats underwent either medial meniscal transection (MNX) or sham surgery under anaesthesia. Rats received intra-articular injection of either 1.5 × 106 late passage MSCs labelled with 10 μg/ml SiMAG, 1.5 × 106 late passage mesenchymal stem cells, the steroid Kenalog (200 μg/20 μL), 1.5 × 106 early passage MSCs, or serum-free media (SFM). Sham-operated rats received intra-articular injection of SFM. Pain behaviour was quantified until day 42 postmodel induction. Magnetic resonance imaging (MRI) was used to localise the labelled cells within the knee joint. Results Late passage MSCs and Kenalog attenuated established pain behaviour in MNX rats, but did not alter MNX-induced joint pathology at the end of the study period. Early passage MSCs exacerbated MNX-induced pain behaviour for up to one week postinjection and did not alter joint pathology. Conclusion Our data demonstrate for the first time the role of a passage number in influencing the therapeutic effects of MSCs in a model of OA pain.
Collapse
|
37
|
Immunomodulatory properties of umbilical cord vein mesenchymal stromal cells influenced by gestational age and in vitro expansion. Immunol Lett 2017; 194:62-68. [PMID: 29175314 DOI: 10.1016/j.imlet.2017.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 02/08/2023]
Abstract
In vivo and in vitro aging of the mesenchymal stromal cells (MSCs) can affects their properties. We investigated the immunomodulatory properties of the term and preterm human umbilical cord vein MSCs (UCV-MSCs) at the passages (P) 2 and 5. Term and preterm UCV-MSCs at P2 and 5 were co-cultured with two-way mixed lymphocyte reaction. Proliferation, IFN-γ and IL-10 protein levels, mRNA levels of the COX-2, TGF-β1, TNF-α, IL-4 and FoxP3 were assessed. The term UCV-MSCs and P5 of the term and preterm UCV-MSCs had stronger inhibitory effects on cell proliferation than the preterm UCV-MSC and P2, respectively (P = 0.001). In supernatants of the co-cultures, IFN-γ was higher in the term UCV-MSC than the preterm UCV-MSC, while IL-10 was higher in the preterm UCV-MSCs than the term UCV-MSCs. Also in the co-cultures, COX-2 expression in the term UCV-MSCs and P2 was higher than the preterm UCV-MSCs and P5, respectively and TGF-β1 expression in the term UCV-MSCs was higher than preterm. Conclusively it appears that the term UCV-MSCs, and P5 of the term and preterm UCV-MSCs showed a higher immunomodulatory ability than the preterm UCV-MSCs and P2, respectively.
Collapse
|
38
|
Jung YH, Lee HJ, Kim JS, Lee SJ, Han HJ. EphB2 signaling-mediated Sirt3 expression reduces MSC senescence by maintaining mitochondrial ROS homeostasis. Free Radic Biol Med 2017; 110:368-380. [PMID: 28687409 DOI: 10.1016/j.freeradbiomed.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/12/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023]
Abstract
Disruption of mitochondrial reactive oxygen species (mtROS) homeostasis is a key factor inducing UCB-MSC senescence. Accordingly, preventing mtROS accumulation will help in suppressing the UCB-MSC senescence. In this study, we observed that the expressions of EphrinB2 and EphB2 were inversely regulated by UCB-MSC passage-dependent manner. EphB2 signaling induced mitochondrial translocation of Sirt3. The knockdown of SIRT3 inhibited the effect of EphB2 signaling in UCB-MSCs. Subsequently, EphrinB2-Fc induced the nuclear translocation of Nrf-2 via c-Src phosphorylation dependent manner, and Sirt3 expression was regulated by Nrf-2. Among Sirt3 target genes, EphB2 signaling increased MnSOD and reduced the mtROS level in UCB-MSCs. Furthermore, the deacetylase effect of Sirt3 enhanced the MnSOD activity by deacetylation at the lysine 68 residue and therapeutic effect of UCB-MSCs on skin-wound healing was increased by EphB2 activation. In conclusion, the EphB2 can serve as a novel target for the optimizing the therapeutic use of UCB-MSCs in wound repair by MnSOD-mediated mtROS scavenging through EphB2/c-Src signaling pathway and Nrf-2-dependent Sirt3 expression.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
39
|
Zhou L, Zhang X, Zhou P, Li X, Xu X, Shi Q, Li D, Ju X. Effect of testosterone and hypoxia on the expansion of umbilical cord blood CD34 + cells in vitro. Exp Ther Med 2017; 14:4467-4475. [PMID: 29067121 DOI: 10.3892/etm.2017.5026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/15/2017] [Indexed: 12/29/2022] Open
Abstract
Successfully expanding hematopoietic stem cells (HSCs) is advantageous for clinical HSC transplantation. The present study investigated the influence of testosterone on the proliferation, antigen phenotype and expression of hematopoiesis-related genes in umbilical cord blood-derived cluster of differentiation (CD)34+ cells under normoxic or hypoxia conditions. Cord blood (CB) CD34+ cells were separated using magnetic activated cell sorting. A cytokine cocktail and feeder cells were used to stimulate the expansion of CD34+ cells under normoxic (20% O2) and hypoxic (1% O2) conditions for 7 days and testosterone was added accordingly. Cells were identified using flow cytometry and reconstruction capacity was determined using a colony-forming unit (CFU) assay. The effects of oxygen concentration and testosterone on the expression of hematopoietic-related genes, including homeobox (HOX)A9, HOXB2, HOXB4, HOXC4 and BMI-1, were measured using reverse transcription-quantitative polymerase chain reaction. The results indicated that the number of CFUs and total cells in the testosterone group increased under normoxic and hypoxic conditions compared with the corresponding control groups. Furthermore, the presence of testosterone increased the number of CFU-erythroid colonies. In liquid culture, the growth of CD34+ cells was rapid under normoxic conditions compared with under hypoxic conditions, however CD34+ cells were maintained in an undifferentiated state under hypoxic conditions. The addition of testosterone under hypoxia promoted the differentiation of CD34+ cells into CD34+CD38+CD71+ erythroid progenitor cells. Furthermore, it was determined that the expression of hematopoietic-related genes was significantly increased (P<0.05) in the hypoxia testosterone group compared with the other groups. Therefore, the results of the current study indicate that a combination of hypoxia and testosterone may be a promising cultivation condition for HSC/hemopoietic progenitor cell expansion ex vivo.
Collapse
Affiliation(s)
- Liping Zhou
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Pediatrics, The Sixth People's Hospital of Jinan, Jinan, Shandong 250200, P.R. China
| | - Xiaowei Zhang
- Department of Pediatrics, The Sixth People's Hospital of Jinan, Jinan, Shandong 250200, P.R. China
| | - Panpan Zhou
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xue Li
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuejing Xu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Shi
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong Li
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
40
|
Shakouri-Motlagh A, O'Connor AJ, Brennecke SP, Kalionis B, Heath DE. Native and solubilized decellularized extracellular matrix: A critical assessment of their potential for improving the expansion of mesenchymal stem cells. Acta Biomater 2017; 55:1-12. [PMID: 28412553 DOI: 10.1016/j.actbio.2017.04.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/03/2017] [Accepted: 04/11/2017] [Indexed: 02/08/2023]
Abstract
Capturing the promise of mesenchymal stem cell (MSC)-based treatments is currently limited by inefficient production of cells needed for clinical therapies. During conventional ex vivo expansion, a large portion of MSCs lose the properties that make them attractive for use in cell therapies. Decellularized extracellular matrix (dECM) has recently emerged as a promising substrate for the improved expansion of MSCs. MSCs cultured on these surfaces exhibit improved proliferation capacity, maintenance of phenotype, and increased differentiation potential. Additionally, these dECMs can be solubilized and used to coat new cell culture surfaces, imparting key biological properties of the native matrices to other surfaces such as tissue engineering scaffolds. Although this technology is still developing, there is potential for an impact in the fields of MSC biology, biomaterials, tissue engineering, and therapeutics. In this article, we review the role of dECM in MSC expansion by first detailing the decellularization methods that have been used to produce the dECM substrates; discussing the shortcomings of current decellularization methods; describing the improved MSC characteristics obtained when the cells are cultured on these surfaces; and considering the effect of the passage number, age of donor, and dECM preparation method on the quality of the dECM. Finally we describe the critical roadblocks that must be addressed before this technology can fulfil its potential, including elucidating the mechanism by which the dECMs improve the expansion of primary MSCs and the identification of a readily available source of dECM. STATEMENT OF SIGNIFICANCE Current mesenchymal stem cell (MSC) culture methods result in premature cellular senescence or loss of differentiation potential. This creates a major bottleneck in their clinical application, as prolonged expansion is necessary to achieve clinically relevant numbers of cells. Recently, decellularized extracellular matrix (dECM) produced by primary MSC has emerged as an attractive substrate for the improved expansion of MSC; cells cultured on these surfaces retain their desired stem cell characteristics for prolonged times during culture. This review article describes the inception and development of this dECM-based technology, points out existing challenges that must be addressed, and suggests future directions of research. To our knowledge, this is the first review written on the use of dECM for improved mesenchymal stem cell expansion.
Collapse
|
41
|
Gao P, Han P, Jiang D, Yang S, Cui Q, Li Z. Effects of the donor age on proliferation, senescence and osteogenic capacity of human urine-derived stem cells. Cytotechnology 2017; 69:751-763. [PMID: 28409292 DOI: 10.1007/s10616-017-0084-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022] Open
Abstract
To study the effects of the donor age on the application potential of human urine-derived stem cells (hUSCs) in bone tissue engineering, by comparing proliferation, senescence and osteogenic differentiation of hUSCs originated from volunteers with different ages. The urine samples were collected from 19 healthy volunteers (6 cases from children group aged from 5 to 14, 5 cases from middle-aged group aged from 30 to 40, and 8 cases from the elder group aged from 65 to 75), and hUSCs were isolated and cultured. The cell morphology was observed by microscope and the cell surface markers were identified by flow cytometry. Their abilities to undergo osteogenic, adipogenic and chondrogenic differentiation were determined in vitro, and cell proliferation analyses were performed using Cell Counting Kit-8 (CCK8) Assay. The senescence of hUSCs among three groups was assessed by senescence-associated β galactosidase staining. After osteogenic differentiation, the alkaline phosphatase (ALP) activity of hUSCs was measured and expression of osteogenic-related runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The hUSCs isolated from urine samples were adherent cells displayed "rice gain"-like and "spindle-shaped" morphology, expressing surface markers of mesenchymal stem cells (MSCs) (CD73, CD90, CD105) and the peripheral cell marker (CD146), but not hematopoietic stem cell markers (CD34, CD45) or the embryonic stem cell marker (OCT3/4). The obtained hUSCs could be induced into osteogenic, adipogenic or chondrogenic differentiation. The hUSCs from the children group showed higher proliferation and lower tendency to senescence than those from the middle-aged and elder groups. After osteogenic induction, the ALP activity and RUNX2 and OCN expression of hUSCs from the children group were higher than those from the elder group. While no significant differences were observed when comparing the middle-aged group with the children group or the elder group. Donor age could influence the potency of hUSCs on proliferation, senescence and capacity of osteogenic differentiation. hUSCs from children group have shown higher proliferation, lower tendency to senescence, and stronger osteogenic capacity, which means to be more suitable for basic research and have better clinical application. Furthermore, hUSCs from all groups suggest the application potential in bone tissue engineering as seed cells.
Collapse
Affiliation(s)
- Peng Gao
- Department of Pediatric Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Surgery, Harbin Children's Hospital, Harbin, China
| | - Peilin Han
- Department of Pediatric Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dapeng Jiang
- Department of Pediatric Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Urology, Shanghai Xinhua Hospital, Shanghai, China
| | - Shulong Yang
- Department of Pediatric Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
42
|
Loisel S, Dulong J, Ménard C, Renoud ML, Meziere N, Isabelle B, Latour M, Bescher N, Pedeux R, Bertheuil N, Flecher E, Sensebé L, Tarte K. Brief Report: Proteasomal Indoleamine 2,3-Dioxygenase Degradation Reduces the Immunosuppressive Potential of Clinical Grade-Mesenchymal Stromal Cells Undergoing Replicative Senescence. Stem Cells 2017; 35:1431-1436. [DOI: 10.1002/stem.2580] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Séverine Loisel
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Joëlle Dulong
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Cédric Ménard
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Marie-Laure Renoud
- Etablissement Français du Sang Pyrénées Méditerranée, Université Paul Sabatier; UMR5273-INSERM U1031 Toulouse France
| | | | - Bezier Isabelle
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Maëlle Latour
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Nadège Bescher
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Rémy Pedeux
- UMR U917, INSERM, Université Rennes 1; Rennes France
- UMR U1242, INSERM; Centre Eugéne Marquis; Rennes, France
| | - Nicolas Bertheuil
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
- Department of Plastic; Reconstructive and Aesthetic Surgery
| | - Erwan Flecher
- Department of Thoracic and Cardiac Surgery; CHU Rennes; France
| | - Luc Sensebé
- Etablissement Français du Sang Pyrénées Méditerranée, Université Paul Sabatier; UMR5273-INSERM U1031 Toulouse France
| | - Karin Tarte
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| |
Collapse
|
43
|
Kindlin-2 Modulates the Survival, Differentiation, and Migration of Induced Pluripotent Cell-Derived Mesenchymal Stromal Cells. Stem Cells Int 2017; 2017:7316354. [PMID: 28163724 PMCID: PMC5253493 DOI: 10.1155/2017/7316354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/24/2016] [Accepted: 12/12/2016] [Indexed: 01/21/2023] Open
Abstract
Kindlin-2 is a multidomain intracellular protein that can be recruited to β-integrin domains to activate signaling, initiate transcriptional programs, and bind to E-cadherin. To explore its involvement in cell fate decisions in mesenchymal cells, we studied the effects of Kindlin-2 modification (overexpression/knockdown) in induced pluripotent cell-derived mesenchymal stromal cells (iPSC-MSCs). Kindlin-2 overexpression resulted in increased proliferation and reduced apoptosis of iPSC-MSCs, as well as inhibition of their differentiation towards osteocytes, adipocytes, and chondrocytes. In contrast, siRNA-mediated Kindlin-2 knockdown induced increased apoptosis and increased differentiation response in iPSC-MSCs. The ability of iPSC-MSCs to adhere to VCAM-1/SDF-1α under shear stress and to migrate in a wound scratch assay was significantly increased after Kindlin-2 overexpression. In contrast, inhibition of mixed lymphocyte reaction (MLR) was generally independent of Kindlin-2 modulation in iPSC-MSCs, except for decreased production of interleukin-2 (IL-2) after Kindlin-2 overexpression in iPS-MSCs. Thus, Kindlin-2 upregulates survival, proliferation, stemness, and migration potential in iPSC-MSCs and may therefore be beneficial in optimizing performance of iPSC-MSC in therapies.
Collapse
|
44
|
Bai L, Li D, Li J, Luo Z, Yu S, Cao S, Shen L, Zuo Z, Ma X. Bioactive molecules derived from umbilical cord mesenchymal stem cells. Acta Histochem 2016; 118:761-769. [PMID: 27692875 DOI: 10.1016/j.acthis.2016.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/05/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023]
Abstract
Umbilical cord mesenchymal stem cells (UCMSCs) retain their intrinsic stem cell potential while at the same time displaying high proliferation rates, powerful differentiation capacity, and low immunogenicity. They can also secrete multiple bioactive molecules that exert specific physiological functions. Thus, UCMSCs represent excellent candidates for cell therapy in regenerative medicine and tissue engineering. Abundant preclinical research on different disease models has shown that UCMSCs can accelerate wound or nerve damage recovery and suppress tumor progression. In fact, UCMSCs are thought to possess a higher therapeutic potential than MSCs derived from other tissues. Increasing evidence suggests that the mechanism underlying UCSMCs efficacy depends mostly on cell secretions, in contrast to the early paradigm of cell replacement and differentiation. In this review, we discuss UCMSCs biological characteristics, their secretome-based therapeutic mechanism, and potential applications.
Collapse
|
45
|
Munir H, Luu NT, Clarke LSC, Nash GB, McGettrick HM. Comparative Ability of Mesenchymal Stromal Cells from Different Tissues to Limit Neutrophil Recruitment to Inflamed Endothelium. PLoS One 2016; 11:e0155161. [PMID: 27171357 PMCID: PMC4865100 DOI: 10.1371/journal.pone.0155161] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are tissue-resident stromal cells capable of modulating immune responses, including leukocyte recruitment by endothelial cells (EC). However, the comparative potency of MSC from different sources in suppressing recruitment, and the necessity for close contact with endothelium remain uncertain, although these factors have implications for use of MSC in therapy. We thus compared the effects of MSC isolated from bone marrow, Wharton's jelly, and trabecular bone on neutrophil recruitment to cytokine-stimulated EC, using co-culture models with different degrees of proximity between MSC and EC. All types of MSC suppressed neutrophil adhesion to inflamed endothelium but not neutrophil transmigration, whether directly incorporated into endothelial monolayers or separated from them by thin micropore filters. Further increase in the separation of the two cell types tended to reduce efficacy, although this diminution was least for the bone marrow MSC. Immuno-protective effects of MSC were also diminished with repeated passage; with BMMSC, but not WJMSC, completing losing their suppressive effect by passage 7. Conditioned media from all co-cultures suppressed neutrophil recruitment, and IL-6 was identified as a common bioactive mediator. These results suggest endogenous MSC have a homeostatic role in limiting inflammatory leukocyte infiltration in a range of tissues. Since released soluble mediators might have effects locally or remotely, infusion of MSC into blood or direct injection into target organs might be efficacious, but in either case, cross-talk between EC and MSC appears necessary.
Collapse
Affiliation(s)
- Hafsa Munir
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Nguyet-Thin Luu
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Lewis S. C. Clarke
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Gerard B. Nash
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Helen M. McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
46
|
Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jocit.2014.12.001] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Kang YH, Lee HJ, Jang SJ, Byun JH, Lee JS, Lee HC, Park WU, Lee JH, Rho GJ, Park BW. Immunomodulatory properties and in vivo osteogenesis of human dental stem cells from fresh and cryopreserved dental follicles. Differentiation 2015; 90:48-58. [PMID: 26493125 DOI: 10.1016/j.diff.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/09/2015] [Accepted: 10/09/2015] [Indexed: 02/08/2023]
Abstract
In our previous study, dental follicle tissues from extracted wisdom teeth were successfully cryopreserved for use as a source of stem cells. The goals of the present study were to investigate the immunomodulatory properties of stem cells from fresh and cryopreserved dental follicles (fDFCs and cDFCs, respectively) and to analyze in vivo osteogenesis after transplantation of these DFCs into experimental animals. Third passage fDFCs and cDFCs showed similar expression levels of interferon-γ receptor (CD119) and major histocompatibility complex class I and II (MHC I and MHC II, respectively), with high levels of CD119 and MHC I and nearly no expression of MHC II. Both fresh and cryopreserved human DFCs (hDFCs) were in vivo transplanted along with a demineralized bone matrix scaffold into mandibular defects in miniature pigs and subcutaneous tissues of mice. Radiological and histological evaluations of in vivo osteogenesis in hDFC-transplanted sites revealed significantly enhanced new bone formation activities compared with those in scaffold-only implanted control sites. Interestingly, at 8 weeks post-hDFC transplantation, the newly generated bones were overgrown compared to the original size of the mandibular defects, and strong expression of osteocalcin and vascular endothelial growth factor were detected in the hDFCs-transplanted tissues of both animals. Immunohistochemical analysis of CD3, CD4, and CD8 in the ectopic bone formation sites of mice showed significantly decreased CD4 expression in DFCs-implanted tissues compared with those in control sites. These findings indicate that hDFCs possess immunomodulatory properties that involved inhibition of the adaptive immune response mediated by CD4 and MHC II, which highlights the usefulness of hDFCs in tissue engineering. In particular, long-term preserved dental follicles could serve as an excellent autologous or allogenic stem cell source for bone tissue regeneration as well as a valuable therapeutic agent for immune diseases.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hye-Jin Lee
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Si-Jung Jang
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong-Sil Lee
- Department of Pathology, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hee-Chun Lee
- Department of Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Won-Uk Park
- Department of Dental Technology, Jinju Health College, Jinju, Republic of Korea
| | - Jin-Ho Lee
- Department of Advanced Materials, College of Life Science and Nano Technology, Hannam University, Daejeon, Republic of Korea
| | - Gyu-Jin Rho
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
48
|
Jayaraman P, Govindasamy V, Gnanasegaran N, Kunasekaran W, Vasanthan P, Musa S, Kasim NHA. Expression patterns of immune genes in long-term cultured dental stem cells. Clin Oral Investig 2015; 20:109-16. [DOI: 10.1007/s00784-015-1497-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/20/2015] [Indexed: 01/06/2023]
|