1
|
Schubert A, Brockmeyer P, Kauffmann P, Wiegel J, Lautenbacher F, Miosge N, Schminke B. Alterations of bone proteins in medication-related osteonecrosis of the jaw. Eur J Oral Sci 2025:e70003. [PMID: 39972547 DOI: 10.1111/eos.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
Changes in the protein expression pattern of osteoblastic lineage cells from the alveolar bone (OLAB) during medication-related osteonecrosis of the jaw (MRONJ) have rarely been investigated. This lack of information is partly because of the limited availability of healthy samples and the lack of human alveolar bone cell lines for research. The aim of the present study was to investigate the bone proteins collagen 1, runt-related transcription factor 2 (RUNX2), and tumor necrosis factor ligand superfamily member 11 (RANKL). Furthermore, we established a cell lineage of OLAB suitable for the analyses of protein expression. We used immunohistochemistry to determine protein expression patterns in vivo. OLAB were treated during culture with zoledronate or denosumab and analyzed by immunocytochemistry and western blotting. Collagen 1 was decreased in vivo in patients with MRONJ and in vitro by denosumab. Zoledronate reduced the level of RUNX2 in vitro. However, RANKL was not significantly affected by zoledronate or denosumab. The results of the present study will help us elucidate the cellular mechanisms of MRONJ. Although culture of OLAB with zoledronate and denosumab significantly altered the protein expression patterns, future research is needed to examine the effects of bone scaffolds, biofilms, and additional cell types mimicking in vivo conditions.
Collapse
Affiliation(s)
- Andrea Schubert
- Department of Prosthodontics, University Medical Center, Goettingen, Germany
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center, Goettingen, Germany
| | - Philipp Kauffmann
- Department of Oral and Maxillofacial Surgery, University Medical Center, Goettingen, Germany
| | - Jan Wiegel
- Department of Prosthodontics, University Medical Center, Goettingen, Germany
| | | | - Nicolai Miosge
- Department of Prosthodontics, University Medical Center, Goettingen, Germany
| | - Boris Schminke
- Department of Oral and Maxillofacial Surgery, University Medical Center, Goettingen, Germany
| |
Collapse
|
2
|
Carneiro BGDS, Maia TAC, Costa V, Frieddrichsdorf SP, Gondim DV, Pereira KMA, Bezerra MM, Goes P. Platelet-rich fibrin associated to bovine bone induces bone regeneration in model of critical-sized calvaria defect of rats submitted to Zoledronic Acid therapy: PRF induces bone healing. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024:102175. [PMID: 39631530 DOI: 10.1016/j.jormas.2024.102175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Reconstruction of bone defects prior to implant installation is a challenge, especially when the patient uses bisphosphonates. Given this difficulty, many studies investigate biomaterials that can improve the bone regeneration process. In this context, this study aimed to investigate the effect of platelet-rich fibrin (PRF) and Bio-Oss (BO) on bone regeneration of rats submitted to critical-sized calvaria defects and treated with ZA. METHODS Thirty Wistar rats received a single dose of ZA (120 μg/kg) and after 7 days, were submitted to an 8 mm calvaria defect. The animals were divided into 5 groups (n = 6): ZA, BO, PRF or BO+PRF; animals from control group did not receive ZA. All animals were euthanized 12 weeks after surgical procedure and calvaria collected to histological, histomorphometric and micro-CT analyses. RESULTS BO+PRF increased the number of osteoblasts (33 %) and osteoclasts (58 %), as well as blood vessels (70 %) and Type I collagen (52 %) (p < 0.05) compared to ZA group. CONCLUSION In summary, the association of BO+PRF improved bone healing of large bone defect in rats receiving ZA and this may be an interesting approach for the treatment to be tested in patients under anti-resorptive therapy.
Collapse
Affiliation(s)
| | - Thays Allane Cordeiro Maia
- Postgraduate program in Translational Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vanessa Costa
- Postgraduate program in Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Delane Viana Gondim
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Paula Goes
- Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Su XY, Li S, Fan YY, Wei T, Lu ZY, Ye P. Effect of Local Zoledronic Acid Application in Alveolar Bone Healing: An Experimental Study. J Craniofac Surg 2024:00001665-990000000-02089. [PMID: 39453761 DOI: 10.1097/scs.0000000000010807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024] Open
Abstract
BACKGROUND This experimental study aimed to assess the three-dimensional and histological changes of the alveolar socket with local application of ZA. METHODS Nine male New Zealand white rabbits were randomly allocated into 4-, 8-, and 12-week groups after the extraction of 4 incisor teeth. The upper and lower right sockets were filled with ZA + collagen sponge (ZA-CS group), while the left sockets were filled with collagen sponge alone (CS group) postoperatively. At 4, 8, and 12 weeks (T1, T2, and T3) after the extraction, radiographic and histomorphometric evaluations were conducted for both groups. RESULTS The increase in alveolar bone density of the ZA-CS group at T2 and T3 was significantly higher than the CS group (P<0.01). Three-dimensional evaluations demonstrated no statistically significant differences in ridge height and width between the 2 groups at T2 and T3. On histological evaluation, the ZA-CS group included significantly fewer TRAP-positive cells than the CS group at T1 (P<0.05). In ALP staining, all cases in both groups were classified as positive at each time point. Masson trichrome staining showed significantly higher mean red collagen volume fraction in the ZA-CS group (76.09%, 79.64%) than in the CS group (66.17%, 69.22%) at T2 and T3, respectively (P<0.05 and <0.01). CONCLUSIONS Although local ZA application with collagen sponge did not reduce alveolar ridge contraction, it improved the bone density and maturity of newly formed bone after tooth extraction.
Collapse
Affiliation(s)
- Xin-Yi Su
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences
| | - Shu Li
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences
| | - Ying-Ying Fan
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences
| | - Tai Wei
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhi-Yue Lu
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences
| | - Peng Ye
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences
| |
Collapse
|
4
|
Gai D, Caviness PC, Lazarenko OP, Chen JF, Randolph CE, Zhang Z, Cheng Y, Sun F, Xu H, Blackburn ML, Tricot G, Shaughnessy JD, Chen JR, Zhan F. Cystatin M/E ameliorates bone resorption through increasing osteoclastic cell estrogen influx. RESEARCH SQUARE 2024:rs.3.rs-4313179. [PMID: 38766009 PMCID: PMC11100902 DOI: 10.21203/rs.3.rs-4313179/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In multiple myeloma (MM), increased osteoclast differentiation leads to the formation of osteolytic lesions in most MM patients. Bisphosphonates, such as zoledronic acid (ZA), are used to ameliorate bone resorption, but due to risk of serious side effects as well as the lack of repair of existing lesions, novel anti-bone resorption agents are required. Previously, the absence of osteolytic lesions in MM was strongly associated with elevated levels of cystatin M/E (CST6), a cysteine protease inhibitor, secreted by MM cells. In this study, both MM- and ovariectomy (OVX)-induced osteoporotic mouse models were used to compare the effects of recombinant mouse CST6 (rmCst6) and ZA on preventing bone loss. μCT showed that rmCst6 and ZA had similar effects on improving percent bone volume, and inhibited differentiation of non-adherent bone marrow cells into mature osteoclasts. Single-cell RNA sequencing showed that rmCst6 and not ZA treatment reduced bone marrow macrophage percentage in the MM mouse model compared to controls. Protein and mRNA arrays showed that both rmCst6 and ZA significantly inhibit OVX-induced expression of inflammatory cytokines. For OVX mice, ERα protein expression in bone was brought to sham surgery level by only rmCst6 treatments. rmCst6 significantly increased mRNA and protein levels of ERα and significantly increased total intracellular estrogen concentrations for ex vivo osteoclast precursor cell cultures. Based on these results, we conclude that CST6 improves MM or OVX bone loss models by increasing the expression of estrogen receptors as well as the intracellular estrogen concentration in osteoclast precursors, inhibiting their maturation.
Collapse
Affiliation(s)
- Dongzheng Gai
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Perry C. Caviness
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Oxana P. Lazarenko
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jennifer F. Chen
- Undergraduate Pre-Medical Program, University of Arkansas at Fayetteville, Fayetteville, AR, 72701, USA
| | - Christopher E. Randolph
- Center for Translational Pediatric Research, Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Zijun Zhang
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yan Cheng
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Fumou Sun
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hongwei Xu
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michael L Blackburn
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Guido Tricot
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - John D Shaughnessy
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jin-Ran Chen
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
5
|
Hsieh MK, Wang CY, Kao FC, Su HT, Chen MF, Tsai TT, Lai PL. Local application of zoledronate inhibits early bone resorption and promotes bone formation. JBMR Plus 2024; 8:ziae031. [PMID: 38606146 PMCID: PMC11008729 DOI: 10.1093/jbmrpl/ziae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/14/2024] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
Nonunion resulting from early bone resorption is common after bone transplantation surgery. In these patients, instability or osteoporosis causes hyperactive catabolism relative to anabolism, leading to graft resorption instead of fusion. Systemic zoledronate administration inhibits osteoclastogenesis and is widely used to prevent osteoporosis; however, evidence on local zoledronate application is controversial due to osteoblast cytotoxicity, uncontrolled dosing regimens, and local release methods. We investigated the effects of zolendronate on osteoclastogenesis and osteogenesis and explored the corresponding signaling pathways. In vitro cytotoxicity and differentiation of MC3T3E1 cells, rat bone marrow stromal cells (BMSCs) and preosteoclasts (RAW264.7 cells) were evaluated with different zolendronate concentrations. In vivo bone regeneration ability was tested by transplanting different concentrations of zolendronate with β-tricalcium phosphate (TCP) bone substitute into rat femoral critical-sized bone defects. In vitro, zolendronate concentrations below 2.5 × 10-7 M did not compromise viability in the three cell lines and did not promote osteogenic differentiation in MC3T3E1 cells and BMSCs. In RAW264.7 cells, zoledronate inhibited extracellular regulated protein kinases and c-Jun n-terminal kinase signaling, downregulating c-Fos and NFATc1 expression, with reduced expression of fusion-related dendritic cell‑specific transmembrane protein and osteoclast-specific Ctsk and tartrate-resistant acid phosphatase (. In vivo, histological staining revealed increased osteoid formation and neovascularization and reduced fibrotic tissue with 500 μM and 2000 μM zolendronate. More osteoclasts were found in the normal saline group after 6 weeks, and sequential osteoclast formation occurred after zoledronate treatment, indicating inhibition of bone resorption during early callus formation without inhibition of late-stage bone remodeling. In vivo, soaking β-TCP artificial bone with 500 μM or 2000 μM zoledronate is a promising approach for bone regeneration, with potential applications in bone transplantation.
Collapse
Affiliation(s)
- Ming-Kai Hsieh
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chi-Yun Wang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, Taishan Dist, New Taipei City 243303, Taiwan
| | - Fu-Cheng Kao
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Hui-Ting Su
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Mei-Feng Chen
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
6
|
Quintão Manhanini Souza E, Felipe Toro L, Franzão Ganzaroli V, de Oliveira Alvarenga Freire J, Matsumoto MA, Casatti CA, Tavares Ângelo Cintra L, Leone Buchaim R, Mardegan Issa JP, Gouveia Garcia V, Theodoro LH, Ervolino E. Peri-implantitis increases the risk of medication-related osteonecrosis of the jaws associated with osseointegrated implants in rats treated with zoledronate. Sci Rep 2024; 14:627. [PMID: 38182598 PMCID: PMC10770413 DOI: 10.1038/s41598-023-49647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
This study evaluated the peri-implant tissues under normal conditions and under the influence of experimental peri-implantitis (EPI) in osseointegrated implants installed in the maxillae of rats treated with oncologic dosage of zoledronate. Twenty-eight senescent female rats underwent the extraction of the upper incisor and placement of a titanium dental implant (DI). After eight weeks was installated a transmucosal healing screw on DI. After nine weeks, the following groups were formed: VEH, ZOL, VEH-EPI and ZOL-EPI. From the 9th until the 19th, VEH and VEH-EPI groups received vehicle and ZOL and ZOL-EPI groups received zoledronate. At the 14th week, a cotton ligature was installed around the DI in VEH-EPI and ZOL-EPI groups to induce the EPI. At the 19th week, euthanasia was performed, and the maxillae were processed so that at the implanted sites were analyzed: histological aspects and the percentage of total bone tissue (PTBT) and non-vital bone tissue (PNVBT), along with TNFα, IL-1β, VEGF, OCN and TRAP immunolabeling. ZOL group presented mild persistent peri-implant inflammation, higher PNVBT and TNFα and IL-1β immunolabeling, but lower for VEGF, OCN and TRAP in comparison with VEH group. ZOL-EPI group exhibited exuberant peri-implant inflammation, higher PNVBT and TNFα and IL-1β immunolabeling when compared with ZOL and VEH-EPI groups. Zoledronate disrupted peri-implant environment, causing mild persistent inflammation and increasing the quantity of non-vital bone tissue. Besides, associated with the EPI there were an exacerbated inflammation and even greater increase in the quantity of non-vital bone around the DI, which makes this condition a risk factor for medication-related osteonecrosis of the jaws.
Collapse
Affiliation(s)
| | - Luan Felipe Toro
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Vinícius Franzão Ganzaroli
- Department of Diagnostic and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Jéssica de Oliveira Alvarenga Freire
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mariza Akemi Matsumoto
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Cláudio Aparecido Casatti
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | | | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - João Paulo Mardegan Issa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Valdir Gouveia Garcia
- Latin American Institute of Dental Research and Education (ILAPEO), Curitiba, PR, Brazil
| | - Leticia Helena Theodoro
- Department of Diagnostic and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
7
|
Hadad H, Matheus HR, Chen JE, Jounaidi Y, Souza FÁ, Guastaldi FPS. Dose-dependent effects of zoledronic acid on the osteogenic differentiation of human bone marrow stem cells (hBMSCs). JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101479. [PMID: 37080358 DOI: 10.1016/j.jormas.2023.101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Recent studies have shown that bisphosphonates can also impact osteoblasts besides osteoclasts. This study aimed to evaluate the effects of different concentrations of Zoledronic acid (ZA) during the osteogenic differentiation of human Bone Marrow Stem Cells (hBMSCs) in vitro. Thus, osteogenic differentiation of hBMSCs was conducted with different concentrations of Zoledronic Acid (ZA) (0, 0.1, 1.0, and 5.0 μM) for the first 3 days. Cell metabolism was quantified at 1-, 3-, 7-, and 14 days. At 7- and 14-days, the following analyses were performed: 1) mineralization nodule assay, 2) LIVE/DEAD™, 3) cell adhesion and spreading, 4) alkaline phosphatase (ALP) activity, and 5) qPCR analysis for RUNX-2), ALPL, and COL1 A1. Data were analyzed by ANOVA 2-way, followed by Tukey's post hoc test (p < 0.05). Cell metabolism (3-, 7-, and 14-days) (p < 0.001), mineralization (7-, 14-days) (p < 0.001), and ALP activity (14-days) (p < 0.001) were reduced in ZA 5.0 µM when compared to control (no ZA). Also, ZA 5.0 µM downregulated the expression of RUNX2 at 7- and 14-days (p < 0.001). It is possible to conclude that ZA (5.0 µM) can impair hBMSC differentiation into osteoblasts and interferes with its mineralization phase.
Collapse
Affiliation(s)
- Henrique Hadad
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02114, USA; Department of Diagnosis and Surgery, Oral & Maxillofacial Surgery Division, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, 16.015-050, Brazil
| | - Henrique Rinaldi Matheus
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02114, USA; Department of Diagnosis and Surgery, Division of Periodontics, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, 16.015-050, Brazil
| | - Jason Evan Chen
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02114, USA
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Francisley Ávila Souza
- Department of Diagnosis and Surgery, Oral & Maxillofacial Surgery Division, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, 16.015-050, Brazil
| | - Fernando Pozzi Semeghini Guastaldi
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Dash P, Samal S, Prasad Panda G, Piras AM, Dash M. Polymeric Nanoformulation of Zoledronic Acid Rescues Osteoblasts from the Harmful Effect of its Native Form: An In Vitro Investigation of Cytotoxic Potential on Osteoblasts and Osteosarcoma Cells. Macromol Biosci 2023; 23:e2300211. [PMID: 37384621 DOI: 10.1002/mabi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Osteosarcoma (OS) is a malignant tumor, fatal for pediatric patients who do not respond to chemotherapy, alternative therapies and drugs can provide better outcomes. Zoledronic acid (Zol) belonging to the class of bisphosphonates (BPs) has a direct antitumor ability to prevent Ras GTPases modification and stimulate apoptosis. Despite advances in maintaining balance in skeletal events and direct anticancer properties, Zol causes cytotoxicity to normal healthy pre-osteoblast cells, hampering mineralization and differentiation. The study reports the preparation and evaluation of a nanoformulation that can diminish the existing drawbacks of native Zol. The cytotoxic effect is evaluated on bone cancer cells and healthy bone cells with three different cell lines namely, K7M2 (mouse OS cell line), SaOS2 (human OS cell line), and MC3T3E1 (healthy cell counterpart). It is observed that Zol nanoformulation is uptaken more (95%) in K7M2 whereas in MC3T3E1, the percent population internalizing nanoparticles (NPs) is 45%. Zol has a sustained release of 15% after 96 h from the NP which leads to a rescuing effect on the normal pre-osteoblast cells. In conclusion, it can be stated that Zol nanoformulation can be used as a good platform for a sustained release system with minimum side effects to normal bone cells.
Collapse
Affiliation(s)
- Pratigyan Dash
- Institute of Life Sciences, DBT-ILS, ILS, Nalco Nagar Rd, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, KIIT University, KIIT Rd, Patia, Bhubaneswar, Odisha, 751024, India
| | - Sasmita Samal
- Institute of Life Sciences, DBT-ILS, ILS, Nalco Nagar Rd, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, KIIT University, KIIT Rd, Patia, Bhubaneswar, Odisha, 751024, India
| | - Gyanendra Prasad Panda
- Institute of Life Sciences, DBT-ILS, ILS, Nalco Nagar Rd, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 12, Pisa, PI, 56126, Italy
| | - Mamoni Dash
- Institute of Life Sciences, DBT-ILS, ILS, Nalco Nagar Rd, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
9
|
Zhang J, Bai H, Bai M, Wang X, Li Z, Xue H, Wang J, Cui Y, Wang H, Wang Y, Zhou R, Zhu X, Xu M, Zhao X, Liu H. Bisphosphonate-incorporated coatings for orthopedic implants functionalization. Mater Today Bio 2023; 22:100737. [PMID: 37576870 PMCID: PMC10413202 DOI: 10.1016/j.mtbio.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bisphosphonates (BPs), the stable analogs of pyrophosphate, are well-known inhibitors of osteoclastogenesis to prevent osteoporotic bone loss and improve implant osseointegration in patients suffering from osteoporosis. Compared to systemic administration, BPs-incorporated coatings enable the direct delivery of BPs to the local area, which will precisely enhance osseointegration and bone repair without the systemic side effects. However, an elaborate and comprehensive review of BP coatings of implants is lacking. Herein, the cellular level (e.g., osteoclasts, osteocytes, osteoblasts, osteoclast precursors, and bone mesenchymal stem cells) and molecular biological regulatory mechanism of BPs in regulating bone homeostasis are overviewed systematically. Moreover, the currently available methods (e.g., chemical reaction, porous carriers, and organic material films) of BP coatings construction are outlined and summarized in detail. As one of the key directions, the latest advances of BP-coated implants to enhance bone repair and osseointegration in basic experiments and clinical trials are presented and critically evaluated. Finally, the challenges and prospects of BP coatings are also purposed, and it will open a new chapter in clinical translation for BP-coated implants.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haotian Bai
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Miao Bai
- Department of Ocular Fundus Disease, Ophthalmology Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiaonan Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - ZuHao Li
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haowen Xue
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Hui Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yanbing Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rongqi Zhou
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiujie Zhu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Mingwei Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
10
|
Qian J, Qin H, Zeng P, Hou J, Mo X, Shen G, Zeng H, Zhang W, Chen Y, Wan G. Metal-organic Zn-zoledronic acid and 1-hydroxyethylidene-1,1-diphosphonic acid nanostick-mediated zinc phosphate hybrid coating on biodegradable Zn for osteoporotic fracture healing implants. Acta Biomater 2023; 166:685-704. [PMID: 37196904 DOI: 10.1016/j.actbio.2023.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Zn and its alloys are increasingly under consideration for biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for osteoporotic bone fracture healing, due to their uneven degradation mode, burst release of zinc ions, and insufficient osteo-promotion and osteo-resorption regulating properties. In this study, a type of Zn2+ coordinated zoledronic acid (ZA) and 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) metal-organic hybrid nanostick was synthesized, which was further mixed into zinc phosphate (ZnP) solution to mediate the deposition and growth of ZnP to form a well-integrated micro-patterned metal-organic/inorganic hybrid coating on Zn. The coating protected noticeably the Zn substrate from corrosion, in particular reducing its localized occurrence as well as suppressing its Zn2+ release. Moreover, the modified Zn was osteo-compatible and osteo-promotive and, more important, performed osteogenesis in vitro and in vivo of well-balanced pro-osteoblast and anti-osteoclast responses. Such favorable functionalities are related to the nature of its bioactive components, especially the bio-functional ZA and the Zn ions it contains, as well as its unique micro- and nano-scale structure. This strategy provides not only a new avenue for surface modification of biodegradable metals but also sheds light on advanced biomaterials for osteoporotic fracture and other applications. STATEMENT OF SIGNIFICANCE: Developing appropriate biodegradable metallic materials is of clinical relevance for osteoporosis fracture healing, whereas current strategies are short of good balance between the bone formation and resorption. Here, we designed a micropatterned metal-organic nanostick mediated zinc phosphate hybrid coating modified Zn biodegradable metal to fulfill such a balanced osteogenicity. The in vitro assays verified the coated Zn demonstrated outstanding pro-osteoblasts and anti-osteoclasts properties and the coated intramedullary nail promoted fracture healing well in an osteoporotic femur fracture rat model. Our strategy may offer not only a new avenue for surface modification of biodegradable metals but also shed light on better understanding of new advanced biomaterials for orthopedic application among others.
Collapse
Affiliation(s)
- Junyu Qian
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peijie Zeng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiaming Hou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaoshan Mo
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Gang Shen
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Wentai Zhang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
11
|
Saginova D, Tashmetov E, Kamyshanskiy Y, Tuleubayev B, Rimashevskiy D. Evaluation of Bone Regenerative Capacity in Rabbit Femoral Defect Using Thermally Disinfected Bone Human Femoral Head Combined with Platelet-Rich Plasma, Recombinant Human Bone Morphogenetic Protein 2, and Zoledronic Acid. Biomedicines 2023; 11:1729. [PMID: 37371824 DOI: 10.3390/biomedicines11061729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
This research aimed to assess the effect of bone allograft combined with platelet-rich plasma (PRP), recombinant human bone morphogenetic protein-2 (rhBMP-2), and zoledronic acid (Zol) on bone formation. A total of 96 rabbits were used, and femoral bone defects (5 mm) were created. The rabbits were divided into four groups: (1) bone allograft with PRP (AG + PRP), (2) bone allograft with rhBMP-2 5 μg (AG + BMP-2), (3) bone allograft with Zol 5 μg (AG + Zol), and (4) bone allograft (AG). A histopathological examination was performed to evaluate bone defect healing after 14, 30, and 60 days. The new bone formation and neovascularization inside the bone allograft was significantly greater in the AG + PRP group compared to AG and AG + Zol groups after 14 and 30 days (p < 0.001). The use of bone allograft with rhBMP-2 induced higher bone formation compared to AG and AG + Zol groups on days 14 and 30 (p < 0.001), but excessive osteoclast activity was observed on day 60. The local co-administration of Zol with a heat-treated allograft inhibits allograft resorption as well as new bone formation at all periods. In conclusion, this study demonstrated that PRP and rhBMP-2, combined with a Marburg bone allograft, can significantly promote bone formation in the early stage of bone defect healing.
Collapse
Affiliation(s)
- Dina Saginova
- Center for Applied Scientific Research, National Scientific Center of Traumatology and Orthopaedics Named after Academician N.D. Batpenov, Astana 010000, Kazakhstan
| | - Elyarbek Tashmetov
- Department of Surgical Diseases, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Yevgeniy Kamyshanskiy
- Pathology Unit of the University Clinic, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Berik Tuleubayev
- Department of Surgical Diseases, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Denis Rimashevskiy
- Department of Traumatology and Orthopaedics, Peoples' Friendship University of Russia, Moscow 101000, Russia
| |
Collapse
|
12
|
Safari B, Aghazadeh M, Aghanejad A. Osteogenic differentiation of human adipose-derived mesenchymal stem cells in a bisphosphonate-functionalized polycaprolactone/gelatin scaffold. Int J Biol Macromol 2023; 241:124573. [PMID: 37100325 DOI: 10.1016/j.ijbiomac.2023.124573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Recent trends in bone tissue engineering have focused on the development of biomimetic constructs with appropriate mechanical and physiochemical properties. Here, we report the fabrication of an innovative biomaterial scaffold based on a new bisphosphonate-containing synthetic polymer combined with gelatin. To this end, zoledronate (ZA)-functionalized polycaprolactone (PCL-ZA) was synthesized by a chemical grafting reaction. After adding gelatin to the PCL-ZA polymer solution, the porous PCL-ZA/gelatin scaffold was fabricated by the freeze-casting method. A scaffold with aligned pores and a porosity of 82.04 % was obtained. During in vitro biodegradability test, 49 % of its initial weight lost after 5 weeks. The elastic modulus of the PCL-ZA/gelatin scaffold was 31.4 MPa, and its tensile strength was 4.2 MPa. Based on the results of MTT assay, the scaffold had good cytocompatibility with human Adipose-Derived Mesenchymal Stem Cells (hADMSCs). Furthermore, cells grown in PCL-ZA/gelatin scaffold showed the highest mineralization and ALP activity compared to other test groups. Results of the RT-PCR test revealed that RUNX2, COL 1A1, and OCN genes were expressed in PCL-ZA/gelatin scaffold at the highest level, suggesting its good osteoinductive capacity. These results revealed that PCL-ZA/gelatin scaffold could be considered a proper biomimetic platform for bone tissue engineering.
Collapse
Affiliation(s)
- Banafsheh Safari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Oral Medicine Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
The nanoformula of zoledronic acid and calcium carbonate targets osteoclasts and reverses osteoporosis. Biomaterials 2023; 296:122059. [PMID: 36848779 DOI: 10.1016/j.biomaterials.2023.122059] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Osteoporosis is known as an imbalance in bone catabolism and anabolism. Overactive bone resorption causes bone mass loss and increased incidence of fragility fractures. Antiresorptive drugs are widely used for osteoporosis treatment, and their inhibitory effects on osteoclasts (OCs) have been well established. However, due to the lack of selectivity, their off-target and side effects often bring suffering to patients. Herein, an OCs' microenvironment-responsive nanoplatform HA-MC/CaCO3/ZOL@PBAE-SA (HMCZP) is developed, consisting of succinic anhydride (SA)-modified poly(β-amino ester) (PBAE) micelle, calcium carbonate shell, minocycline-modified hyaluronic acid (HA-MC) and zoledronic acid (ZOL). Results indicate that HMCZP, as compared with the first-line therapy, could more effectively inhibit the activity of mature OCs and significantly reverse the systemic bone mass loss in ovariectomized mice. In addition, the OCs-targeted capacity of HMCZP makes it therapeutically efficient at sites of severe bone mass loss and allows it to reduce the adverse effects of ZOL, such as acute phase reaction. High-throughput RNA sequencing (RNA-seq) reveals that HMCZP could down-regulate a critical osteoporotic target, tartrate-resistant acid phosphatase (TRAP), as well as other potential therapeutical targets for osteoporosis. These results suggest that an intelligent nanoplatform targeting OCs is a promising strategy for osteoporosis therapy.
Collapse
|
14
|
Jamalpour MR, Shahabi S, Baghestani M, Shokri A, Jamshidi S, Khazaei S. Complementarity of surgical therapy, photobiomodulation, A-PRF and L-PRF for management of medication-related osteonecrosis of the jaw (MRONJ): an animal study. BMC Oral Health 2022; 22:241. [PMID: 35717177 PMCID: PMC9206277 DOI: 10.1186/s12903-022-02275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background This study aimed to evaluate the complementarity of surgical therapy, photobiomodulation (PBM), advanced platelet-rich fibrin (A-PRF), and Leukocyte and platelet-rich fibrin (L-PRF) for the management of medication-related osteonecrosis of the jaw (MRONJ). Methods Sixty rats underwent injection of zoledronate followed by left mandibular first and second molar extractions to induce MRONJ lesions. All rats were examined for the signs of MRONJ 8 weeks post-dental extraction. Forty-nine rats with positive signs of MRONJ were appointed to seven different groups as follows: control (Ctrl); surgery alone (Surg); surgery and PBM (Surg + PBM); surgery and A-PRF insertion (Surg + APRF); surgery and L-PRF insertion (Surg + LPRF); surgery, A-PRF insertion, and PBM (Surg + APRF + PBM); surgery, L-PRF insertion, and PBM (Surg + LPRF + PBM). Euthanasia was carried out 30 days after the last treatment session. The lesions' healing was evaluated clinically, histologically, and radiographically. Data were analyzed using STATA software version 14, and the statistical significance level was set at 5% for all cases. Results According to the present study, A-PRF and L-PRF treatment resulted in significant improvements in clinical, histological, and radiographical parameters compared to the Ctrl group (P < 0.05). The PBM also decreased wound dimensions and the number of empty lacunae compared to the Ctrl group (P < 0.05). Surg + APRF + PBM and Surg + LPRF + PBM were the only groups that presented a significantly higher mean number of osteocytes (P < 0.05). No significant differences were observed between A-PRF and L-PRF treatment groups (P > 0.05). Conclusions Surgical resection followed by applying A-PRF or L-PRF reinforced by PBM showed optimal wound healing and bone regeneration in MRONJ lesions.
Collapse
Affiliation(s)
- Mohammad Reza Jamalpour
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shiva Shahabi
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mehdi Baghestani
- Department of Oral and Maxillofacial Surgery, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Shokri
- Department of Oral and Maxillofacial Radiology, Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shokoofeh Jamshidi
- Department of Oral and Maxillofacial Pathology, Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Khazaei
- Department of Epidemiology, Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Accumulation of zoledronic acid in rabbit intervertebral discs. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1197:123229. [DOI: 10.1016/j.jchromb.2022.123229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022]
|
16
|
Srivichit B, Thonusin C, Chattipakorn N, Chattipakorn SC. Impacts of bisphosphonates on the bone and its surrounding tissues: mechanistic insights into medication-related osteonecrosis of the jaw. Arch Toxicol 2022; 96:1227-1255. [PMID: 35199244 DOI: 10.1007/s00204-021-03220-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/23/2021] [Indexed: 01/20/2023]
Abstract
Bisphosphonates are widely used as anti-resorptive agents for the treatment of various bone and joint diseases, including advanced osteoporosis, multiple myeloma, bone metastatic cancers, Paget's disease of bone, and rheumatoid arthritis. Bisphosphonates act as an anti-osteoclast via the induction of osteoclast apoptosis, resulting in a decreased rate of bone resorption. Unfortunately, there is much evidence to demonstrate that the long-term use of bisphosphonates is associated with osteonecrosis. The pathogenesis of osteonecrosis includes the death of osteoblasts, osteoclasts, and osteocytes. In addition, the functions of endothelial cells, epithelial cells, and fibroblasts are impaired in osteonecrosis, leading to disruptive angiogenesis, and delayed wound healing. Osteonecrosis is most commonly found in the jawbone and the term medication-related osteonecrosis of the jaw (MRONJ) has become the condition of greatest clinical concern among patients receiving bisphosphonates. Although surgical treatment is an effective strategy for the treatment of MRONJ, several non-surgical interventions for the attenuation of MRONJ have also been investigated. With the aim of increasing understanding around MRONJ, we set out to summarize and discuss the holistic effects of bisphosphonates on the bone and its surrounding tissues. In addition, non-surgical interventions for the attenuation of bisphosphonate-induced osteonecrosis were reviewed and discussed.
Collapse
Affiliation(s)
- Bhumrapee Srivichit
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
17
|
Bjelić D, Finšgar M. Bioactive coatings with anti-osteoclast therapeutic agents for bone implants: Enhanced compliance and prolonged implant life. Pharmacol Res 2022; 176:106060. [PMID: 34998972 DOI: 10.1016/j.phrs.2022.106060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022]
Abstract
The use of therapeutic agents that inhibit bone resorption is crucial to prolong implant life, delay revision surgery, and reduce the burden on the healthcare system. These therapeutic agents include bisphosphonates, various nucleic acids, statins, proteins, and protein complexes. Their use in systemic treatment has several drawbacks, such as side effects and insufficient efficacy in terms of concentration, which can be eliminated by local treatment. This review focuses on the incorporation of osteoclast inhibitors (antiresorptive agents) into bioactive coatings for bone implants. The ability of bioactive coatings as systems for local delivery of antiresorptive agents to achieve optimal loading of the bioactive coating and its release is described in detail. Various parameters such as the suitable concentrations, release times, and the effects of the antiresorptive agents on nearby cells or bone tissue are discussed. However, further research is needed to support the optimization of the implant, as this will enable subsequent personalized design of the coating in terms of the design and selection of the coating material, the choice of an antiresorptive agent and its amount in the coating. In addition, therapeutic agents that have not yet been incorporated into bioactive coatings but appear promising are also mentioned. From this work, it can be concluded that therapeutic agents contribute to the biocompatibility of the bioactive coating by enhancing its beneficial properties.
Collapse
Affiliation(s)
- Dragana Bjelić
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
18
|
Duan Y, Li H, Dong X, Geng Z, Xu X, Liu Y. VEGF mitigates bisphosphonate-induced apoptosis and differentiation inhibition of MC3T3-E1 cells. Exp Ther Med 2022; 23:130. [PMID: 34970353 PMCID: PMC8713161 DOI: 10.3892/etm.2021.11053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to investigate whether VEGF was involved in bisphosphonate (BP)-induced apoptosis and differentiation of osteoblasts. Murine MC3T3-E1 osteoblasts were stimulated with zoledronic acid (ZA) for 7 days. VEGF mRNA and protein expression levels were determined via reverse transcription-quantitative PCR and western blot analysis, respectively. Cell viability was evaluated using Cell Counting Kit-8 assay. In addition, the cell apoptotic rate and the expression levels of apoptosis-related proteins were measured using a TUNEL staining kit and western blot analysis, respectively. To evaluate mineralization, cells were stained with alizarin red, while the secretion levels of alkaline phosphatase (ALP) were measured using the corresponding assay kit. Finally, the expression levels of differentiation-related proteins and proteins of the Nod-like receptor family pyrin domain-containing 3 (NLRP3)/caspase 1/gasdermin D (GSDMD) pyroptosis pathway were measured by western blot analysis. VEGF expression level was notably decreased in ZA-stimulated MC3T3-E1 cells. However, the viability of these cells was enhanced following VEGF addition. Furthermore, VEGF attenuated apoptosis, promoted mineralization and increased ALP activity in ZA-stimulated MC3T3-E1 cells. The ZA-mediated decrease in the protein expression of the osteogenic genes osteopontin, osteocalcin and runt-related transcription factor 2 was restored after MC3T3-E1 cell treatment with 10 ng/ml VEGF. The present study demonstrated that VEGF could attenuate BP-induced apoptosis and differentiation of MC3T3 cells by regulating the NLRP3/caspase 1/GSDMD pathway.
Collapse
Affiliation(s)
- Yao Duan
- Department of Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, P.R. China
| | - Heija Li
- Department of Third Dental Center, Peking University School and Hospital of Stomatology, Beijing 100083, P.R. China
| | - Xiaohong Dong
- Stomatology Department, Changle People's Hospital, Weifang, Shandong 262400, P.R. China
| | - Zhaoli Geng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Xinyi Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China.,Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, P.R. China
| |
Collapse
|
19
|
Marofi F, Choupani J, Solali S, Vahedi G, Hassanzadeh A, Gharibi T, Hagh MF. ATF4, DLX3, FRA1, MSX2, C/EBP-ζ, and C/EBP-α Shape the Molecular Basis of Therapeutic Effects of Zoledronic Acid in Bone Disorders. Anticancer Agents Med Chem 2021; 20:2274-2284. [PMID: 32698734 DOI: 10.2174/1871520620666200721101904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Zoledronic Acid (ZA) is one of the common treatment choices used in various boneassociated conditions. Also, many studies have investigated the effect of ZA on Osteoblastic-Differentiation (OSD) of Mesenchymal Stem Cells (MSCs), but its clear molecular mechanism(s) has remained to be understood. It seems that the methylation of the promoter region of key genes might be an important factor involved in the regulation of genes responsible for OSD. The present study aimed to evaluate the changes in the mRNA expression and promoter methylation of central Transcription Factors (TFs) during OSD of MSCs under treatment with ZA. MATERIALS AND METHODS MSCs were induced to be differentiated into the osteoblastic cell lineage using routine protocols. MSCs received ZA during OSD and then the methylation and mRNA expression levels of target genes were measured by Methylation Specific-quantitative Polymerase Chain Reaction (MS-qPCR) and real-time PCR, respectively. The osteoblastic differentiation was confirmed by Alizarin Red Staining and the related markers to this stage. RESULTS Gene expression and promoter methylation level for DLX3, FRA1, ATF4, MSX2, C/EBPζ, and C/EBPa were up or down-regulated in both ZA-treated and untreated cells during the osteodifferentiation process on days 0 to 21. ATF4, DLX3, and FRA1 genes were significantly up-regulated during the OSD processes, while the result for MSX2, C/EBPζ, and C/EBPa was reverse. On the other hand, ATF4 and DLX3 methylation levels gradually reduced in both ZA-treated and untreated cells during the osteodifferentiation process on days 0 to 21, while the pattern was increasing for MSX2 and C/EBPa. The methylation pattern of C/EBPζ was upward in untreated groups while it had a downward pattern in ZA-treated groups at the same scheduled time. The result for FRA1 was not significant in both groups at the same scheduled time (days 0-21). CONCLUSION The results indicated that promoter-hypomethylation of ATF4, DLX3, and FRA1 genes might be one of the mechanism(s) controlling their gene expression. Moreover, we found that promoter-hypermethylation led to the down-regulation of MSX2, C/EBP-ζ and C/EBP-α. The results implicate that ATF4, DLX3 and FRA1 may act as inducers of OSD while MSX2, C/EBP-ζ and C/EBP-α could act as the inhibitor ones. We also determined that promoter-methylation is an important process in the regulation of OSD. However, yet there was no significant difference in the promoter-methylation level of selected TFs in ZA-treated and control cells, a methylation- independent pathway might be involved in the regulation of target genes during OSD of MSCs.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Choupani
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid F Hagh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Kameda Y, Aizawa M, Sato T, Honda M. Zoledronic Acid-Loaded β-TCP Inhibits Tumor Proliferation and Osteoclast Activation: Development of a Functional Bone Substitute for an Efficient Osteosarcoma Treatment. Int J Mol Sci 2021; 22:1889. [PMID: 33672879 PMCID: PMC7918630 DOI: 10.3390/ijms22041889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma has a poor survival rate due to relapse and metastasis. Zoledronic acid (ZOL), an anti-resorptive and anti-tumor agent, is used for treating osteosarcoma. Delivery of ZOL to the target region is difficult due to its high binding affinity to bone minerals. This study developed a novel treatment for osteosarcoma by delivering ZOL to the target region locally and sustainably. In this study, we fabricated a novel bone substitute by loading ZOL on β-tricalcium phosphate (β-TCP). The ZOL-loaded β-TCP (ZOL/β-TCP) would be expected to express the inhibitory effects via both bound-ZOL (bound to β-TCP) and free-ZOL (release from ZOL/β-TCP). To explore the ability to release ZOL from the ZOL/β-TCP, the amount of released ZOL was measured. The released profile indicates that a small amount of ZOL was released, and most of it remained on the β-TCP. Our data showed that ZOL/β-TCP could successfully express the effects of ZOL via both bound-ZOL and free-ZOL. In addition, we examined the biological effects of bound/free-ZOL using osteosarcoma and osteoclasts (target cells). The results showed that two states of ZOL (bound/free) inhibit target cell activities. As a result, ZOL/β-TCP is a promising candidate for application as a novel bone substitute.
Collapse
Affiliation(s)
- Yuka Kameda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan; (Y.K.); (M.A.)
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan; (Y.K.); (M.A.)
| | - Taira Sato
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan;
| | - Michiyo Honda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan; (Y.K.); (M.A.)
| |
Collapse
|
21
|
Patntirapong S, Korjai N, Matchimapiro M, Sungkaruk P, Suthamporn Y. Geranylgeraniol reverses alendronate-induced MC3T3 cell cytotoxicity and alteration of osteoblast function via cell cytoskeletal maintenance. J Oral Pathol Med 2021; 50:191-199. [PMID: 33164239 DOI: 10.1111/jop.13120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alendronate (ALN) is a bisphosphonate, which is prescribed as an anti-osteoporotic drug. ALN has been shown to increase osteoblast cell death and decrease bone mineralization. ALN inhibits a key regulatory enzyme in the mevalonate pathway, consequently reducing geranylgeranyl pyrophosphate (GGPP). Geranylgeraniol (GGOH) can be converted to GGPP. The aim of this study was to investigate the effects of exogenous GGOH on MC3T3 cell viability, cell cycle, osteoblast function, and cell cytoskeleton under ALN treatment. METHODS MC3T3 cells and osteoblast precursors, were incubated with ALN (0-50 µmol/L) and GGOH (0-50 µmol/L). After treatment, cells were evaluated for cell viability, cell cycle, osteoblast function, and cell cytoskeleton by MTT, flow cytometry, alizarin red S assay, and fluorescent microscopy, respectively. RESULTS ALN reduced cell viability and bone nodule formation in a dose-dependent manner. GGOH partially inhibited the negative effects of ALN on cell viability and function. ALN increased the percentages of cell apoptosis and necrosis and arrested cells in G2M phase. Co-incubation with GGOH partially reduced late cell apoptosis and rescued cell cycle arrest. Furthermore, ALN altered MC3T3 morphology and decreased cell area, actin stress fiber density as well as nuclear area. GGOH abolished the effect of ALN on cell area, actin stress fiber density, and nuclear area. CONCLUSIONS GGOH partially inhibited negative effects of ALN on cell viability, cell cycle, function, and cell cytoskeleton. It might be an additional option for increasing osteoblast function and reducing apoptosis of osteoblasts in the condition treated with low bisphosphonate concentration.
Collapse
Affiliation(s)
| | - Nareerat Korjai
- Faculty of Dentistry, Thammasat University, Pathumthani, Thailand
| | | | | | | |
Collapse
|
22
|
Nagasaki M, Nakai K, Tanaka H, Ozaki M, Kato K, Koshi R, Maeno M, Nishikubo S, Kawato T, Tonogi M. Lipopolysaccharide and High Concentrations of Glucose Enhances Zoledronate-induced Increase in RANKL/OPG Ratio by Upregulating PGE 2 Production in Osteoblasts. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Kumiko Nakai
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Manami Ozaki
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Kengo Kato
- Nihon University Graduate School of Dentistry
| | - Ryosuke Koshi
- Department of Oral Health Sciences, Nihon University School of Dentistry
| | | | - Shuichi Nishikubo
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
- Division of Oral Structural and Functional Biology, Nihon University School of Dentistry
| | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
- Division of Oral Structural and Functional Biology, Nihon University School of Dentistry
| |
Collapse
|
23
|
Simpson CR, Kelly HM, Murphy CM. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Adv Drug Deliv Rev 2020; 160:212-233. [PMID: 33122088 DOI: 10.1016/j.addr.2020.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Disrupted bone metabolism can lead to delayed fracture healing or non-union, often requiring intervention to correct. Although the current clinical gold standard bone graft implants and commercial bone graft substitutes are effective, they possess inherent drawbacks and are limited in their therapeutic capacity for delayed union and non-union repair. Research into advanced biomaterials and therapeutic biomolecules has shown great potential for driving bone regeneration, although few have achieved commercial success or clinical translation. There are a number of therapeutics, which influence bone remodelling, currently licensed for clinical use. Providing an alternative local delivery context for these therapies, can enhance their efficacy and is an emerging trend in bone regenerative therapeutic strategies. This review aims to provide an overview of how biomaterial design has advanced from currently available commercial bone graft substitutes to accommodate previously licensed therapeutics that target local bone restoration and healing in a synergistic manner, and the challenges faced in progressing this research towards clinical reality.
Collapse
Affiliation(s)
- Christopher R Simpson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena M Kelly
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
24
|
Liu J, Mattheos N, Deng C, Su C, Wang Z, Luo N, Tang H. Management of medication-related osteonecrosis of jaw: Comparison between icariin and teriparatide in a rat model. J Periodontol 2020; 92:149-158. [PMID: 32281098 DOI: 10.1002/jper.19-0620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 03/15/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The aim of this study is to compare the effects of icariin and teriparatide on the treatment of medication-related osteonecrosis of the jaw (MRONJ) using a rat model. METHODS Fifty rats undergoing ovariectomy were randomly assigned to control group (n = 10) and the MRONJ model group (n = 40). Zoledronic acid (0.2 mg/kg) and dexamethasone (2 mg/kg) were injected into rats in the model group for 8 weeks while saline was applied in control group, then all rats underwent tooth extraction and bone defect. Eight weeks later, rats diagnosed with MRONJ (n = 33) were randomly distributed to icariin (n = 11), teriparatide (n = 11), and the untreated (n = 11) group, and rats received daily 150 mg/kg icariin, 20 µg/kg teriparatide, and no intervention, respectively, for 8 weeks. Then, mandibulars were dissected for later examination. RESULTS Rats diagnosed with MRONJ (33/40) demonstrated significantly larger area of soft tissue wound and necrotic bone with higher ratio of empty bone lacuna. Area of soft tissue wound and ratio of empty bone lacuna were significantly decreased in the icariin group compared with the untreated group, while teriparatide group revealed significantly higher ratio of receptor activator of NF-kB ligand (RANKL)-positive osteocytes, smaller area of necrotic bone and lower ratio of empty lacuna. The two agents were related to higher expression of BMP-2 in osteocytes but were not statistically significant. CONCLUSIONS Icariin benefits MRONJ in terms of the area of soft tissue wound and ratio of empty lacuna. Teriparatide activates expression of RANKL and reduces the area of bone necrosis and ratio of empty lacuna in a MRONJ lesion. The data suggest possible healing improvement in patients with MRONJ and further studies to prove the efficacy of icariin.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nikos Mattheos
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Chuanxi Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zekun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nanyu Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hua Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Wehner C, Lettner S, Moritz A, Andrukhov O, Rausch-Fan X. Effect of bisphosphonate treatment of titanium surfaces on alkaline phosphatase activity in osteoblasts: a systematic review and meta-analysis. BMC Oral Health 2020; 20:125. [PMID: 32334598 PMCID: PMC7183598 DOI: 10.1186/s12903-020-01089-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bisphosphonate coating of dental implants is a promising tool for surface modification aiming to improve the osseointegration process and clinical outcome. The biological effects of bisphosphonates are thought to be mainly associated with osteoclasts inhibition, whereas their effects on osteoblast function are unclear. A potential of bisphosphonate coated surfaces to stimulate osteoblast differentiation was investigated by several in vitro studies with contradictory results. The purpose of this systematic review and meta-analysis was to evaluate the effect of bisphosphonate coated implant surfaces on alkaline phosphatase activity in osteoblasts. METHODS In vitro studies that assessed alkaline phosphatase activity in osteoblasts following cell culture on bisphosphonate coated titanium surfaces were searched in electronic databases PubMed/MEDLINE, Scopus and ISI Web of Science. Animal studies and clinical trials were excluded. The literature search was restricted to articles written in English and published up to August 2019. Publication bias was assessed by the construction of funnel plots. RESULTS Eleven studies met the inclusion criteria. Meta-analysis showed that coating of titanium surfaces with bisphosphonates increases alkaline phosphatase activity in osteoblasts after 3 days (n = 1), 7 (n = 7), 14 (n = 6) and 21 (n = 3) days. (7 days beta coefficient = 1.363, p-value = 0.001; 14 days beta coefficient = 1.325, p-value < 0.001; 21 days beta coefficient = 1.152, p-value = 0.159). CONCLUSIONS The meta-analysis suggests that bisphosphonate coatings of titanium implant surfaces may have beneficial effects on osteogenic behaviour of osteoblasts grown on titanium surfaces in vitro. Further studies are required to assess to which extent bisphosphonates coating might improve osseointegration in clinical situations.
Collapse
Affiliation(s)
- Christian Wehner
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, A-1090, Vienna, Austria
| | - Stefan Lettner
- Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, A-1090, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, A-1090, Vienna, Austria.
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, A-1090, Vienna, Austria
| |
Collapse
|
26
|
Li H, Yang C, Lan M, Liao X, Tang Z. Arctigenin promotes bone formation involving PI3K/Akt/PPARγ signaling pathway. Chem Biol Drug Des 2020; 95:451-459. [PMID: 31883507 DOI: 10.1111/cbdd.13659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hongbo Li
- Department of Orthopedics Jiangxi provincial People's Hospital Affiliated to Nanchang University Nanchang China
| | - Chunli Yang
- Department of Intensive Care Jiangxi provincial People's Hospital Affiliated to Nanchang University Nanchang China
| | - Min Lan
- Department of Orthopedics Jiangxi provincial People's Hospital Affiliated to Nanchang University Nanchang China
| | - Xingen Liao
- Department of Orthopedics Jiangxi provincial People's Hospital Affiliated to Nanchang University Nanchang China
| | - Zhiming Tang
- Department of Orthopedics Jiangxi provincial People's Hospital Affiliated to Nanchang University Nanchang China
| |
Collapse
|
27
|
Dichotomic effects of clinically used drugs on tumor growth, bone remodeling and pain management. Sci Rep 2019; 9:20155. [PMID: 31882872 PMCID: PMC6934511 DOI: 10.1038/s41598-019-56622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 12/12/2019] [Indexed: 11/08/2022] Open
Abstract
Improvements in the survival of breast cancer patients have led to the emergence of bone health and pain management as key aspects of patient’s quality of life. Here, we used a female rat MRMT-1 model of breast cancer-induced bone pain to compare the effects of three drugs used clinically morphine, nabilone and zoledronate on tumor progression, bone remodeling and pain relief. We found that chronic morphine reduced the mechanical hypersensitivity induced by the proliferation of the luminal B aggressive breast cancer cells in the tumor-bearing femur and prevented spinal neuronal and astrocyte activation. Using MTT cell viability assay and MRI coupled to 18FDG PET imaging followed by ex vivo 3D µCT, we further demonstrated that morphine did not directly exert tumor growth promoting or inhibiting effects on MRMT-1 cancer cells but induced detrimental effects on bone healing by disturbing the balance between bone formation and breakdown. In sharp contrast, both the FDA-approved bisphosphonate zoledronate and the synthetic cannabinoid nabilone prescribed as antiemetics to patients receiving chemotherapy were effective in limiting the osteolytic bone destruction, thus preserving the bone architecture. The protective effect of nabilone on bone metabolism was further accompanied by a direct inhibition of tumor growth. As opposed to zoledronate, nabilone was however not able to manage bone tumor-induced pain and reactive gliosis. Altogether, our results revealed that morphine, nabilone and zoledronate exert disparate effects on tumor growth, bone metabolism and pain control. These findings also support the use of nabilone as an adjuvant therapy for bone metastases.
Collapse
|
28
|
Steller D, Herbst N, Pries R, Juhl D, Klinger M, Hakim SG. Impacts of platelet-rich fibrin and platelet-rich plasma on primary osteoblast adhesion onto titanium implants in a bisphosphonate in vitro model. J Oral Pathol Med 2019; 48:943-950. [PMID: 31400171 DOI: 10.1111/jop.12944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 08/04/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Osteoblast adhesion is a crucial step in osseointegration of dental implants and can be influenced by modification of implant surface or the addition of bioactive agents. Bisphosphonates affect bone turnover, attenuating bone healing in implants patients. PRP and PRF are sources of growth factors involved in osteoblast adhesion, improving subsequent bone healing. The aim of the study was to investigate the impacts of PRP and PRF on adhesion of bisphosphonate-pretreated osteoblasts on titanium implant surfaces using the cell-count wash assay, the MTT-assay as well as real-time-cell analyser assay and scanning electronic microscopy. METHODS Titanium implants were colonised for 24 hours with osteoblasts and zolendronic acid, PRP or PRF in different combinations. Afterwards, primary osteoblast adhesion was evaluated by counting the number of attached cells using a wash-assay cell analysis. Scanning electronic microscopy was performed and evaluated semi-quantitatively to assess the influence of the different groups on the ultrastructural cell morphology, such as cell size and shape as well as length and number of filopodia. RESULTS Zoledronic acid led to a decrease of osteoblast adherence onto implant surface. This effect was reversed by adding PRP or PRF. Scanning electronic microscopy showed that both PRP and PRF increased number and length of filopodia in adherent osteoblasts. CONCLUSIONS Zoledronic acid decreased osteoblast adhesion on implant surfaces, and PRF as well as PRP increased primary adhesion of zoledronic acid-treated osteoblasts on implant surfaces in vitro. Therefore, PRP and PRF may improve initial bone apposition and primary healing of dental implants in patients with bisphosphonate treatment.
Collapse
Affiliation(s)
- Daniel Steller
- Department of Maxillofacial Surgery, University Hospital of Lübeck, Lübeck, Germany
| | - Nele Herbst
- Department of Maxillofacial Surgery, University Hospital of Lübeck, Lübeck, Germany
| | - Ralph Pries
- Department of Otolaryngology-Head and Neck Surgery, University Hospital of Lübeck, Lübeck, Germany
| | - David Juhl
- Department of Transfusion Medicine, University Hospital of Lübeck, Lübeck, Germany
| | | | - Samer G Hakim
- Department of Maxillofacial Surgery, University Hospital of Lübeck, Lübeck, Germany
| |
Collapse
|
29
|
Li JH, Su ZF, Bai X, Yuan H, Li JY. [Effect of zoladronate on the proliferation and osteogenic differentiation of rat bone mesenchymal stem cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:242-247. [PMID: 31218855 DOI: 10.7518/hxkq.2019.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To evaluate the effect of zoledronate acid (ZA) on the proliferation and osteogenic differentiation of rat mesenchymal stem cells (BMSCs). METHODS The BMSCs isolated from the SD rats were cultured with different concentrations of ZA (1, 5, 10, and 20 μmol·L), and the contro1 group received the same volume of culture medium but without ZA. Cell counting kit-8 was used to detect proliferation activity in each group. Alkaline phosphatase (ALP) staining and alizarin red staining were used to detect the osteogenic differentiation ability in each group. The gene expression levels of ALP, bone morphogenetic protein-2 (BMP-2), typeⅠcollagenase (COL-Ⅰ), runt-related transcription factor-2 (Runx-2), zinc finger structure transcription factor (Osx), osteocalcin (OCN), and osteopontin (OPN) were evaluated by real-time quantitative polymerase chain reaction (qRT-PCR). RESULTS Zoledronate at 1 μmol·L⁻¹ concentration had no effect on the proliferation and osteogenic differentiation of BMSCs. No significant difference was observed between this group and the control group (P>0.05). When the ZA concentration was more than 1 μmol·L⁻¹, ZA inhibited the proliferation and osteogenic differentiation of BMSCs, and the effect was concentration dependent. The difference between each group and the control group was statistically significant (P<0.05). At ZA concentration of 5 μmol·L⁻¹, ZA enhanced the expression of ALP, BMP-2, COL-Ⅰ, Runx-2, Osx, OCN, and OPN (P<0.05). However, at ZA concentration of more than 5 μmol·L⁻¹, the expression levels of osteogenicrelated genes in each group was lower than those of the control group (P<0.05). CONCLUSIONS Low ZA concentration has no effect on the proliferation and osteogenic differentiation of BMSCs. ZA at 5 μmol·L⁻¹ concentration inhibits the proliferation but promotes the osteogenic differentiation of BMSCs. High ZA concentration inhibits the proliferation and osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Jie-Hang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhi-Fei Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuan Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - He Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ji-Yao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Histatin-1 counteracts the cytotoxic and antimigratory effects of zoledronic acid in endothelial and osteoblast-like cells. J Periodontol 2019; 90:766-774. [DOI: 10.1002/jper.18-0644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022]
|
31
|
Ervolino E, Statkievicz C, Toro LF, de Mello-Neto JM, Cavazana TP, Issa JPM, Dornelles RCM, de Almeida JM, Nagata MJH, Okamoto R, Casatti CA, Garcia VG, Theodoro LH. Antimicrobial photodynamic therapy improves the alveolar repair process and prevents the occurrence of osteonecrosis of the jaws after tooth extraction in senile rats treated with zoledronate. Bone 2019; 120:101-113. [PMID: 30339908 DOI: 10.1016/j.bone.2018.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
This study evaluated the effects of antimicrobial photodynamic therapy (aPDT) in the alveolar repair of rats with major risk factors for bisphosphonate-related osteonecrosis of the jaws (BRONJ). Senile rats received 0.45 ml of vehicle (VEH and VEH/aPDT) or 0.45 ml of zoledronate (ZOL and ZOL/aPDT) every three days for seven weeks. After three weeks of treatment, the first lower left molar was extracted. VEH/aPDT and ZOL/aPDT were submitted to aPDT on the extraction site at 0, 2 and 4 days postoperatively. Euthanasia was performed 28 days postoperatively and the extraction site was evaluated by clinical, histological, histometric, histochemical and immunohistochemical analysis. ZOL showed tissue repair impairment; lower percentage of newly formed bone tissue (NFBT); higher percentage of non-vital bone tissue (NVBT); fewer mature collagen fibers and increased immunolabeling for tumor necrosis factor (TNFα), interleukin (IL)-1β and IL-6. ZOL/aPDT showed clinical and histological characteristics of the extraction site, percentage of NFBT and percentage of mature collagen fiber similar to VEH. Percentage of NVBT and immunolabeling for inflammatory cytokines in ZOL/aPDT was lower than in ZOL. Immunolabeling for tartarato-resistant acid phosphatase (TRAP) was lower in ZOL and ZOL/aPDT. aPDT in the dental extraction site improves tissue repair process and prevents the occurrence of BRONJ-like lesions after tooth extraction.
Collapse
Affiliation(s)
- Edilson Ervolino
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Sciences, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, CEP 18618-689, Botucatu, SP, Brazil; Group for the Research and Study of Laser in Dentistry, São Paulo State University (UNESP), School of Dentistry, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil.
| | - Cristian Statkievicz
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil
| | - Luan Felipe Toro
- São Paulo State University (UNESP), Institute of Biosciences, Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, CEP 18618-689, Botucatu, SP, Brazil; Group for the Research and Study of Laser in Dentistry, São Paulo State University (UNESP), School of Dentistry, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil
| | - João Martins de Mello-Neto
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil; Group for the Research and Study of Laser in Dentistry, São Paulo State University (UNESP), School of Dentistry, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil
| | - Thamires Priscila Cavazana
- São Paulo State University (UNESP), School of Dentistry, Department of Pediatric Dentistry and Public Health, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil
| | - João Paulo Mardegan Issa
- São Paulo University (USP), School of Dentistry, Department of Morphology, Physiology and Basic Pathology, Avenida do Café, s/n, CEP 14040-904, Ribeirão Preto, SP, Brazil
| | - Rita Cássia Menegati Dornelles
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Sciences, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil
| | - Juliano Milanezi de Almeida
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil
| | - Maria José Hitomi Nagata
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil
| | - Roberta Okamoto
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Sciences, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil; São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil
| | - Cláudio Aparecido Casatti
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Sciences, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil
| | - Valdir Gouveia Garcia
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil; Group for the Research and Study of Laser in Dentistry, São Paulo State University (UNESP), School of Dentistry, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil
| | - Leticia Helena Theodoro
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil; Group for the Research and Study of Laser in Dentistry, São Paulo State University (UNESP), School of Dentistry, Rua José Bonifácio, 1193, CEP 16015-050, Araçatuba, SP, Brazil
| |
Collapse
|
32
|
Toro LF, de Mello-Neto JM, Santos FFVD, Ferreira LC, Statkievicz C, Cintra LTÂ, Issa JPM, Dornelles RCM, de Almeida JM, Nagata MJH, Garcia VG, Theodoro LH, Casatti CA, Ervolino E. Application of Autologous Platelet-Rich Plasma on Tooth Extraction Site Prevents Occurence of Medication-Related Osteonecrosis of the Jaws in Rats. Sci Rep 2019; 9:22. [PMID: 30631095 PMCID: PMC6328584 DOI: 10.1038/s41598-018-37063-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023] Open
Abstract
This study evaluated the effects of local application of autologous platelet-rich plasma (PRP) on the tooth extraction site of rats presenting the main risk factors for medication-related osteonecrosis of the jaw (MRONJ). For seven weeks, senile rats were submitted to systemic treatment with vehicle (VEH and VEH-PRP) or 100 μg/Kg of zoledronate (ZOL and ZOL-PRP) every three days. After three weeks, the first lower molar was extracted. VEH-PRP and ZOL-PRP received PRP at the tooth extraction site. Euthanasia was performed at 28 days postoperatively. Clinical, histopathological, histometric and immunohistochemical analyses were carried out in histological sections from the tooth extraction site. ZOL showed lower percentage of newly formed bone tissue (NFBT), higher percentage of non-vital bone tissue (NVBT), as well as higher immunolabeling for TNFα and IL-1β. In addition, ZOL presented lower immunolabeling for PCNA, VEGF, BMP2/4, OCN and TRAP. VEH and ZOL-PRP showed improvement in the tooth extraction site wound healing and comparable percentage of NFBT, VEGF, BMP2/4 and OCN. Local application of autologous PRP proved a viable preventive therapy, which is safe and effective to restore tissue repair capacity of the tooth extraction site and prevent the occurrence of MRONJ following tooth extraction.
Collapse
Affiliation(s)
- Luan Felipe Toro
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Sciences, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
- São Paulo State University (UNESP), Institute of Biosciences, Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, CEP, 18618-689, Botucatu, SP, Brazil
| | - João Martins de Mello-Neto
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Sciences, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
| | - Fernanda Furuse Ventura Dos Santos
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Sciences, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
| | - Letícia Chaves Ferreira
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Sciences, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
| | - Cristian Statkievicz
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
| | - Luciano Tavares Ângelo Cintra
- São Paulo State University (UNESP), School of Dentistry, Department of Restorative Dentistry, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
| | - João Paulo Mardegan Issa
- São Paulo University (USP), School of Dentistry, Department of Morphology, Physiology and Basic Pathology, Avenida do Café, s/n, CEP, 14040-904, Ribeirão Preto, SP, Brazil
| | - Rita Cássia Menegati Dornelles
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Sciences, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
| | - Juliano Milanezi de Almeida
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
| | - Maria José Hitomi Nagata
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
| | - Valdir Gouveia Garcia
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
| | - Leticia Helena Theodoro
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
| | - Cláudio Aparecido Casatti
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Sciences, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil
| | - Edilson Ervolino
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Sciences, Rua José Bonifácio, 1193, CEP, 16015-050, Araçatuba, SP, Brazil.
- São Paulo State University (UNESP), Institute of Biosciences, Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, CEP, 18618-689, Botucatu, SP, Brazil.
| |
Collapse
|
33
|
Geranylgeraniol (GGOH) as a Mevalonate Pathway Activator in the Rescue of Bone Cells Treated with Zoledronic Acid: An In Vitro Study. Stem Cells Int 2019; 2019:4351327. [PMID: 30728841 PMCID: PMC6343170 DOI: 10.1155/2019/4351327] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 01/30/2023] Open
Abstract
Bisphosphonates (BPs) are the keystone to treat bone disorders. Despite the great benefits of BPs, medication-related osteonecrosis of the jaw (MRONJ) arouse as a potential side effect. Nitrogen-containing BPs (N-BPs) as zoledronate (ZA) act by the inhibition of specific enzymes of the mevalonate pathway resulting in altering protein prenylation which is required for the posttranslational maturation of the small GTP-binding proteins. Geranylgeraniol (GGOH) is an intermediate product in the mevalonate pathway having positive effects on different cell types treated with BPs by salvaging protein prenylation improving cell viability and proliferation in tissue regeneration, thus overcoming N-BP-induced apoptosis. Here, the effect of different concentrations of zoledronate (ZA) on the bone cells has been investigated by cell viability assay, live/dead staining, and western blot to understand if GGOH was able to rescue bone cells and levels of statistical significance were indicated at ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, and ∗∗∗∗P < 0.0001. Although the high concentration of ZA had significantly decreased the cell viability in the bone cells, GGOH reversed the action of ZA on the cells while at very high concentration; it caused severe reduction in the cell viability. Rap1A, a member of the GTPases family, was expressed in the negative controls but was absent in cells treated with high concentrations of ZA. The addition of GGOH had increased the expression of Rap1A up to a certain limit. The experiments proved that ZA acts directly on the mevalonate pathway and protein prenylation and that GGOH could be applied as a future local therapy to MRONJ.
Collapse
|
34
|
Giannasi C, Niada S, Farronato D, Lombardi G, Manfredi B, Farronato G, Brini AT. Nitrogen Containing Bisphosphonates Impair the Release of Bone Homeostasis Mediators and Matrix Production by Human Primary Pre-Osteoblasts. Int J Med Sci 2019; 16:23-32. [PMID: 30662325 PMCID: PMC6332484 DOI: 10.7150/ijms.27470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
Bisphosphonates (BPs) represent the first-line treatment for a wide array of bone disorders. Despite their well-known action on osteoclasts, the effects they induce on osteoblasts are still unclear. In order to shed light on this aspect we evaluated the impact of two nitrogen containing bisphosphonates, Alendronate (ALN) and Zoledronate (ZOL), on human primary pre-osteoblasts. At first, we showed an inhibitory effect on cell viability and alkaline phosphatase activity starting from µM concentrations of both drugs. In addition, an inhibitory trend on mineralized nodules deposition was observed. Then low doses of both ALN and ZOL rapidly increased the release of the pro-inflammatory mediators TNFα and IL-1β, while increased DKK-1 and Sclerostin, both inhibitors of osteoblastogenesis. Finally, ALN and 10-7M ZOL decreased the expression of type I Collagen and Osteopontin, while both drugs slightly stimulated SPARC production. With these results, we would like to suggest a direct inhibitory action on bone-forming cells by nitrogen containing bisphosphonates.
Collapse
Affiliation(s)
- Chiara Giannasi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Davide Farronato
- Department of Medicine and Surgery, Insubria University, Varese, Italy
| | | | - Barbara Manfredi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Giampietro Farronato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Teresa Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
35
|
Holtmann H, Lommen J, Kübler NR, Sproll C, Rana M, Karschuck P, Depprich R. Pathogenesis of medication-related osteonecrosis of the jaw: a comparative study of in vivo and in vitro trials. J Int Med Res 2018; 46:4277-4296. [PMID: 30091399 PMCID: PMC6166332 DOI: 10.1177/0300060518788987] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Objective This study was performed to determine whether the results of prevailing in vivo and in vitro studies offer a reliable model for investigation of medication-related osteonecrosis of the jaw (MRONJ). Methods Embase, Medline, and the Cochrane Library were searched for articles published from September 2003 to June 2017 involving experimental approaches to the pathogenesis of MRONJ. In vivo and in vitro trials were analyzed with respect to the scientific question, study design, methodology, and results. Results Of 139 studies, 87, 46, and 6 conducted in vivo, in vitro, and both in vivo and in vitro experiments, respectively. Rats, mice, dogs, minipigs, sheep, and rabbits were the preferred animal models used. Osteoblasts, osteoclasts, fibroblasts, keratinocytes, macrophages, and human umbilical vein endothelial cells were the preferred cell types. Zoledronate, alendronate, ibandronate, and risedronate were the most frequent bisphosphonates used. MRONJ was most reliably induced in minipigs because of the close relationship with human bone physiology. In vitro studies showed that reduced viability, growth, and migration of cells in the bone and soft tissues were causative for MRONJ. Other than exposed jawbone after tooth extraction, no reliable cofactors were found. Conclusion The minipig is the most suitable animal model for MRONJ.
Collapse
Affiliation(s)
- Henrik Holtmann
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| | - Julian Lommen
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| | - Norbert R. Kübler
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| | - Christoph Sproll
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| | - Majeed Rana
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| | - Patrick Karschuck
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| | - Rita Depprich
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| |
Collapse
|
36
|
Yazıcı T, Koçer G, Nazıroğlu M, Övey İS, Öz A. Zoledronic Acid, Bevacizumab and Dexamethasone-Induced Apoptosis, Mitochondrial Oxidative Stress, and Calcium Signaling Are Decreased in Human Osteoblast-Like Cell Line by Selenium Treatment. Biol Trace Elem Res 2018; 184:358-368. [PMID: 29081061 DOI: 10.1007/s12011-017-1187-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
Increased intracellular free calcium ion (Ca2+) concentration induces excessive oxidative stress and apoptosis. Medical procedures such as zoledronic acid (Zol), bevacizumab (Bev), and dexamethasone (Dex) are usually used in the treatment of bone diseases (osteoporosis, Paget's disease, etc.) and to prevent metastasis in the bone although the procedures induce osteonecrosis of the jaw through excessive production of reactive oxygen species (ROS). Recently, we observed regulator roles of selenium (Se) on apoptosis and Ca2+ entry through transient receptor potential vanilloid 1 (TRPV1) channels in the cancer cell lines. Therefore, Se may modulate Zol, Bev, and Dex-induced oxidative stress and apoptosis through regulation of TRPV1 channel. In the current study, we investigated the protective effects of Se on apoptosis and oxidative stress through TRPV1 in Zol, Bev, and Dex-induced osteoblast-like cell line. We used human osteoblast-like cell line (Saos-2), and the cells were divided into 12 groups as control, Zol, Bev, Dex, Se, Zol+Se, Bev+Se, Dex+Se, Zol+Dex, Zol+Dex+Se, Zol+Bev, and Zol+Bev+Se which were incubated with drugs (Zol, Bev, Dex, and Se) for 24 h. The cytosolic free Ca2+ concentration was increased by Zol, Bev, Dex, Zol+Bev, and Zol+Dex, although it was reduced by Se treatment. However, Zol, Bev, and Dex-induced increase in apoptosis, caspase 3, caspase 9, poly (ADP-ribose) polymerase 1 expression levels, and intracellular ROS production values in the cells were decreased by Se treatments. In conclusion, we observed that Zol, Bev, and Dex-induced apoptosis, mitochondrial oxidative stress, and calcium signaling are decreased in human osteoblast-like cell line by the Se treatment. Our findings may be relevant to the etiology and treatment of Zol, Bev, and Dex-induced osteonecrosis by Se.
Collapse
Affiliation(s)
- Tayfun Yazıcı
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkey.
| | - Gülperi Koçer
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
- Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - İshak Suat Övey
- Department of Physiology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Ahmi Öz
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
37
|
Statkievicz C, Toro LF, de Mello-Neto JM, de Sá DP, Casatti CA, Issa JPM, Cintra LTA, de Almeida JM, Nagata MJH, Garcia VG, Theodoro LH, Ervolino E. Photomodulation multiple sessions as a promising preventive therapy for medication-related osteonecrosis of the jaws after tooth extraction in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 184:7-17. [DOI: 10.1016/j.jphotobiol.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/12/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
|
38
|
Beneficial Effects of Concentrated Growth Factors and Resveratrol on Human Osteoblasts In Vitro Treated with Bisphosphonates. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4597321. [PMID: 29862271 PMCID: PMC5976957 DOI: 10.1155/2018/4597321] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/19/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
Abstract
Bisphosphonates are primary pharmacological agents against osteoclast-mediated bone loss and widely used in the clinical practice for prevention and treatment of a variety of skeletal conditions, such as low bone density and osteogenesis imperfecta, and pathologies, such as osteoporosis, malignancies metastatic to bone, Paget disease of bone, multiple myeloma, and hypercalcemia of malignancy. However, long-term bisphosphonate treatment is associated with pathologic conditions including osteonecrosis of the jaw, named BRONJ, which impaired bone regeneration process. Clinical management of BRONJ is controversy and one recent approach is the use of platelet concentrates, such as Concentrated Growth Factors, alone or together with biomaterials or antioxidants molecules, such as resveratrol. The aim of the present study was to investigate the in vitro effects of Concentrated Growth Factors and/or resveratrol on the proliferation and differentiation of human osteoblasts, treated or not with bisphosphonates. Human osteoblasts were stimulated for 3 days in complete medium and for 21 days in mineralization medium. At the end of the experimental period, the in vitro effect on osteoblast proliferation and differentiation was evaluated using different techniques such as MTT, ELISA for the quantification/detection of osteoprotegerin and bone morphogenetic protein-2, immunohistochemistry for sirtuin 1 and collagen type I, and the Alizarin Red S staining for the rate of mineralization. Results obtained showed that Concentrated Growth Factors and/or resveratrol significantly increased osteoblast proliferation and differentiation and that the cotreatment with Concentrated Growth Factors and resveratrol had a protective role on osteoblasts treated with bisphosphonates. In conclusion, these data suggest that this approach could be promised in the clinical management of BRONJ.
Collapse
|
39
|
Kim JH, Kang HM, Yu SB, Song JM, Kim CH, Kim BJ, Park BS, Shin SH, Kim IR. Cytoprotective effect of flavonoid-induced autophagy on bisphosphonate mediated cell death in osteoblast. J Cell Biochem 2018; 119:5571-5580. [PMID: 29380898 PMCID: PMC6001630 DOI: 10.1002/jcb.26728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/24/2018] [Indexed: 11/26/2022]
Abstract
With rapid economic growth and further developments in medical science, the entry into the aging population is currently increasing, as is the number of patients with metabolic diseases, such as hypertension, hyperlipidemia, heart disease, and diabetes. The current treatments for metabolic bone diseases, which are also on the rise, cause negative side effects. Bisphosphonates, which are used to treat osteoporosis, inhibit the bone resorption ability of osteoclasts and during prolonged administration, cause bisphosphonate‐related osteonecrosis of the jaw (BRONJ). Numerous studies have shown the potential role of natural plant products as flavonoids in the protection against osteoporosis and in the influence of bone remodeling. Autophagy occurs after the degradation of cytoplasmic components within the lysosome and serves as an essential cytoprotective response to pathologic stress caused by certain diseases. In the present study, we hypothesized that the cytoprotective effects of flavonoids might be related to those associated with autophagy, an essential cytoprotective response to the pathologic stress caused by certain diseases, in osteoblasts. We demonstrated the cytoprotective effect of flavonoid‐induced autophagy against the toxicity of zoledronate and the induction of autophagy by flavonoids to support osteogenic transcription factors, leading to osteoblast differentiation and bone formation. Further studies are necessary to clarify the connections between autophagy and osteogenesis. It would be helpful to shed light on methodological challenges through molecular biological studies and new animal models. The findings of the current study may help to delineate the potential role of flavonoids in the treatment of metabolic bone disease.
Collapse
Affiliation(s)
- Jung-Han Kim
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan-si, Gyeongsangnam-do, South Korea.,Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, Seo-gu, Busan, South Korea
| | - Hae-Mi Kang
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea.,BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Su-Bin Yu
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea.,BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Jae-Min Song
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Chul-Hoon Kim
- Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, Seo-gu, Busan, South Korea
| | - Bok-Joo Kim
- Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, Seo-gu, Busan, South Korea
| | - Bong-Soo Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea.,BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan-si, Gyeongsangnam-do, South Korea
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| |
Collapse
|
40
|
Kim CJ, Shin SH, Kim BJ, Kim CH, Kim JH, Kang HM, Park BS, Kim IR. The Effects of Kaempferol-Inhibited Autophagy on Osteoclast Formation. Int J Mol Sci 2018; 19:ijms19010125. [PMID: 29301320 PMCID: PMC5796074 DOI: 10.3390/ijms19010125] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/24/2022] Open
Abstract
Kaempferol, a flavonoid compound, is derived from the rhizome of Kaempferia galanga L., which is used in traditional medicine in Asia. Autophagy has pleiotropic functions that are involved in cell growth, survival, nutrient supply under starvation, defense against pathogens, and antigen presentation. There are many studies dealing with the inhibitory effects of natural flavonoids in bone resorption. However, no studies have explained the relationship between the autophagic and inhibitory processes of osteoclastogenesis by natural flavonoids. The present study was undertaken to investigate the inhibitory effects of osteoclastogenesis through the autophagy inhibition process stimulated by kaempferol in murin macrophage (RAW 264.7) cells. The cytotoxic effect of Kaempferol was investigated by MTT assay. The osteoclast differentiation and autophagic process were confirmed via tartrate-resistant acid phosphatase (TRAP) staining, pit formation assay, western blot, and real-time PCR. Kaempferol controlled the expression of autophagy-related factors and in particular, it strongly inhibited the expression of p62/SQSTM1. In the western blot and real time-PCR analysis, when autophagy was suppressed with the application of 3-Methyladenine (3-MA) only, osteoclast and apoptosis related factors were not significantly affected. However, we found that after cells were treated with kaempferol, these factors inhibited autophagy and activated apoptosis. Therefore, we presume that kaempferol-inhibited autophagy activated apoptosis by degradation of p62/SQSTM1. Further study of the p62/SQSTM1 gene as a target in the autophagy mechanism, may help to delineate the potential role of kaempferol in the treatment of bone metabolism disorders.
Collapse
Affiliation(s)
- Chang-Ju Kim
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, 20, Geumo-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, 20, Geumo-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
| | - Bok-Joo Kim
- Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, 26, Daesingongwon-ro, Seo-gu, Busan 49201, Korea.
| | - Chul-Hoon Kim
- Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, 26, Daesingongwon-ro, Seo-gu, Busan 49201, Korea.
| | - Jung-Han Kim
- Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, 26, Daesingongwon-ro, Seo-gu, Busan 49201, Korea.
| | - Hae-Mi Kang
- BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
| | - Bong-Soo Park
- BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
| |
Collapse
|
41
|
Yu M, Wang L, Ba P, Li L, Sun L, Duan X, Yang P, Yang C, Sun Q. Osteoblast Progenitors Enhance Osteogenic Differentiation of Periodontal Ligament Stem Cells. J Periodontol 2017; 88:e159-e168. [PMID: 28517970 DOI: 10.1902/jop.2017.170016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Osteoblasts and periodontal ligament stem cells (PDLSCs) play an important role in maintaining physiologic function of periodontal tissues and participating in periodontal regeneration. Elucidation of interactions between osteoblasts and PDLSCs will aid understanding of periodontal regeneration mechanisms. This study aims to determine whether preosteoblasts can promote osteoblastic/cementoblastic differentiation of PDLSCs. METHODS PDLSCs were cultured alone (control group), or cocultured indirectly with human gingival fibroblasts (HGFs) (HGFs group) or MC3T3-E1 cells (OB groups). Alkaline phosphatase (ALP) activity and gene/protein expressions levels of ALP, runt-related transcription factor-2, and osteopontin (OPN) were assessed. Cementum attachment protein and cementum protein 23 messenger RNA expressions were also evaluated. Bone morphogenetic protein (BMP)-2 secreted by HGFs/MC3T3-E1 cells was assessed by enzyme-linked immunosorbent assay. Extracellular matrix calcification was measured by staining to quantify calcium content. RESULTS ALP activity and gene/protein expression levels of osteogenic markers were significantly higher in the OB groups compared with the HGFs and control groups. Optimal enhancement of these parameters occurred at cell ratios of 2:1 to 1:1 (MC3T3-E1:PDLSCs). Mineralized nodule formation and calcium content were significantly increased in the OB groups compared with the HGF and control groups. The greatest improvement took place at the 2:1 (MC3T3-E1:PDLSCs) seeding ratio. BMP-2 from MC3T3-E1-conditioned medium was significantly and time-dependently increased compared with that from HGF-conditioned medium. CONCLUSION Preosteoblasts can indirectly enhance the osteoblastic/cementoblastic differentiation and mineralization of PDLSCs with an optimal preosteoblasts:PDLSCs ratio in the range of 2:1 to 1:1.
Collapse
Affiliation(s)
- Miao Yu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Stomatology, Weifang People's Hospital, Weifang, Shandong, China
| | - Limei Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Pengfei Ba
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, Weihai Stomatological Hospital, Weihai, Shandong, China
| | - Linxia Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Prosthodontology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Long Sun
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Xiaoqi Duan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Pishan Yang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University.,Institute of Stomatology, Shandong University
| | - Qinfeng Sun
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| |
Collapse
|
42
|
Liu FL, Chen CL, Lee CC, Wu CC, Hsu TH, Tsai CY, Huang HS, Chang DM. The Simultaneous Inhibitory Effect of Niclosamide on RANKL-Induced Osteoclast Formation and Osteoblast Differentiation. Int J Med Sci 2017; 14:840-852. [PMID: 28824321 PMCID: PMC5562191 DOI: 10.7150/ijms.19268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/23/2017] [Indexed: 12/21/2022] Open
Abstract
The bone destruction disease including osteoporosis and rheumatoid arthritis are caused by the imbalance between osteoblastogenesis and osteoclastogenesis. Inhibition of the NF-κB pathway was responsible for decreased osteoclastogenesis. Recently many studies indicated that niclosamide, the FDA approved an antihelminth drug, inhibits prostate and breast cancer cells growth by targeting NF-κB signaling pathways. This study evaluated the effects of niclosamide on osteoclast and osteoblast differentiation and function in vitro. In RANKL-induced murine osteoclast precursor cell RAW264.7 and M-CSF/RANKL-stimulated primary murine bone marrow-derived macrophages (BMM), niclosamide dose-dependently inhibited the formation of TRAP-positive multinucleated osteoclasts and resorption pits formation between 0.5uM and 1uM. In addition, niclosamide suppressed the expression of nuclear factor of activated T cells c1 (NFATc1) and osteoclast differentiated-related genes in M-CSF/ RANKL-stimulated BMM by interference with TRAF-6, Erk1/2, JNK and NF-κB activation pathways. However, the cytotoxic effects of niclosamide obviously appeared at the effective concentrations for inhibiting osteoclastogenesis (0.5-1uM) with increase of apoptosis through caspase-3 activation in osteoblast precursor cell line, MC3T3-E1. Niclosamide also inhibited ALP activity, bone mineralization and osteoblast differentiation-related genes expression in MC3T3-E1. Therefore, our findings suggest the new standpoint that niclosamide's effects on bones must be considered before applying it in any therapeutic treatment.
Collapse
Affiliation(s)
- Fei-Lan Liu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Chun-Liang Chen
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Chia-Chung Lee
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Cheng-Chi Wu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China.,Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Teng-Hsu Hsu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China
| | - Chang-Youh Tsai
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China
| | - Hsu-Shan Huang
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Deh-Ming Chang
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taiwan, Republic of China.,Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| |
Collapse
|
43
|
Kauffmann P, Hahn W, Sievers N, Troeltzsch M, Hohloch K, Brockmeyer P, Cordesmeyer R, Schliephake H, Gruber RM. Osteoblast-like cells with different embryologic origins behave differently in increasing zoledronic acid concentrations: a pilot study in pigs. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 123:20-28. [DOI: 10.1016/j.oooo.2016.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/18/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
|
44
|
Yang X, Huo H, Xiu C, Song M, Han Y, Li Y, Zhu Y. Inhibition of osteoblast differentiation by aluminum trichloride exposure is associated with inhibition of BMP-2/Smad pathway component expression. Food Chem Toxicol 2016; 97:120-126. [PMID: 27600293 DOI: 10.1016/j.fct.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2)/Smad signaling pathway plays an important role in regulating osteoblast (OB) differentiation. OB differentiation is a key process of bone formation. Aluminum (Al) exposure inhibits bone formation and causes Al-induced bone disease. However, the mechanism is not fully understood. To investigate whether BMP-2/Smad signaling pathway is associated with OB differentiation in aluminum trichloride (AlCl3)-treated OBs, the primary rat OBs were cultured and exposed to 0 (control group, CG), 1/40 IC50 (low-dose group, LG), 1/20 IC50 (mid-dose group, MG), and 1/10 IC50 (high-dose group, HG) of AlCl3 for 24 h, respectively. We found that the expressions of OB differentiation markers (Runx-2, Osterix and ALP) and BMP-2/Smad signaling pathway components (BMP-2, BMPR-IA, p-BMPR-IA, BMPR-II, p-Smad1/5/8 and p-Smad1/5/8/4) were all decreased in AlCl3-treated OBs compared with the CG. These results indicated that inhibition of OB differentiation by AlCl3 was associated with inhibition of BMP-2/Smad pathway component expression. Our findings provide a novel insight into the mechanism of AlCl3-induced bone disease.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hui Huo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Chunyu Xiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|