1
|
Xu W, Tang C, Zhao R, Wang Y, Jiao H, Ang H, Chen Y, Wang X, Liang Y. Sydnthiones are versatile bioorthogonal hydrogen sulfide donors. Nat Commun 2024; 15:10288. [PMID: 39604436 PMCID: PMC11603141 DOI: 10.1038/s41467-024-54765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Hydrogen sulfide (H2S) is an important endogenous gasotransmitter, but the bioorthogonal reaction triggered H2S donors are still rare. Here we show one type of bioorthogonal H2S donors, sydnthiones (1,2,3-oxadiazol-3-ium-5-thiolate derivatives), which was designed with the aid of density functional theory (DFT) calculations. The reactions between sydnthiones and strained alkynes provide a platform for controllable, tunable and mitochondria-targeted release of H2S. We investigate the reactivity of sydnthiones‒dibenzoazacyclooctyne (DIBAC) reactions and their orthogonality with two other bioorthogonal cycloaddition pairs: tetrazine‒norbornene (Nor) and tetrazine‒monohydroxylated cyclooctyne (MOHO). By taking advantage of these mutually orthogonal reactions, we can realize selective labeling or drug release. Furthermore, we explore the role of H2S, which is released from the sydnthione-DIBAC reaction, on doxorubicin-induced cytotoxicity. The results demonstrate that the viability of H9c2 cells can be significantly improved by pretreating with sydnthione 1b and DIBAC for 6 h prior to exposure to Dox.
Collapse
Affiliation(s)
- Wenyuan Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Cheng Tang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Ruohan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Yajun Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Hongyun Jiao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Han Ang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Yinghan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China.
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China.
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Pharoah BM, Zhang C, Khodade VS, Keceli G, McGinity C, Paolocci N, Toscano JP. Hydropersulfides (RSSH) attenuate doxorubicin-induced cardiotoxicity while boosting its anticancer action. Redox Biol 2023; 60:102625. [PMID: 36773545 PMCID: PMC9929489 DOI: 10.1016/j.redox.2023.102625] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Cardiotoxicity is a frequent and often lethal complication of doxorubicin (DOX)-based chemotherapy. Here, we report that hydropersulfides (RSSH) are the most effective reactive sulfur species in conferring protection against DOX-induced toxicity in H9c2 cardiac cells. Mechanistically, RSSH supplementation alleviates the DOX-evoked surge in reactive oxygen species (ROS), activating nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent pathways, thus boosting endogenous antioxidant defenses. Simultaneously, RSSH turns on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a master regulator of mitochondrial function, while decreasing caspase-3 activity to inhibit apoptosis. Of note, we find that RSSH potentiate anticancer DOX effects in three different cancer cell lines, with evidence that suggests this occurs via induction of reductive stress. Indeed, cancer cells already exhibit much higher basal hydrogen sulfide (H2S), sulfane sulfur, and reducing equivalents compared to cardiac cells. Thus, RSSH may represent a new promising avenue to fend off DOX-induced cardiotoxicity while boosting its anticancer effects.
Collapse
Affiliation(s)
- Blaze M Pharoah
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Chengximeng Zhang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Vinayak S Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Gizem Keceli
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Christopher McGinity
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
3
|
Stokes E, Shuang T, Zhang Y, Pei Y, Fu M, Guo B, Parissenti A, Wu L, Wang R, Yang G. Efflux inhibition by H2S confers sensitivity to doxorubicin-induced cell death in liver cancer cells. Life Sci 2018; 213:116-125. [DOI: 10.1016/j.lfs.2018.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
|
4
|
Du S, Huang Y, Jin H, Wang T. Protective Mechanism of Hydrogen Sulfide against Chemotherapy-Induced Cardiotoxicity. Front Pharmacol 2018; 9:32. [PMID: 29434549 PMCID: PMC5790791 DOI: 10.3389/fphar.2018.00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, the number of long term survivors of childhood cancers has been increased exponentially. However, among these survivors, treatment-related toxicity, especially cardiotoxicity, is becoming the essential cause of morbidity and mortality. Thus, preventing the treatment-related adverse effects is important to increase the event free survival during the treatment of cancer in children and adolescents. Accumulating evidence has demonstrated that hydrogen sulfide (H2S) exerts a protective role on cardiomyocytes through a variety of mechanisms. Here, we mainly reviewed the cardioprotective role of H2S in the chemotherapy, and emphatically discussed the possible mechanisms.
Collapse
Affiliation(s)
- Shuxu Du
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Tianyou Wang
- Hematology/Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Chegaev K, Rolando B, Cortese D, Gazzano E, Buondonno I, Lazzarato L, Fanelli M, Hattinger CM, Serra M, Riganti C, Fruttero R, Ghigo D, Gasco A. H2S-Donating Doxorubicins May Overcome Cardiotoxicity and Multidrug Resistance. J Med Chem 2016; 59:4881-9. [PMID: 27120394 DOI: 10.1021/acs.jmedchem.6b00184] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Doxorubicin (DOXO) is one of the most effective antineoplastic agents in clinical practice. Its use is limited by acute and chronic side effects, in particular by its cardiotoxicity and by the rapid development of resistance to it. As part of a program aimed at developing new DOXO derivatives endowed with reduced cardiotoxicity, and active against DOXO-resistant tumor cells, a series of H2S-releasing DOXOs (H2S-DOXOs) were obtained by combining DOXO with appropriate H2S donor substructures. The resulting compounds were studied on H9c2 cardiomyocytes and in DOXO-sensitive U-2OS osteosarcoma cells, as well as in related cell variants with increasing degrees of DOXO-resistance. Differently from DOXO, most of the products were not toxic at 5 μM concentration on H9c2 cells. A few of them triggered high activity on the cancer cells. H2S-DOXOs 10 and 11 emerged as the most interesting members of the series. The capacity of 10 to impair Pgp transporter is also discussed.
Collapse
Affiliation(s)
- Konstantin Chegaev
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Barbara Rolando
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Daniela Cortese
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Elena Gazzano
- Department of Oncology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino , via Santena, 5/bis, 10126 Torino, Italy
| | - Ilaria Buondonno
- Department of Oncology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino , via Santena, 5/bis, 10126 Torino, Italy
| | - Loretta Lazzarato
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Marilù Fanelli
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit , via G. C. Pupilli 1, 40136 Bologna, Italy
| | - Claudia M Hattinger
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit , via G. C. Pupilli 1, 40136 Bologna, Italy
| | - Massimo Serra
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit , via G. C. Pupilli 1, 40136 Bologna, Italy
| | - Chiara Riganti
- Department of Oncology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino , via Santena, 5/bis, 10126 Torino, Italy
| | - Roberta Fruttero
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Dario Ghigo
- Department of Oncology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino , via Santena, 5/bis, 10126 Torino, Italy
| | - Alberto Gasco
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| |
Collapse
|