1
|
Muchowicz A, Bartoszewicz A, Zaslona Z. The Exploitation of the Glycosylation Pattern in Asthma: How We Alter Ancestral Pathways to Develop New Treatments. Biomolecules 2024; 14:513. [PMID: 38785919 PMCID: PMC11117584 DOI: 10.3390/biom14050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and to propose endotype-specific treatments. This review focuses on protein glycosylation as a process activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss known and relevant glycoproteins whose functions control disease development. The key role of glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair, justifies our interest and research in the field of glycobiology. Altering the glycosylation states of proteins contributing to asthma can change the pathological processes that we previously failed to inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in human diseased lungs, and its pathological role has been demonstrated by both genetic and pharmacological approaches. We propose that studying the glycosylation pattern and enzymes involved in glycosylation in asthma can help in patient stratification and in developing personalized treatment.
Collapse
Affiliation(s)
| | | | - Zbigniew Zaslona
- Molecure S.A., Zwirki i Wigury 101, 02-089 Warszawa, Poland; (A.M.); (A.B.)
| |
Collapse
|
2
|
Xie X, Kong S, Cao W. Targeting protein glycosylation to regulate inflammation in the respiratory tract: novel diagnostic and therapeutic candidates for chronic respiratory diseases. Front Immunol 2023; 14:1168023. [PMID: 37256139 PMCID: PMC10225578 DOI: 10.3389/fimmu.2023.1168023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Protein glycosylation is a widespread posttranslational modification that can impact the function of proteins. Dysregulated protein glycosylation has been linked to several diseases, including chronic respiratory diseases (CRDs). CRDs pose a significant public health threat globally, affecting the airways and other lung structures. Emerging researches suggest that glycosylation plays a significant role in regulating inflammation associated with CRDs. This review offers an overview of the abnormal glycoenzyme activity and corresponding glycosylation changes involved in various CRDs, including chronic obstructive pulmonary disease, asthma, cystic fibrosis, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, non-cystic fibrosis bronchiectasis, and lung cancer. Additionally, this review summarizes recent advances in glycomics and glycoproteomics-based protein glycosylation analysis of CRDs. The potential of glycoenzymes and glycoproteins for clinical use in the diagnosis and treatment of CRDs is also discussed.
Collapse
Affiliation(s)
- Xiaofeng Xie
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Siyuan Kong
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weiqian Cao
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Next Generation Exome Sequencing of Pediatric Asthma Identifies Rare and Novel Variants in Candidate Genes. DISEASE MARKERS 2021; 2021:8884229. [PMID: 33628342 PMCID: PMC7888305 DOI: 10.1155/2021/8884229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Multiple genes have been implicated to have a role in asthma predisposition by association studies. Pediatric patients often manifest a more extensive form of this disease and a particularly severe disease course. It is likely that genetic predisposition could play a more substantial role in this group. This study is aimed at identifying the spectrum of rare and novel variation in known pediatric asthma susceptibility genes using whole exome sequencing analysis in nine individual cases of childhood onset allergic asthma. DNA samples from the nine children with a history of bronchial asthma diagnosis underwent whole exome sequencing on Ion Proton. For each patient, the entire complement of rare variation within strongly associated candidate genes was catalogued. The analysis showed 21 variants in the subjects, 13 had been previously identified, and 8 were novel. Also, among of which, nineteen were nonsynonymous and 2 were nonsense. With regard to the novel variants, the 2 nonsynonymous variants in the PRKG1 gene (PRKG1: p.C519W and PRKG1: p.G520W) were presented in 4 cases, and a nonsynonymous variant in the MAVS gene (MAVS: p.A45V) was identified in 3 cases. The variants we found in this study will enrich the variant spectrum and build up the database in the Saudi population. Novel eight variants were identified in the study which provides more evidence in the genetic susceptibility in asthma among Saudi children, providing a genetic screening map for the molecular genetic determinants of allergic disease in Saudi children, with the goal of reducing the impact of chronic diseases on the health and the economy. We believe that the advanced specified statistical filtration/annotation programs used in this study succeeded to release such results in a preliminary study, exploring the genetic map of that disease in Saudi children.
Collapse
|
5
|
Screening and Functional Pathway Analysis of Pulmonary Genes Associated with Suppression of Allergic Airway Inflammation by Adipose Stem Cell-Derived Extracellular Vesicles. Stem Cells Int 2020; 2020:5684250. [PMID: 32676117 PMCID: PMC7336241 DOI: 10.1155/2020/5684250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
Background Although mesenchymal stem cell- (MSC-) derived extracellular vesicles (EVs) are as effective as MSCs in the suppression of allergic airway inflammation, few studies have explored the molecular mechanisms of MSC-derived EVs in allergic airway diseases. The objective of this study was to evaluate differentially expressed genes (DEGs) in the lung associated with the suppression of allergic airway inflammation using adipose stem cell- (ASC-) derived EVs. Methods C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection and challenged intranasally with OVA. To evaluate the effect of ASC-derived EVs on allergic airway inflammation, 10 μg/50 μL of EVs were administered intranasally prior to OVA challenge. Lung tissues were removed and DEGs were compared pairwise among the three groups. DEG profiles and hierarchical clustering of the identified genes were analyzed to evaluate changes in gene expression. Real-time PCR was performed to determine the expression levels of genes upregulated after treatment with ASC-derived EVs. Enrichment analysis based on the Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were also performed to further identify the function of DEGs. Results Expression of paraoxonase 1 (PON1), brain-expressed X-linked 2 (Bex2), insulin-like growth factor binding protein 6 (Igfbp6), formyl peptide receptor 1 (Fpr1), and secretoglobin family 1C member 1 (Scgb1c1) was significantly increased in asthmatic mice following treatment with ASC-derived EVs. GO enrichment and KEGG pathway analysis showed that these genes were strongly associated with immune system processes and their regulation, cellular processes, single-organism processes, and biological regulation. Conclusion These results suggest that the DEGs identified in this study (PON1, Bex2, Igfbp6, Fpr1, and Scgb1c1) may be involved in the amelioration of allergic airway inflammation by ASC-derived EVs.
Collapse
|
6
|
Lania G, Nanayakkara M, Maglio M, Auricchio R, Porpora M, Conte M, De Matteis MA, Rizzo R, Luini A, Discepolo V, Troncone R, Auricchio S, Barone MV. Constitutive alterations in vesicular trafficking increase the sensitivity of cells from celiac disease patients to gliadin. Commun Biol 2019; 2:190. [PMID: 31123714 PMCID: PMC6527696 DOI: 10.1038/s42003-019-0443-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Celiac Disease (CD) is an autoimmune disease characterized by inflammation of the intestinal mucosa due to an immune response to wheat gliadins. Some gliadin peptides (e.g., A-gliadin P57-68) induce an adaptive Th1 pro-inflammatory response. Other gliadin peptides (e.g., A-gliadin P31-43) induce a stress/innate immune response involving interleukin 15 (IL15) and interferon α (IFN-α). In the present study, we describe a stressed/inflamed celiac cellular phenotype in enterocytes and fibroblasts probably due to an alteration in the early-recycling endosomal system. Celiac cells are more sensitive to the gliadin peptide P31-43 and IL15 than controls. This phenotype is reproduced in control cells by inducing a delay in early vesicular trafficking. This constitutive lesion might mediate the stress/innate immune response to gliadin, which can be one of the triggers of the gliadin-specific T-cell response.
Collapse
Affiliation(s)
- Giuliana Lania
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Merlin Nanayakkara
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariantonia Maglio
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Renata Auricchio
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Monia Porpora
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariangela Conte
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Antonietta De Matteis
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry—IBP-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry—IBP-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Valentina Discepolo
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
7
|
Lin SC, Cheng FY, Liu JJ, Ye YL. Expression and Regulation of Thymic Stromal Lymphopoietin and Thymic Stromal Lymphopoietin Receptor Heterocomplex in the Innate-Adaptive Immunity of Pediatric Asthma. Int J Mol Sci 2018; 19:ijms19041231. [PMID: 29670037 PMCID: PMC5979588 DOI: 10.3390/ijms19041231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/18/2022] Open
Abstract
Asthma is a chronic inflammatory disease affecting the airway, and it is characterized by a wheezing breathing sound, variable airflow obstruction and the presence of inflammatory cells in the submucosa of the bronchi. Viral infection, pollutants and sensitivity to aeroallergens damage the epithelium from childhood, which causes asthma. The pathogenesis of asthma includes pathways of innate stimulation by environmental microbes and irritant pathogens. Damaged epithelial cells produce thymic stromal lymphopoietin (TSLP) and stimulate myeloid dendritic cell maturation through the thymic stromal lymphopoietin receptor (TSLPR) heterocomplex. TSLP-activated myeloid dendritic cells promote naive CD4+ T cells to differentiate into T helper type 2 (Th2) phenotype CD4+ T cells. Re-exposure to allergens or environmental stimuli causes an adaptive immune response. TSLP-activated dendritic cells expressing the OX40 ligand (OX40L; CD252) trigger naive CD4+ T cells to differentiate into inflammatory Th2 effector cells secreting the cytokines interleukin-4, 5, 9, and 13 (IL-4, IL-5, IL-9 and IL-13), and the dendritic cells (DCs) promote the proliferation of allergen-specific Th2 memory cells. Allergen presentation by Th2 cells through its interaction with their receptors in the presence of major histocompatibility complex (MHC) class II on B cells and through costimulation involving CD40 and CD40L interactions results in immunoglobulin class switching from IgM to IgE. DCs and other blood cell subsets express the TSLPR heterocomplex. The regulatory mechanism of the TSLPR heterocomplex on these different cell subsets remains unclear. The TSLPR heterocomplex is composed of the IL-7Rα chain and TSLPR chain. Moreover, two isoforms of TSLP, short isoform TSLP (sfTSLP) and long isoform TSLP (lfTSLP), have roles in atopic and allergic development. Identifying and clarifying the regulation of TSLPR and IL-7Rα in pediatric asthma are still difficult, because the type of blood cell and the expression for each blood cell in different stages of atopic diseases are poorly understood. We believe that further integrated assessments of the regulation mechanism of the TSLP–TSLPR heterocomplex axis in vitro and in vivo can provide a faster and earlier diagnosis of pediatric asthma and promote the development of more effective preventive strategies at the onset of allergies.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan.
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| | - Fang-Yi Cheng
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan.
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jun-Jen Liu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa University, Yunlin County 63201, Taiwan.
| |
Collapse
|
8
|
Murphy TM, Wong CCY, Arseneault L, Burrage J, Macdonald R, Hannon E, Fisher HL, Ambler A, Moffitt TE, Caspi A, Mill J. Methylomic markers of persistent childhood asthma: a longitudinal study of asthma-discordant monozygotic twins. Clin Epigenetics 2015; 7:130. [PMID: 26691723 PMCID: PMC4684622 DOI: 10.1186/s13148-015-0163-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/11/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Asthma is the most common chronic inflammatory disorder in children. The aetiology of asthma pathology is complex and highly heterogeneous, involving the interplay between genetic and environmental risk factors that is hypothesized to involve epigenetic processes. Our aim was to explore whether methylomic variation in early childhood is associated with discordance for asthma symptoms within monozygotic (MZ) twin pairs recruited from the Environmental Risk (E-Risk) longitudinal twin study. We also aimed to identify differences in DNA methylation that are associated with asthma that develops in childhood and persists into early adulthood as these may represent useful prognostic biomarkers. RESULTS We examined genome-wide patterns of DNA methylation in buccal cell samples collected from 37 MZ twin pairs discordant for asthma at age 10. DNA methylation at individual CpG sites demonstrated significant variability within discordant MZ twin pairs with the top-ranked nominally significant differentially methylated position (DMP) located in the HGSNAT gene. We stratified our analysis by assessing DNA methylation differences in a sub-group of MZ twin pairs who remained persistently discordant for asthma at age 18. The top-ranked nominally significant DMP associated with persisting asthma is located in the vicinity of the HLX gene, which has been previously implicated in childhood asthma. CONCLUSIONS We identified DNA methylation differences associated with childhood asthma in peripheral DNA samples from discordant MZ twin pairs. Our data suggest that differences in DNA methylation associated with childhood asthma which persists into early adulthood are distinct from those associated with asthma which remits.
Collapse
Affiliation(s)
- Therese M Murphy
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Chloe C Y Wong
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Louise Arseneault
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Joe Burrage
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ruby Macdonald
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Helen L Fisher
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Antony Ambler
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Terrie E Moffitt
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK ; Department of Psychology and Neuroscience, Duke University, Durham, NC USA ; Department of Psychiatry and Behavioral Sciences, Duke University Medical School, Durham, NC USA
| | - Avshalom Caspi
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK ; Department of Psychology and Neuroscience, Duke University, Durham, NC USA ; Department of Psychiatry and Behavioral Sciences, Duke University Medical School, Durham, NC USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK ; MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Quraishi BM, Zhang H, Everson TM, Ray M, Lockett GA, Holloway JW, Tetali SR, Arshad SH, Kaushal A, Rezwan FI, Karmaus W. Identifying CpG sites associated with eczema via random forest screening of epigenome-scale DNA methylation. Clin Epigenetics 2015; 7:68. [PMID: 26199674 PMCID: PMC4508804 DOI: 10.1186/s13148-015-0108-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/02/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The prevalence of eczema is increasing in industrialized nations. Limited evidence has shown the association of DNA methylation (DNA-M) with eczema. We explored this association at the epigenome-scale to better understand the role of DNA-M. Data from the first generation (F1) of the Isle of Wight (IoW) birth cohort participants and the second generation (F2) were examined in our study. Epigenome-scale DNA methylation of F1 at age 18 years and F2 in cord blood was measured using the Illumina Infinium HumanMethylation450 Beadchip. A total of 307,357 cytosine-phosphate-guanine sites (CpGs) in the F1 generation were screened via recursive random forest (RF) for their potential association with eczema at age 18. Functional enrichment and pathway analysis of resulting genes were carried out using DAVID gene functional classification tool. Log-linear models were performed in F1 to corroborate the identified CpGs. Findings in F1 were further replicated in F2. RESULTS The recursive RF yielded 140 CpGs, 88 of which showed statistically significant associations with eczema at age 18, corroborated by log-linear models after controlling for false discovery rate (FDR) of 0.05. These CpGs were enriched among many biological pathways, including pathways related to creating transcriptional variety and pathways mechanistically linked to eczema such as cadherins, cell adhesion, gap junctions, tight junctions, melanogenesis, and apoptosis. In the F2 generation, about half of the 83 CpGs identified in F1 showed the same direction of association with eczema risk as in F1, of which two CpGs were significantly associated with eczema risk, cg04850479 of the PROZ gene (risk ratio (RR) = 15.1 in F1, 95 % confidence interval (CI) 1.71, 79.5; RR = 6.82 in F2, 95 % CI 1.52, 30.62) and cg01427769 of the NEU1 gene (RR = 0.13 in F1, 95 % CI 0.03, 0.46; RR = 0.09 in F2, 95 % CI 0.03, 0.36). CONCLUSIONS Via epigenome-scaled analyses using recursive RF followed by log-linear models, we identified 88 CpGs associated with eczema in F1, of which 41 were replicated in F2. Several identified CpGs are located within genes in biological pathways relating to skin barrier integrity, which is central to the pathogenesis of eczema. Novel genes associated with eczema risk were identified (e.g., the PROZ and NEU1 genes).
Collapse
Affiliation(s)
- B. M. Quraishi
- />Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152 USA
| | - H. Zhang
- />Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152 USA
| | - T. M. Everson
- />Department of Epidemiology, and Biostatistics, Arnold School of Public Health, University of South Carolina, 800 Sumter Street, Columbia, SC 29208 USA
| | - M. Ray
- />Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152 USA
| | - G. A. Lockett
- />Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
| | - J. W. Holloway
- />Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
- />Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
| | - S. R. Tetali
- />Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152 USA
| | - S. H. Arshad
- />Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
- />The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Parkhurst Road, Newport, Isle of Wight, PO30 5TG UK
| | - A. Kaushal
- />Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152 USA
| | - F. I. Rezwan
- />Human Development and Health, Faculty of Medicine, University of Southampton, University Road, Southampton, SO17 1BJ UK
| | - W. Karmaus
- />Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152 USA
| |
Collapse
|