1
|
A study of miRNAs as cornerstone in lung cancer pathogenesis and therapeutic resistance: A focus on signaling pathways interplay. Pathol Res Pract 2022; 237:154053. [DOI: 10.1016/j.prp.2022.154053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023]
|
2
|
Romero-Lorca A, Novillo A, Gaibar M, Gilsanz MF, Galán M, Beltrán L, Antón B, Malón D, Moreno A, Fernández-Santander A. miR-7, miR-10a and miR-143 Expression May Predict Response to Bevacizumab Plus Chemotherapy in Patients with Metastatic Colorectal Cancer. Pharmgenomics Pers Med 2021; 14:1263-1273. [PMID: 34616173 PMCID: PMC8488031 DOI: 10.2147/pgpm.s313594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/20/2021] [Indexed: 01/19/2023] Open
Abstract
Purpose Bevacizumab is a monoclonal antibody that binds to vascular endothelial growth factor A. It is currently used in combination with chemotherapy to treat metastatic colorectal cancer. This therapy is not equally effective in every patient; in some, mechanisms of resistance arise that remain poorly understood. The aim of the present work was to determine whether the expression of 26 miRNAs could be associated with the effectiveness of bevacizumab plus chemotherapy, with progression-free survival (PFS), and with overall survival (OS) in metastatic colorectal cancer. Patients and Methods Paraffin-embedded biopsies from 76 patients with metastatic colorectal cancer were collected to isolate miRNAs. The expression of 26 miRNAs was analyzed by quantitative RT-PCR. For the purpose of analysis, patients were classified as either “responders” (PFS ≥6 months since beginning treatment) or “non-responders” (PFS <6 months). For the analysis of PFS and OS, patients were classified into two groups using the median gene expression value as the cut-off point (“high” [≥50% percentile] or “low” [<50% percentile]). Time-to-event data were analyzed using the Kaplan–Meier method and compared by the log rank test. Cox regression was used to estimate hazard ratios (HR) and their 95% confidence intervals. Results miR-7-5p and miR-10a-5p were more strongly expressed in non-responders than responders (p=0.049 and p=0.043, respectively), and OS was poorer in patients showing these higher expression levels (HR=2.54, 95% CI 1.42–4.55, p=0. 001, and HR=1.81, 95% CI 1.02–3.20, p=0.039, respectively). The overexpression of miR-143-3p, however, was associated with a better prognosis and significantly better PFS (HR=0.57; 95% CI: 0.33–0.96; p=0.033). Conclusion High expression values for miR-7-5p and miR-10a-5p might be considered markers of a poorer prognosis in patients with metastatic colorectal cancer treated with bevacizumab plus chemotherapy, while the same for miR-143-3p might be a marker of better outcomes.
Collapse
Affiliation(s)
- Alicia Romero-Lorca
- Biomedical and Health Sciences Faculty, Universidad Europea de Madrid, Madrid, 28670, Spain
| | - Apolonia Novillo
- Biomedical and Health Sciences Faculty, Universidad Europea de Madrid, Madrid, 28670, Spain
| | - María Gaibar
- Biomedical and Health Sciences Faculty, Universidad Europea de Madrid, Madrid, 28670, Spain
| | | | - Miguel Galán
- Biomedical and Health Sciences Faculty, Universidad Europea de Madrid, Madrid, 28670, Spain
| | - Laura Beltrán
- Biomedical and Health Sciences Faculty, Universidad Europea de Madrid, Madrid, 28670, Spain
| | - Beatriz Antón
- Department of Oncology, University Hospital of Fuenlabrada, Madrid, 28942, Spain
| | - Diego Malón
- Department of Oncology, University Hospital of Fuenlabrada, Madrid, 28942, Spain
| | - Amalia Moreno
- Department of Oncology, University Hospital of Fuenlabrada, Madrid, 28942, Spain
| | | |
Collapse
|
3
|
Li Q, Wang Y, He J. MiR-133a-3p attenuates resistance of non-small cell lung cancer cells to gefitinib by targeting SPAG5. J Clin Lab Anal 2021; 35:e23853. [PMID: 34057242 PMCID: PMC8274984 DOI: 10.1002/jcla.23853] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background Gefitinib is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR‐TKI), clinically used to treat patients with non‐small cell lung cancer driven by EGFR mutations. Unfortunately, EGFR‐TKI resistance has become a clinical problem for the effective treatment of NSCLC patients. The purpose of this study was to explore the effect and mechanism of miR‐133a‐3p on the gefitinib sensitivity of NSCLC cells. Methods The gefitinib‐resistant PC9 (PC9/GR) cells were established through repeated long‐term exposure to gefitinib for half a year. Then, PC9/GR cells were transfected with miR‐133a‐3p mimics and PC9 cells were transfected with miR‐133a‐3p inhibitors to increase or decrease the expression of miR‐133a‐3p. CCK‐8 assay, colony formation assay, and caspase‐3 activity assay were employed to detect cell resistance to gefitinib. Quantitative real‐time PCR and Western blotting were used to evaluate the levels of miR‐133a‐3p, SPAG5, and other related genes. Starbase database was used to predict the target gene of miR‐133a‐3p and the prognosis of NSCLC patients. Target gene of miR‐133a‐3p was verified through dual‐luciferase reporter gene assay. Results MiR‐133a‐3p was significantly downregulated in gefitinib‐resistant cell line PC9/GR vs. gefitinib‐sensitive cell line PC9. Overexpression of miR‐133a‐3p increased the sensitivity of NSCLC cells to gefitinib and vice versa. Furthermore, SPAG5 is an important target gene of miR‐133a‐3p, and SPAG5 can reverse miR‐133a‐3p‐mediated gefitinib sensitivity of NSCLC cells. Conclusions These findings indicated that miR‐133a‐3p/SPAG5 axis played a vital role in acquired resistance to gefitinib in NSCLC cells, and miR‐133a‐3p may represent a potential therapeutic strategy for the treatment of human NSCLC.
Collapse
Affiliation(s)
- Qing Li
- Clinical Laboratory of Tianjin Chest Hospital, Tianjin, China
| | - Yueming Wang
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jingdong He
- Clinical Laboratory of Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
4
|
Pal JK, Ray SS, Pal SK. Identifying Drug Resistant miRNAs Using Entropy Based Ranking. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:973-984. [PMID: 31398129 DOI: 10.1109/tcbb.2019.2933205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MicroRNAs play an important role in controlling drug sensitivity and resistance in cancer. Identification of responsible miRNAs for drug resistance can enhance the effectiveness of treatment. A new set theoretic entropy measure (SPEM) is defined to determine the relevance and level of confidence of miRNAs in deciding their drug resistant nature. Here, a pattern is represented by a pair of values. One of them implies the degree of its belongingness (fuzzy membership) to a class and the other represents the actual class of origin (crisp membership). A measure, called granular probability, is defined that determines the confidence level of having a particular pair of membership values. The granules used to compute the said probability are formed by a histogram based method where each bin of a histogram is considered as one granule. The width and number of the bins are automatically determined by the algorithm. The set thus defined, comprising a pair of membership values and the confidence level for having them, is used for the computation of SPEM and thereby identifying the drug resistant miRNAs. The efficiency of SPEM is demonstrated extensively on six data sets. While the achieved F-score in classifying sensitive and resistant samples ranges between 0.31 & 0.50 using all the miRNAs by SVM classifier, the same score varies from 0.67 to 0.94 using only the top 1 percent drug resistant miRNAs. Superiority of the proposed method as compared to some existing ones is established in terms of F-score. The significance of the top 1 percent miRNAs in corresponding cancer is also verified by the different articles based on biological investigations. Source code of SPEM is available at http://www.jayanta.droppages.com/SPEM.html.
Collapse
|
5
|
Gajda E, Grzanka M, Godlewska M, Gawel D. The Role of miRNA-7 in the Biology of Cancer and Modulation of Drug Resistance. Pharmaceuticals (Basel) 2021; 14:149. [PMID: 33673265 PMCID: PMC7918072 DOI: 10.3390/ph14020149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs, miRs) are small non-coding RNA (ncRNA) molecules capable of regulating post-transcriptional gene expression. Imbalances in the miRNA network have been associated with the development of many pathological conditions and diseases, including cancer. Recently, miRNAs have also been linked to the phenomenon of multidrug resistance (MDR). MiR-7 is one of the extensively studied miRNAs and its role in cancer progression and MDR modulation has been highlighted. MiR-7 is engaged in multiple cellular pathways and acts as a tumor suppressor in the majority of human neoplasia. Its depletion limits the effectiveness of anti-cancer therapies, while its restoration sensitizes cells to the administered drugs. Therefore, miR-7 might be considered as a potential adjuvant agent, which can increase the efficiency of standard chemotherapeutics.
Collapse
Affiliation(s)
- Ewa Gajda
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Damian Gawel
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
6
|
Pravoverov K, Whiting K, Thapa S, Bushong T, Trang K, Lein PJ, Chandrasekaran V. MicroRNAs are Necessary for BMP-7-induced Dendritic Growth in Cultured Rat Sympathetic Neurons. Cell Mol Neurobiol 2019; 39:917-934. [PMID: 31104181 PMCID: PMC6713596 DOI: 10.1007/s10571-019-00688-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/14/2019] [Indexed: 01/28/2023]
Abstract
Neuronal connectivity is dependent on size and shape of the dendritic arbor. However, mechanisms controlling dendritic arborization, especially in the peripheral nervous system, are not completely understood. Previous studies have shown that bone morphogenetic proteins (BMPs) are important initiators of dendritic growth in peripheral neurons. In this study, we examined the hypothesis that post-transcriptional regulation mediated by microRNAs (miRNAs) is necessary for BMP-7-induced dendritic growth in these neurons. To examine the role of miRNAs in BMP-7-induced dendritic growth, microarray analyses was used to profile miRNA expression in cultured sympathetic neurons from the superior cervical ganglia of embryonic day 21 rat pups at 6 and 24 h after treatment with BMP-7 (50 ng/mL). Our data showed that BMP-7 significantly regulated the expression of 43 of the 762 miRNAs. Of the 43 miRNAs, 22 showed robust gene expression; 14 were upregulated by BMP-7 and 8 were downregulated by BMP-7. The expression profile for miR-335, miR-664-1*, miR-21, and miR-23b was confirmed using qPCR analyses. Functional studies using morphometric analyses of dendritic growth in cultured sympathetic neurons transfected with miRNA mimics and inhibitors indicated that miR-664-1*, miR-23b, and miR-21 regulated early stages of BMP-7-induced dendritic growth. In summary, our data provide evidence for miRNA-mediated post-transcriptional regulation as important downstream component of BMP-7 signaling during early stages of dendritic growth in sympathetic neurons.
Collapse
Affiliation(s)
- Kristina Pravoverov
- Department of Biology, Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94556
| | - Katherine Whiting
- Department of Biology, Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94556
| | - Slesha Thapa
- Department of Biology, Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94556
| | - Trevor Bushong
- Department of Biology, Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94556
| | - Karen Trang
- Department of Biology, Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94556
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, 1089 Veterinary Medicine Drive, Davis, Davis, CA 95616
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94556.,Corresponding author: Vidya Chandrasekaran, Department of Biology, Saint Mary’s College of California, Moraga, CA 94556.
| |
Collapse
|
7
|
Leonetti A, Assaraf YG, Veltsista PD, El Hassouni B, Tiseo M, Giovannetti E. MicroRNAs as a drug resistance mechanism to targeted therapies in EGFR-mutated NSCLC: Current implications and future directions. Drug Resist Updat 2018; 42:1-11. [PMID: 30544036 DOI: 10.1016/j.drup.2018.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/20/2022]
Abstract
The introduction of EGFR-tyrosine kinase inhibitors (TKIs) has revolutionized the treatment and prognosis of non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) mutations. However, these patients display disease progression driven by the onset of acquired mechanisms of drug resistance that limit the efficacy of EGFR-TKI to no longer than one year. Moreover, a small fraction of EGFR-mutated NSCLC patients does not benefit from this targeted treatment due to primary (i.e. intrinsic) mechanisms of resistance that preexist prior to TKI drug treatment. Research efforts are focusing on deciphering the distinct molecular mechanisms underlying drug resistance, which should prompt the development of novel antitumor agents that surmount such chemoresistance modalities. The capability of microRNAs (miRNAs) to regulate the expression of many oncogenic pathways and their central role in lung cancer progression, provided new directions for research on prognostic biomarkers, as well as innovative tools for predicting patients' response to systemic therapies. Recent evidence suggests that modulation of key miRNAs may also reverse oncogenic signaling pathways, and potentiate the cytotoxic effect of anti-cancer therapies. In this review, we focus on the putative emerging role of miRNAs in modulating drug resistance to EGFR-TKI treatment in EGFR-mutated NSCLC. Moreover, we discuss the current implications of miRNAs analyses in the clinical setting, using both tissue and liquid biopsies, as well as the future potential use of miRNA-based therapies in overcoming resistance to targeted agents like TKIs.
Collapse
Affiliation(s)
- Alessandro Leonetti
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy; Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200000, Israel
| | - Paraskevi D Veltsista
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Btissame El Hassouni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa and Fondazione Pisana per la Scienza, 56100 Pisa, Italy.
| |
Collapse
|
8
|
The long non-coding RNA SNHG5 regulates gefitinib resistance in lung adenocarcinoma cells by targetting miR-377/CASP1 axis. Biosci Rep 2018; 38:BSR20180400. [PMID: 29592872 PMCID: PMC6131202 DOI: 10.1042/bsr20180400] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/03/2023] Open
Abstract
Gefitinib resistance is one of the major obstacles for the treatment of lung adenocarcinoma (LAD). The present study aimed to investigate the effects of the long non-coding RNA (lncRNA), small nucleolar RNA host gene 5SNHG5 on gefitinib resistance in LAD and explore the underlying mechanisms. The quantitative real-time PCR (qRT-PCR) results showed that SNHG5 expression was significantly down-regulated in LAD patients with acquired gefitinib resistance and gefitinib resistant LAD cell lines. SNHG5 overexpression sensitized gefitinib resistant LAD cells to gefitinib treatment, while knockdown of SNHG5 rendered gefitinib sensitive LAD cells to gefitinib treatment. Bioinformatics analysis showed that SNHG5 exerted its function through interaction with miR-377, which was further confirmed by luciferase reporter assay in 293T cells. Overexpression of SNHG5 suppressed the expression of miR-377, while the knockdown of SNHG5 increased the miR-377 expression. MiR-377 expression was significantly up-regulated in LAD specimens with acquired gefitinib resistance and was negatively correlated with SNHG5 expression. In addition, CASP1 was predicted as a downstream target of miR-377 Overexpression of miR-377 suppressed the expression of CASP1 in PC9 cells and knockdown of miR-377 increased the CASP1 expression in PC9GR cells. In vitro functional assay showed that knockdown of CASP1 in SNHG5-overexpressed PC9GR cells abolished their gefitinib resistance. Overall, the present study demonstrated, for the first time, that the SNHG5/miR-377/CASP1 axis functions as an important role in LAD cells gefitinib resistance and potentially contributes to the improvement of LAD diagnosis and therapy.
Collapse
|
9
|
BRM270 inhibits cancer stem cell maintenance via microRNA regulation in chemoresistant A549 lung adenocarcinoma cells. Cell Death Dis 2018; 9:244. [PMID: 29445170 PMCID: PMC5833813 DOI: 10.1038/s41419-018-0277-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/22/2022]
Abstract
Chemotherapy is a standard treatment for non-small-cell lung cancer (NSCLC). However, the dose-limiting toxicity of drugs and the development of chemoresistance are major clinical challenges to successful management of NSCLC. Asian traditional medicine is gaining global attention as a non-toxic alternative to chemotherapy. BRM270 is an extract formulated from seven Asian medicinal plants that has been shown to inhibit tumor cell proliferation in diverse cancer types. We previously demonstrated that BRM270 suppresses tumorigenesis by negatively regulating nuclear factor-κB signaling in multidrug-resistant cancer stem cells (CSCs). In this study we report that the growth, migration, and invasion of normal human lung adenocarcinoma cells and their chemoresistant derivatives was inhibited by BRM270 treatment. Notably, BRM270 was found to modulate CSC self-renewal and tumor-initiating capacity via positive regulation of the miRNA-128. Thus, combination therapy with miRNA-128 and BRM270 may be an effective treatment strategy for chemoresistant NSCLC.
Collapse
|
10
|
miR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget 2018; 7:53558-53570. [PMID: 27448964 PMCID: PMC5288205 DOI: 10.18632/oncotarget.10669] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are attractive therapeutic targets for various therapy-resistant tumors. However, the association between miRNA and BRAF inhibitor resistance in melanoma remains to be elucidated. We used microarray analysis to comprehensively study the miRNA expression profiling of vemurafenib resistant (VemR) A375 melanoma cells in relation to parental A375 melanoma cells. MicroRNA-7 (miR-7) was identified to be the most significantly down-regulated miRNA in VemR A375 melanoma cells. We also found that miR-7 was down-regulated in Mel-CVR cells (vemurafenib resistant Mel-CV melanoma cells). Reestablishment of miR-7 expression could reverse the resistance of both cells to vemurafenib. We showed that epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R) and CRAF were over-expressed in VemR A375 melanoma cells. Introduction of miR-7 mimics could markedly decrease the expressions of EGFR, IGF-1R and CRAF and further suppressed the activation of MAPK and PI3K/AKT pathway in VemR A375 melanoma cells. Furthermore, tumor growth was inhibited in an in vivo murine VemR A375 melanoma tumor model transfected with miR-7 mimics. Collectively, our study demonstrated that miR-7 could reverse the resistance to BRAF inhibitors in certain vemurafenib resistant melanoma cell lines. It could advance the field and provide the basis for further studies in BRAF inhibitor resistance in melanoma.
Collapse
|
11
|
Zhou G, Zhang F, Guo Y, Huang J, Xie Y, Yue S, Chen M, Jiang H, Li M. miR-200c enhances sensitivity of drug-resistant non-small cell lung cancer to gefitinib by suppression of PI3K/Akt signaling pathway and inhibites cell migration via targeting ZEB1. Biomed Pharmacother 2016; 85:113-119. [PMID: 27930974 DOI: 10.1016/j.biopha.2016.11.100] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023] Open
Abstract
Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a major obstacle in the treatment of non-small cell lung cancer (NSCLC) patients. We explored the role of miR-200c in modulating the sensitivity of gefitinib-resistant NSCLC cells and examined the underlying mechanism. The gefitinib-resistant cell line PC-9-ZD and its parental PC-9 cells were used. Growth inhibition was detected by MTT assay. The cell apoptosis was detected by Annexin V/PI assay. Cell migration was assessed by wound-healing assay. RT-PCR was used to detected levels of miR-200c and ZEB1. The PI3k, Bcl-2, Bax, caspase-3 and ZEB1 protein expression were detected using Western blot analysis, and TUNEL, Immunohistochemistry for xenograft model. PC-9-ZD cells had low level of miR-200c expression compared to its parental PC-9 cells. PC-9-ZD cells with miR-200c transfection were more sensitive to gefitinib treatment. Apoptosis induced by gefitinib was observed in PC-9-ZD cells with miR-200c transfection significantly. The levels of phosphorylated-Akt and Bcl-2 expression decreased and levels of Bax and Caspase-3 expression increased in PC-9-ZD cells with miR-200c transfection. Cell migration was inhibited and ZEB1 mRNA level and protein expression were significantly decreased in PC-9-ZD cells with miR-200c transfection. Further in gefitinib resistant xenograft model, miR-200c enhanced sensitivity of gefitinib and induced apoptosis significantly through PI3K/Akt signaling pathway and targeting ZEB1. These results provided insights into the functions of miR-200c and offered an alternate approach in treating gefitinib-resistance NSCLC.
Collapse
Affiliation(s)
- Guohua Zhou
- Department of Oncology, Anji People's Hospital, Anji, Zhejiang 313399, PR China
| | - Fangli Zhang
- Department of Oncology, Anji People's Hospital, Anji, Zhejiang 313399, PR China
| | - Yu Guo
- Department of Oncology, Anji People's Hospital, Anji, Zhejiang 313399, PR China
| | - Jianfei Huang
- Department of Oncology, Anji People's Hospital, Anji, Zhejiang 313399, PR China
| | - Yaqiong Xie
- Department of Oncology, Anji People's Hospital, Anji, Zhejiang 313399, PR China
| | - Shuanglei Yue
- Department of Oncology, Anji People's Hospital, Anji, Zhejiang 313399, PR China
| | - Minghui Chen
- Department of Oncology, Anji People's Hospital, Anji, Zhejiang 313399, PR China
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Mengjie Li
- Department of Hematology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
12
|
Gao Y, Wang B, Gao S. BRD7 Acts as a Tumor Suppressor Gene in Lung Adenocarcinoma. PLoS One 2016; 11:e0156701. [PMID: 27580131 PMCID: PMC5007050 DOI: 10.1371/journal.pone.0156701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/18/2016] [Indexed: 02/02/2023] Open
Abstract
Lung cancer is one of the most malignant tumors and the leading cause of cancer-related deaths worldwide. Among lung cancers, 40% are diagnosed as adenocarcinoma. Bromodomain containing 7 (BRD7) is a member of bromodomain-containing protein family. It was proved to be downregulated in various cancers. However, the role of BRD7 in lung adenocarcinoma is still unknown. Western blot and qRT-PCR was performed to measure the BRD7 expression in lung adenocarcinoma tissues and cells. CCK8 and migration assay was done to detect the functional role of BRD7 in lung adenocarcinoma. In this study, we showed that the expression of BRD7 was downregulated in lung adenocarcinoma tissues and cells. The lower of BRD7 levels in patients with lung adenocarcinoma was associated with shortened disease-free survival. Furthermore, overexpression of BRD7 inhibited lung adenocarcinoma cell proliferation and migration. Inhibition of BRD7 expression promoted cell proliferation and migration by activating ERK phosphorylation. Overexpression of BRD7 inhibited cyclin D and myc expression. Our findings are consistent with a tumor suppressor role for BRD7 in lung adenocarcinoma tumorigenesis.
Collapse
Affiliation(s)
- Yushun Gao
- Department of thoracic surgical oncology, cancer institute (hospital), Chinese academy of medical sciences, Peking union medical college, Beijing, 100021, China
| | - Bing Wang
- Department of thoracic surgical oncology, cancer institute (hospital), Chinese academy of medical sciences, Peking union medical college, Beijing, 100021, China
| | - Shugeng Gao
- Department of thoracic surgical oncology, cancer institute (hospital), Chinese academy of medical sciences, Peking union medical college, Beijing, 100021, China
- * E-mail:
| |
Collapse
|
13
|
The role of microRNAs in resistance to targeted treatments of non-small cell lung cancer. Cancer Chemother Pharmacol 2016; 79:227-231. [PMID: 27515517 DOI: 10.1007/s00280-016-3130-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC), accounting for the most of lung cancers, is usually diagnosed in advanced stage. Targeted treatments boost advanced NSCLC patients with certain mutations, but early drug resistance blocks the advantages of target medicine. MicroRNAs (miRNAs) are regarded as a cluster of small noncoding and posttranscriptionally negative regulating RNAs. We want to explore the role of miRNAs in resistance to targeted treatments of NSCLC to improve the prognosis. METHODS We reviewed recent studies about miRNAs and targeted treatment resistance in NSCLC and classified resistance into two types: EGFR-TKIs resistance and ALK-TKIs resistance. RESULTS AND CONCLUSION Recent studies indicate that miRNAs involve in drug resistance possession in positive and negative manners. Inhibiting expression of certain miRNAs that promote drug resistance and increasing expression of miRNAs that reverse drug resistance may illuminate novel prospect of adjuvant targeted treatments in NSCLC.
Collapse
|
14
|
Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumour Biol 2016; 37:10021-39. [PMID: 27155851 DOI: 10.1007/s13277-016-5059-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/01/2016] [Indexed: 12/25/2022] Open
|
15
|
Sin TK, Wang F, Meng F, Wong SCC, Cho WCS, Siu PM, Chan LWC, Yung BYM. Implications of MicroRNAs in the Treatment of Gefitinib-Resistant Non-Small Cell Lung Cancer. Int J Mol Sci 2016; 17:237. [PMID: 26891293 PMCID: PMC4783968 DOI: 10.3390/ijms17020237] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 12/26/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents about 85% of the reported cases of lung cancer. Acquired resistance to targeted therapy with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, is not uncommon. It is thus vital to explore novel strategies to restore sensitivity to gefitinib. Provided that microRNAs (miRNAs) negatively regulate their gene targets at the transcriptional level, it is speculated that miRNA mimetics may reduce the expression, activity and signal transduction of EGFR so that sensitization of tumour sites to gefitinib-induced cytotoxicity can be achieved. Indeed, a growing body of evidence has shown that the manipulation of endogenous levels of miRNA not only attenuates the EGFR/PI3K/Akt phosphorylation cascade, but also restores apoptotic cell death in in vitro models of experimentally-induced gefitinib resistance and provoked tumour regression/shrinkage in xenograft models. These data are in concordant with the clinical data showing that the differential expression profiles of miRNA in tumour tissues and blood associate strongly with drug response and overall survival. Furthermore, another line of studies indicate that the chemopreventive effects of a variety of natural compounds may involve miRNAs. The present review aims to discuss the therapeutic capacity of miRNAs in relation to recent discoveries on EGFR-TKI resistance, including chronic drug exposure and mutations.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Fengfeng Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Fei Meng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - S C Cesar Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - William C S Cho
- Department of Clinical Oncology, The Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| | - Parco M Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Benjamin Y M Yung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
16
|
Horsham JL, Kalinowski FC, Epis MR, Ganda C, Brown RAM, Leedman PJ. Clinical Potential of microRNA-7 in Cancer. J Clin Med 2015; 4:1668-87. [PMID: 26308064 PMCID: PMC4600152 DOI: 10.3390/jcm4091668] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) are a family of short, non-coding RNA molecules that drive a complex network of post-transcriptional gene regulation by enhancing target mRNA decay and/or inhibiting protein synthesis from mRNA transcripts. They regulate genes involved in key aspects of normal cell growth, development and the maintenance of body homeostasis and have been closely linked to the development and progression of human disease, in particular cancer. Over recent years there has been much interest regarding their potential as biomarkers and as therapeutic agents or targets. microRNA-7 (miR-7) is a 23 nucleotide (nt) miRNA known primarily to act as a tumour suppressor. miR-7 directly inhibits a number of oncogenic targets and impedes various aspects of cancer progression in vitro and in vivo, however, some studies have also implicated miR-7 in oncogenic roles. This review summarises the role of miR-7 in cancer, its potential in miRNA-based replacement therapy and its capacity as both a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Jessica L Horsham
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia.
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Felicity C Kalinowski
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia.
| | - Michael R Epis
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia.
| | - Clarissa Ganda
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia.
| | - Rikki A M Brown
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia.
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia.
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA 6009, Australia.
| |
Collapse
|
17
|
Mao Q, Quan T, Luo B, Guo X, Liu L, Zheng Q. MiR-375 targets KLF4 and impacts the proliferation of colorectal carcinoma. Tumour Biol 2015. [PMID: 26224477 DOI: 10.1007/s13277-015-3809-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MiR-375 has been identified as oncogenes or tumor suppressor genes which has the potential to the development and growth of cancers. However, the limited information concerning the expression and role of miR-375 in colorectal cancer (CRC) is available. In this work, we provide evidence for a function of miR-375 in the inhibition of CRC proliferation. Here, we showed that miR-375, down-modulated in human colorectal cancer tissues compared with normal human colon tissues, including several colorectal cancer cell lines. Subsequently, using the luciferase reporter assays, we found that the KLF4 untranslated region (3'UTR) carries the direct binding site of miR-375. In terms of function in vitro, CCK-8 assay, colony formation assay, and cell cycle assay demonstrated that the overexpression of miR-375 suppressed CRC cell proliferation. Inhibition of KLF4 performed similar effects with miR-375 overexpression on CRC cells, and overexpression of KLF4 could significantly reverse the tumor suppressive effects of miR-375 on CRC cells. Furthermore, we found overexpressed miR-375 effectively repressed tumor growth via KLF4 in xenograft animal experiment. Taken together, these results illustrated that miR-375 depresses proliferation of CRC through regulating 3'UTR of KLF4 mRNA, which might be a promising therapeutic target for treating colorectal cancers.
Collapse
Affiliation(s)
- Qiqi Mao
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| | - Tao Quan
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Bin Luo
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Xuefeng Guo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Lei Liu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Qinghui Zheng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|