1
|
Onile OS, Raji O, Omoboyede V, Fadahunsi AI, Onile TA, Momoh AO, Olukunle S, Nour H, Chtita S. Structure-Based Discovery of Phytocompounds from Azadirachta indica as Potential Inhibitors of Thioredoxin Glutathione Reductase in Schistosoma mansoni. Cell Biochem Biophys 2024:10.1007/s12013-024-01577-2. [PMID: 39373903 DOI: 10.1007/s12013-024-01577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Schistosomiasis, a parasitic disease caused by Schistosoma species such as S. haematobium, S. mansoni, and S. japonicum, poses a significant global health burden. The thioredoxin glutathione reductase (TGR) enzyme, crucial for maintaining the parasite's redox balance and preventing oxidative stress, has been identified as a promising target for anti-schistosomal drug development. This study aims to identify potential TGR inhibitors from Azadirachta indica phytochemicals using molecular modeling approaches. We screened 60 compounds derived from A. indica bark and leaves through molecular docking to assess their binding affinity, followed by the evaluation of binding-free energies for the most promising candidates. Drug-likeness and pharmacokinetic properties were assessed, and molecular dynamics simulations were conducted to explore the conformational stability of the protein-ligand complexes. Our findings revealed that several A. indica compounds exhibited significantly lower docking scores (up to -9.669 kcal/mol) compared to the standard drug praziquantel (-4.349 kcal/mol). Notably, Isorhamnetin, Isomargolonone, Nimbaflavone, Quercetin, and Nimbionol demonstrated strong interactions with TGR, although Isorhamnetin showed potential mutagenicity. Further binding free energy calculations and molecular dynamics simulations confirmed the stability of Isomargolonone, Nimbionol, and Quercetin as potential TGR inhibitors. In conclusion, these findings suggest that Isomargolonone, Nimbionol, and Quercetin warrant further experimental validation as promising candidates for anti-schistosomal therapy.
Collapse
Affiliation(s)
- Olugbenga Samson Onile
- Biotechnology Programme, Department of Biological Sciences, Elizade University, P.M.B 002, Ilara-Mokin, Ondo State, Nigeria.
| | - Omotara Raji
- Biotechnology Programme, Department of Biological Sciences, Elizade University, P.M.B 002, Ilara-Mokin, Ondo State, Nigeria
| | - Victor Omoboyede
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria
| | - Adeyinka Ignatius Fadahunsi
- Biotechnology Programme, Department of Biological Sciences, Elizade University, P.M.B 002, Ilara-Mokin, Ondo State, Nigeria
| | - Tolulope Adelonpe Onile
- Microbiology Programme, Department of Biological Sciences, Elizade University, P.M.B 002, Ilara-Mokin, Ondo State, Nigeria
| | - Abdul Onoruoiza Momoh
- Microbiology Programme, Department of Biological Sciences, Elizade University, P.M.B 002, Ilara-Mokin, Ondo State, Nigeria
| | - Samuel Olukunle
- Biotechnology Programme, Department of Biological Sciences, Elizade University, P.M.B 002, Ilara-Mokin, Ondo State, Nigeria
| | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, 7955, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, 7955, Morocco
| |
Collapse
|
2
|
Oyinloye BE, Shamaki DE, Agbebi EA, Onikanni SA, Ubah CS, Aruleba RT, Dao TNP, Owolabi OV, Idowu OT, Mathenjwa-Goqo MS, Esan DT, Ajiboye BO, Omotuyi OI. In Silico Comparison of Bioactive Compounds Characterized from Azadirachta indica with an FDA-Approved Drug against Schistosomal Agents: New Insight into Schistosomiasis Treatment. Molecules 2024; 29:1909. [PMID: 38731401 PMCID: PMC11084920 DOI: 10.3390/molecules29091909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.
Collapse
Affiliation(s)
- Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - David Ezekiel Shamaki
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Emmanuel Ayodeji Agbebi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Department of Pharmacognosy and Natural Products, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chukwudi Sunday Ubah
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA 19121, USA
| | | | - Tran Nhat Phong Dao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Traditional Medicine, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - Olajumoke Tolulope Idowu
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Makhosazana Siduduzile Mathenjwa-Goqo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Deborah Tolulope Esan
- Faculty of Nursing Sciences, College of Health Sciences, Bowen University, Iwo 232102, Nigeria
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| |
Collapse
|
3
|
de Souza Neto LR, Montoya BO, Brandão-Neto J, Verma A, Bowyer S, Moreira-Filho JT, Dantas RF, Neves BJ, Andrade CH, von Delft F, Owens RJ, Furnham N, Silva-Jr FP. Fragment library screening by X-ray crystallography and binding site analysis on thioredoxin glutathione reductase of Schistosoma mansoni. Sci Rep 2024; 14:1582. [PMID: 38238498 PMCID: PMC10796382 DOI: 10.1038/s41598-024-52018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Schistosomiasis is caused by parasites of the genus Schistosoma, which infect more than 200 million people. Praziquantel (PZQ) has been the main drug for controlling schistosomiasis for over four decades, but despite that it is ineffective against juvenile worms and size and taste issues with its pharmaceutical forms impose challenges for treating school-aged children. It is also important to note that PZQ resistant strains can be generated in laboratory conditions and observed in the field, hence its extensive use in mass drug administration programs raises concerns about resistance, highlighting the need to search for new schistosomicidal drugs. Schistosomes survival relies on the redox enzyme thioredoxin glutathione reductase (TGR), a validated target for the development of new anti-schistosomal drugs. Here we report a high-throughput fragment screening campaign of 768 compounds against S. mansoni TGR (SmTGR) using X-ray crystallography. We observed 49 binding events involving 35 distinct molecular fragments which were found to be distributed across 16 binding sites. Most sites are described for the first time within SmTGR, a noteworthy exception being the "doorstop pocket" near the NADPH binding site. We have compared results from hotspots and pocket druggability analysis of SmTGR with the experimental binding sites found in this work, with our results indicating only limited coincidence between experimental and computational results. Finally, we discuss that binding sites at the doorstop/NADPH binding site and in the SmTGR dimer interface, should be prioritized for developing SmTGR inhibitors as new antischistosomal drugs.
Collapse
Affiliation(s)
- Lauro Ribeiro de Souza Neto
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Bogar Omar Montoya
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - José Brandão-Neto
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Harwell, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Anil Verma
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sebastian Bowyer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - José Teófilo Moreira-Filho
- LabMol - Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rafael Ferreira Dantas
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
- CRAFT - Center for Research and Advancement of Fragments and Molecular Targets, University of São Paulo, São Paulo, Brazil
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Harwell, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Harwell, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Raymond J Owens
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Structural Biology, Rosalind Franklin Institute, Harwell, UK.
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Floriano Paes Silva-Jr
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Pundir H, Pant M, Joshi T, Bhat S, Pathak R, Bajpai AB, Chandra S, Tamta S. Identification of essential oil phytocompounds as natural inhibitors of Odorant-binding protein to prevent malaria through in silico approach. J Biomol Struct Dyn 2023; 41:8323-8333. [PMID: 36214706 DOI: 10.1080/07391102.2022.2132419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022]
Abstract
Malaria predominantly affects millions annually in the African and Asian tropical and subtropical countries. With no effective vaccine, malaria prevention is exclusively dependent on preventing human-vector interaction. Anopheles gambiae, the main vector of the malaria parasite Plasmodium falciparum contains Odorant Binding proteins (OBPs) which are considered an attractive drug target for anti-malarial therapy. To identify a potential anti-malarial compound, we performed a structure-based screening of 876 phytocompounds derived from essential oils against the OBP4 by molecular docking. The compounds having better docking scores were assessed for drug-likeness, toxicity, and molecular interaction analysis. As per the results, strong affinities and high stability were demonstrated by two phytocompounds viz. Alpha-cyperone (-8.1 kcal mol-1) and Humulene oxide (-8.1 kcal mol-1) with OBP4. The hydrophobic interactions involve Phe123, Ala106, Thr57, Ala52, Thr69, and Ile64 within the binding cavities, which may block the OBP4 receptor resulting in disorientation. After that, the potential compounds were subjected to molecular dynamics (MD) simulation to evaluate their structural stability and dynamics at the active site of OBP4. The MM-PBSA result revealed that Alpha-cyperone and Humulene oxide had binding free energy of -92.44 kJ mol-1 and -113.25 kJ mol-1, respectively. Simulation outcomes demonstrate that these phytocompounds displayed considerable significant structural and pharmacological properties. The LD50 value of Alpha-cyperone and Humulene oxide also suggested that both are safe and suitable for use in natural repellent development. We suggest that the use of these compounds can minimize the treatment period and the various side effects associated with the currently available anti-malarial drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hemlata Pundir
- Department of Botany, D.S.B Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Manish Pant
- Department of Post-Harvest Process and Food Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Tanuja Joshi
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Sunaullah Bhat
- Insect Biosystematics & Insect-Pest Management Laboratory, Department of Zoology, Kumaun University-SSJ Campus, Almora, Uttarakhand, India
| | - Ramanand Pathak
- Department of Botany, M.L.K. College, Balrampur, Uttar Pradesh, India
| | | | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Sushma Tamta
- Department of Botany, D.S.B Campus, Kumaun University, Nainital, Uttarakhand, India
| |
Collapse
|
5
|
Pan H, Deng M, Zhang B, Fang T, Liu Y. Transcriptome analysis of Tetrahymena thermophila response to exposure with dihydroartemisinin. Heliyon 2023; 9:e14069. [PMID: 36923843 PMCID: PMC10008979 DOI: 10.1016/j.heliyon.2023.e14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Dihydroartemisinin (DHA) is a derivative of artemisinin and is toxic to parasites. We used the Tetrahymena thermophila (T. thermophila) as a model to explore DHA toxicity. Results showed that low concentration of DHA (20 μmol/L) promoted cell proliferation, whereas high concentrations of DHA (40-1280 μmol/L) inhibited that. Appearance of nucleus was pycnosis by laser scanning confocal microscope. DHA significantly elevated activities of SOD and GSH-Px (P < 0.01) and MDA was markedly increased at high level but decreased at low level (P < 0.01). Further results of transcriptome in T. thermophila treated with different concentration DHA group (0, 20, 160 μmol/L) showed that differentially expressed genes (DEGs) were involved in oxidation-reduction and metabolism of exogenous substances indicated oxidative stress stimulation. Kyoto Encyclopedia of Genes and Genomes showed that DEGs were involved in the cytochrome P450-mediated metabolism of exogenous substances, glutathione metabolism and ABC transport. Remarkably, DNA replication was significantly enriched in low concentration DHA, energy metabolism related pathways and necrotic process were considerably enriched in high concentration DHA. The results of RT-qPCR of 13 DEGs were the same as that of transcriptome, in which the expression of GST and GPx family genes were significantly altered after exposed to high-DHA group. DHA induced oxidative stress damage through disturbing with energy. However, detoxification pathways in T. thermophila to resist oxidative damage and cell alleviated low concentration DHA stress by regulating antioxidant enzyme. This study provides good practice on pharmacological mechanism of artemisinin-based drugs in antiparasitic.
Collapse
Affiliation(s)
- Houjun Pan
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China
| | - Meiling Deng
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Bin Zhang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Tiantian Fang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yuguo Liu
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
6
|
Molecular docking and density functional theory studies of potent 1,3-disubstituted-9H-pyrido[3,4-b]indoles antifilarial compounds. Struct Chem 2021. [DOI: 10.1007/s11224-021-01772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Abstract
The mammalian thioredoxin system is driven by NADPH through the activities of isoforms of the selenoprotein thioredoxin reductase (TXNRD, TrxR), which in turn help to keep thioredoxins (TXN, Trx) and further downstream targets reduced. Due to a wide range of functions in antioxidant defense, cell proliferation, and redox signaling, strong cellular aberrations are seen upon the targeting of TrxR enzymes by inhibitors. However, such inhibition can nonetheless have rather unexpected consequences. Accumulating data suggest that inhibition of TrxR in normal cells typically yields a paradoxical effect of increased antioxidant defense, with metabolic pathway reprogramming, increased cellular proliferation, and altered cellular differentiation patterns. Conversely, inhibition of TrxR in cancer cells can yield excessive levels of reactive oxygen species (ROS) resulting in cell death and thus anticancer efficacy. The observed increases in antioxidant capacity upon inhibition of TrxR in normal cells are in part dependent upon activation of the Nrf2 transcription factor, while exaggerated ROS levels in cancer cells can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically. Importantly, however, a thorough knowledge of the molecular mechanisms underlying effects triggered by TrxR inhibition is crucial for the understanding of therapy outcomes after use of such inhibitors. The mammalian thioredoxin system is driven by thioredoxin reductases (TXNRD, TrxR), which keeps thioredoxins (TXN, Trx) and further downstream targets reduced. In normal cells, inhibition of TrxR yields a paradoxical effect of increased antioxidant defense upon activation of the Nrf2 transcription factor. In cancer cells, however, inhibition of TrxR yields excessive reactive oxygen species (ROS) levels resulting in cell death and thus anticancer efficacy, which can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
8
|
Shukla R, Shukla H, Tripathi T. Structural and energetic understanding of novel natural inhibitors of Mycobacterium tuberculosis malate synthase. J Cell Biochem 2019; 120:2469-2482. [PMID: 30206985 DOI: 10.1002/jcb.27538] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
Persistent infection by Mycobacterium tuberculosis requires the glyoxylate shunt. This is a bypass to the tricarboxylic acid cycle in which isocitrate lyase (ICL) and malate synthase (MS) catalyze the net incorporation of carbon during mycobacterial growth on acetate or fatty acids as the primary carbon source. To identify a potential antitubercular compound, we performed a structure-based screening of natural compounds from the ZINC database (n = 1 67 740) against the M tuberculosis MS (MtbMS) structure. The ligands were screened against MtbMS, and 354 ligands were found to have better docking score. These compounds were assessed for Lipinski and absorption, distribution, metabolism, excretion, and toxicity prediction where 15 compounds were found to fit well for redocking studies. After refinement by molecular docking and drug-likeness analysis, four potential inhibitors (ZINC1483899, ZINC1754310, ZINC2269664, and ZINC15729522) were identified. These four ligands with phenyl-diketo acid were further subjected to molecular dynamics simulation to compare the dynamics and stability of the protein structure after ligand binding. The binding energy analysis was calculated to determine the intermolecular interactions. Our results suggested that the four compounds had a binding free energy of -201.96, -242.02, -187.03, and -169.02 kJ·mol-1 , for compounds with IDs ZINC1483899, ZINC1754310, ZINC2269664, and ZINC15729522, respectively. We concluded that two compounds (ZINC1483899 and ZINC1754310) displayed considerable structural and pharmacological properties and could be probable drug candidates to fight against M tuberculosis parasites.
Collapse
Affiliation(s)
- Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Umshing, Shillong, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Umshing, Shillong, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Umshing, Shillong, India
| |
Collapse
|
9
|
Shukla R, Shukla H, Kalita P, Tripathi T. Structural insights into natural compounds as inhibitors of Fasciola gigantica thioredoxin glutathione reductase. J Cell Biochem 2017; 119:3067-3080. [PMID: 29052925 DOI: 10.1002/jcb.26444] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/18/2017] [Indexed: 01/12/2023]
Abstract
Fascioliasis is caused by the helminth parasites of genus Fasciola. Thioredoxin glutathione reductase (TGR) is an important enzyme in parasitic helminths and plays an indispensable role in its redox biology. In the present study, we conducted a structure-based virtual screening of natural compounds against the Fasciola gigantica TGR (FgTGR). The compounds were docked against FgTGR in four sequential docking modes. The screened ligands were further assessed for Lipinski and ADMET prediction so as to evaluate drug proficiency and likeness property. After refinement, three potential inhibitors were identified that were subjected to 50 ns molecular dynamics simulation and free energy binding analyses to evaluate the dynamics of protein-ligand interaction and the stability of the complexes. Key residues involved in the interaction of the selected ligands were also determined. The results suggested that three top hits had a negative binding energy greater than GSSG (-91.479 KJ · mol-1 ), having -152.657, -141.219, and -92.931 kJ · mol-1 for compounds with IDs ZINC85878789, ZINC85879991, and ZINC36369921, respectively. Further analysis showed that the compound ZINC85878789 and ZINC85879991 displayed substantial pharmacological and structural properties to be a drug candidate. Thus, the present study might prove useful for the future design of new derivatives with higher potency and specificity.
Collapse
Affiliation(s)
- Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| |
Collapse
|
10
|
Discovery of Novel Antischistosomal Agents by Molecular Modeling Approaches. Trends Parasitol 2016; 32:874-886. [PMID: 27593339 DOI: 10.1016/j.pt.2016.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Schistosomiasis, a chronic neglected tropical disease caused by Schistosoma worms, is reported in nearly 80 countries. Although the disease affects approximately 260 million people, the treatment relies exclusively on praziquantel, a drug discovered in the mid-1970s that lacks efficacy against the larval stages of the parasite. In addition, the dependence on a single treatment has raised concerns about drug resistance, and reduced susceptibility has already been found in laboratory and field isolates. Therefore, novel therapies for schistosomiasis are needed, and several approaches have been used to that end. One of these strategies, molecular modeling, has been increasingly integrated with experimental techniques, resulting in the discovery of novel antischistosomal agents.
Collapse
|
11
|
Fasciola gigantica thioredoxin glutathione reductase: Biochemical properties and structural modeling. Int J Biol Macromol 2016; 89:152-60. [DOI: 10.1016/j.ijbiomac.2016.04.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/21/2023]
|