1
|
Török S, Almási N, Veszelka M, Börzsei D, Szabó R, Varga C. Protective Effects of H 2S Donor Treatment in Experimental Colitis: A Focus on Antioxidants. Antioxidants (Basel) 2023; 12:antiox12051025. [PMID: 37237891 DOI: 10.3390/antiox12051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic, inflammatory disorders of the gastrointestinal (GI) system, which have become a global disease over the past few decades. It has become increasingly clear that oxidative stress plays a role in the pathogenesis of IBD. Even though several effective therapies exist against IBD, these might have serious side effects. It has been proposed that hydrogen sulfide (H2S), as a novel gasotransmitter, has several physiological and pathological effects on the body. Our present study aimed to investigate the effects of H2S administration on antioxidant molecules in experimental rat colitis. As a model of IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used intracolonically (i.c.) to induce colitis in male Wistar-Hannover rats. Animals were orally treated (2 times/day) with H2S donor Lawesson's reagent (LR). Our results showed that H2S administration significantly decreased the severity of inflammation in the colons. Furthermore, LR significantly suppressed the level of oxidative stress marker 3-nitrotyrosine (3-NT) and caused a significant elevation in the levels of antioxidant GSH, Prdx1, Prdx6, and the activity of SOD compared to TNBS. In conclusion, our results suggest that these antioxidants may offer potential therapeutic targets and H2S treatment through the activation of antioxidant defense mechanisms and may provide a promising strategy against IBD.
Collapse
Affiliation(s)
- Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
2
|
Li Y, Chandra TP, Song X, Nie L, Liu M, Yi J, Zheng X, Chu C, Yang J. H2S improves doxorubicin-induced myocardial fibrosis by inhibiting oxidative stress and apoptosis via Keap1-Nrf2. Technol Health Care 2021; 29:195-209. [PMID: 33682759 PMCID: PMC8150551 DOI: 10.3233/thc-218020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We waimed to investigate whether H2S can relieve the myocardial fibrosis caused by doxorubicin through Keap1-Nrf2. METHODS Sprague-Dawley (SD) rats were randomly divided into four groups: normal control group (Control); DOX model group (DOX); H2S intervention model group (DOX+H2S); H2S control group (H2S). DOX and DOX+H2S group were injected with doxorubicin (3.0 mg/kg/time) intraperitoneally. Both of the Control group and H2S groups were given normal saline in equal volume, 2 weeks later, DOX+H2S and H2S group were controlled with NaHS (56 μmol/kg/d) through the abdominal cavity, while the Control and DOX group were injected with normal saline of the same dosage intraperitoneally. RESULTS Myocardial injury and myocardial cell apoptosis were significantly increased, the H2S content in myocardial tissue was remarkably down-regulated, the expression levels of MDA, Keap1, caspase-3, caspase-9, TNF-α, IL1β, MMPs and TIMP-1 in rat myocardial tissue was significantly up-regulated (P< 0.05), and the expression levels of GSH, NQO1, Bcl-2 were down-regulated compared with those of control group. The above results can be reversed by the DOX+H2S group. There is no statistically significant difference between the Control group and the H2S control group. CONCLUSIONS These results suggest that H2S can improve DOX-induced myocardial fibrosis in rats, and the keap1/Nrf2 signaling pathway, oxidative stress, inflammation, and apoptosis may be involved in the mechanism.
Collapse
Affiliation(s)
- Yaling Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Thakur Prakash Chandra
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Xiong Song
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Liangui Nie
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Maojun Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Jiali Yi
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Xia Zheng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
3
|
Du S, Huang Y, Jin H, Wang T. Protective Mechanism of Hydrogen Sulfide against Chemotherapy-Induced Cardiotoxicity. Front Pharmacol 2018; 9:32. [PMID: 29434549 PMCID: PMC5790791 DOI: 10.3389/fphar.2018.00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, the number of long term survivors of childhood cancers has been increased exponentially. However, among these survivors, treatment-related toxicity, especially cardiotoxicity, is becoming the essential cause of morbidity and mortality. Thus, preventing the treatment-related adverse effects is important to increase the event free survival during the treatment of cancer in children and adolescents. Accumulating evidence has demonstrated that hydrogen sulfide (H2S) exerts a protective role on cardiomyocytes through a variety of mechanisms. Here, we mainly reviewed the cardioprotective role of H2S in the chemotherapy, and emphatically discussed the possible mechanisms.
Collapse
Affiliation(s)
- Shuxu Du
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Tianyou Wang
- Hematology/Oncology Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Shabalala S, Muller C, Louw J, Johnson R. Polyphenols, autophagy and doxorubicin-induced cardiotoxicity. Life Sci 2017; 180:160-170. [DOI: 10.1016/j.lfs.2017.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023]
|
5
|
Donnarumma E, Ali MJ, Rushing AM, Scarborough AL, Bradley JM, Organ CL, Islam KN, Polhemus DJ, Evangelista S, Cirino G, Jenkins JS, Patel RAG, Lefer DJ, Goodchild TT. Zofenopril Protects Against Myocardial Ischemia-Reperfusion Injury by Increasing Nitric Oxide and Hydrogen Sulfide Bioavailability. J Am Heart Assoc 2016; 5:JAHA.116.003531. [PMID: 27381758 PMCID: PMC5015391 DOI: 10.1161/jaha.116.003531] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Zofenopril, a sulfhydrylated angiotensin‐converting enzyme inhibitor (ACEI), reduces mortality and morbidity in infarcted patients to a greater extent than do other ACEIs. Zofenopril is a unique ACEI that has been shown to increase hydrogen sulfide (H2S) bioavailability and nitric oxide (NO) levels via bradykinin‐dependent signaling. Both H2S and NO exert cytoprotective and antioxidant effects. We examined zofenopril effects on H2S and NO bioavailability and cardiac damage in murine and swine models of myocardial ischemia/reperfusion (I/R) injury. Methods and Results Zofenopril (10 mg/kg PO) was administered for 1, 8, and 24 hours to establish optimal dosing in mice. Myocardial and plasma H2S and NO levels were measured along with the levels of H2S and NO enzymes (cystathionine β‐synthase, cystathionine γ‐lyase, 3‐mercaptopyruvate sulfur transferase, and endothelial nitric oxide synthase). Mice received 8 hours of zofenopril or vehicle pretreatment followed by 45 minutes of ischemia and 24 hours of reperfusion. Pigs received placebo or zofenopril (30 mg/daily orally) 7 days before 75 minutes of ischemia and 48 hours of reperfusion. Zofenopril significantly augmented both plasma and myocardial H2S and NO levels in mice and plasma H2S (sulfane sulfur) in pigs. Cystathionine β‐synthase, cystathionine γ‐lyase, 3‐mercaptopyruvate sulfur transferase, and total endothelial nitric oxide synthase levels were unaltered, while phospho‐endothelial nitric oxide synthase1177 was significantly increased in mice. Pretreatment with zofenopril significantly reduced myocardial infarct size and cardiac troponin I levels after I/R injury in both mice and swine. Zofenopril also significantly preserved ischemic zone endocardial blood flow at reperfusion in pigs after I/R. Conclusions Zofenopril‐mediated cardioprotection during I/R is associated with an increase in H2S and NO signaling.
Collapse
Affiliation(s)
- Erminia Donnarumma
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Murtuza J Ali
- Department of Cardiology, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Amanda M Rushing
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Amy L Scarborough
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Jessica M Bradley
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Chelsea L Organ
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Kazi N Islam
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - David J Polhemus
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | | | - Giuseppe Cirino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | | | | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Traci T Goodchild
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|