1
|
Bezerra P, Motti EF. 3-NAntC: A Potent Crotoxin B-Derived Peptide against the Triple-Negative MDA-MB-231 Breast Cancer Cell Line. Molecules 2024; 29:1646. [PMID: 38611925 PMCID: PMC11013444 DOI: 10.3390/molecules29071646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer stands as the most prevalent type of tumor and a significant contributor to cancer-related deaths. Among its various subtypes, triple-negative breast cancer (TNBC) presents the worst prognosis due to its aggressive nature and the absence of effective treatments. Crotoxin, a protein found in the venom of Crotalus genus snakes, has demonstrated notable antitumor activity against aggressive solid tumors. However, its application has been hindered by substantial toxicity in humans. In efforts to address this challenge, Crotoxin B-derived peptides were synthesized and evaluated in vitro for their antitumor potential, leading to the discovery of 3-NAntC. Treatment with 3-NAntC at 1 µg/mL for 72 h notably reduced the viability of MDA-MB-231 cells to 49.0 ± 17.5% (p < 0.0001), while exhibiting minimal impact on the viability of HMEC cells (98.2 ± 13.8%) under the same conditions. Notably, 3-NAntC displayed superior antitumoral activity in vitro compared to cisplatin and exhibited a similar effect to doxorubicin. Further investigation revealed that 3-NAntC decreased the proliferation of MDA-MB-231 cells and induced G2/M phase arrest. It primarily prompted optimal cell death by apoptosis, with a lower incidence of the less desirable cell death by necrosis in comparison to doxorubicin. Additionally, 3-NAntC demonstrated low LDH release, and its cytotoxicity remained unaffected by the autophagy inhibitor 3-MA. In an in vivo zebrafish model, 3-NAntC exhibited excellent tolerability, showing no lethal effects and a low rate of malformations at high doses of up to 75 mg/mL. Overall, 3-NAntC emerges as a novel synthetic peptide with promising antitumor effects in vitro against TNBC cells and low toxicity in vivo.
Collapse
|
2
|
Helvacioglu S, Charehsaz M, Bankoglu EE, Stopper H, Aydin A. The ameliorative effect of rosmarinic acid and epigallocatechin gallate against doxorubicin-induced genotoxicity. Drug Chem Toxicol 2024:1-13. [PMID: 38529831 DOI: 10.1080/01480545.2024.2332790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Doxorubicin (Dox), an effective anticancer agent, is known for its genotoxic effects on normal cells. Phenolic compounds, renowned for their antitumor, antioxidant, and antigenotoxic properties, have gained prominence in recent years. This study investigates the individual and combined protective effects of rosmarinic acid (RA) and epigallocatechin gallate (EGCG) against Dox-induced genotoxicity using various in vitro test systems. The synergistic/antagonistic interaction of these combinations on Dox's chemotherapeutic effect is explored in breast cancer cell lines. Both RA and EGCG significantly mitigate Dox-induced genotoxicity in comet, micronucleus, and Ames assays. While Dox exhibits higher selectivity against MCF-7 cells, EGCG and RA show greater selectivity against MDA-MB-231 cells. The coefficient of drug interaction reveals a synergistic effect when RA or EGCG is combined with Dox in breast cancer cells. In conclusion, both EGCG and RA effectively reduce Dox-induced genetic damage and enhance Dox's cell viability-reducing effect in breast cancer cells.
Collapse
Affiliation(s)
- Sinem Helvacioglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İstinye University, Istanbul, Turkey
| | - Mohammad Charehsaz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Ahmet Aydin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
3
|
Arokia Femina T, Barghavi V, Archana K, Swethaa NG, Maddaly R. Non-uniformity in in vitro drug-induced cytotoxicity as evidenced by differences in IC 50 values - implications and way forward. J Pharmacol Toxicol Methods 2023; 119:107238. [PMID: 36521817 DOI: 10.1016/j.vascn.2022.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Cell lines have proven indispensable for in vitro experiments and their utility as experimental models range from understanding the fundamental cell functioning to drug discovery. One of the most common utility of cell lines is for in vitro drug testing. Drug testing involves determining the cytotoxic effects of the drugs and such a measurement is expressed as the IC50 values of drugs. Although determination of IC50 values of drugs on cell lines is one of the most common in vitro experimental approaches, a significant amount of variations can be observed in the results obtained from such studies. Although the variations in the IC50 values of a drug on different cells lines can and should vary, the non-uniformity of such results reported from different studies using a particular drug on a specific cell line is a matter of concern. We present the IC50 values of 5 most commonly used drugs 5-fluorouracil, bleomycin, cisplatin, doxorubicin and methotrexate obtained from several in vitro cell line-based studies. Some of the factors which contribute to the non-uniformity of the IC50 values for a particular drug from different studies are discussed as three types of factors, the biological, non-biological and human factors. Also, ways in which such variations can be reduced to obtain universally common, reliable results are presented.
Collapse
Affiliation(s)
- T Arokia Femina
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India
| | - V Barghavi
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India
| | - K Archana
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India
| | - N G Swethaa
- Department of Biotechnology, Anna University, Guindy, Chennai 600 025, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
4
|
Targeting Inhibition of Notch1 Signaling Pathway on the Study of Human Gastric Cancer Stem Cells with Chemosensitization. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1098394. [PMID: 35515501 PMCID: PMC9064537 DOI: 10.1155/2022/1098394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/31/2022]
Abstract
Background Gastric cancer is the second most frequent cause of cancer death worldwide, although much geographical variation in incidence exists. Prevention and personalized treatment are regarded as the best options to reduce gastric cancer mortality rates (Hartgrink et al., 2009). Numerous studies have suggested that Notch1 and its ligands are overexpressed in gastric cancer, and its knockdown can inhibit the proliferation and survival of gastric cancer cells. Objective To investigate the effect of Notch1 on the stemness and drug sensitivity of human gastric cancer SGC-7901 cells. Methods Highly expressed Notch1 intracellular domain (NICD1) and Notch1-shRNA lentiviral expression vector were used to infect human gastric cancer SGC-7901 cells cultured in vitro, and western blot and immunofluorescence staining were used to identify highly expressed NICD and Notch1 silenced cells. The percentage of CD133+ cells was analyzed by flow cytometry, the expression of nestin and CFAP by immunofluorescence staining, the formation rate of tumor cell spheres and the tumorigenicity of SCID mice in vivo, and the regulation of cell stemness by Notch1. The sensitivity of each group of cells to the chemotherapeutic drugs teniposide (VM-26) and carmustine (BCNU) was also detected by the MTT method. Results The stemness phenotype of tumor cells with the increased NICD expression was enhanced, such as an increased proportion of CD133+ cells, enhanced nestin expression, decreased GFAP expression, increased tumor cell sphere formation rate and tumorigenic rate of SCID mice implantation, and decreased sensitivity to VM-26 and BCNU. In contrast, the stemness phenotype of tumor cells with downregulated Notch1 gene expression was significantly suppressed, while the sensitivity to VM-26 and BCNU was increased. Conclusion High Notch1 expression increased the stemness of SGC-7901 cells and decreased the sensitivity of SGC-7901 cells to chemotherapeutic drugs.
Collapse
|
5
|
Lohiya G, Katti DS. Mesoporous Silica Nanoparticle-Based Combination of Niclosamide and Doxorubicin: Effect of Treatment Regimens on Breast Cancer Subtypes. ACS APPLIED BIO MATERIALS 2021; 4:7811-7824. [PMID: 35006763 DOI: 10.1021/acsabm.1c00753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overexpressed Wnt/β-catenin signaling acts as a major cancer driver and plays an important role in the development of resistance against cancer chemotherapy. Therefore, the combinatorial approach of downregulating Wnt/β-catenin signaling along with using a chemotherapeutic agent may improve cancer therapy. However, systemic administration of free anticancer agents is nonspecific and poses serious side effects. Hence, the present study aimed at developing mesoporous silica nanoparticle (MSN)-based targeted combination therapy of a Wnt signaling inhibitor, niclosamide (Nic), and a conventional anticancer agent, doxorubicin (Dox). The results demonstrated the reproducible synthesis of highly stable and monodispersed sub-100 nm spherical shaped NPs. In vitro cytotoxicity studies demonstrated that the individual drug formulations caused concentration-dependent cytotoxicity to all of the three breast cancer subtypes, with higher concentrations being more cytotoxic. Further, sequential and concurrent combination of Nic-loaded MSNs with Dox-loaded MSNs was synergistic and caused significantly enhanced death in all breast cancer subtypes. Quantification of the combinatorial efficacy suggested that multiple combinatorial pairs were synergistic in all of the breast cancer types for both (sequential and concurrent) treatment regimens. However, the extent of synergism varied between the two treatment regimens in different clinical subtypes of breast cancer. Overall, the combination of Nic-loaded MSNs with Dox-loaded MSNs holds promise to be developed as an efficient therapeutic option for breast cancer irrespective of the clinical subtype in both sequential and concurrent treatment regimens.
Collapse
Affiliation(s)
- Garima Lohiya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India.,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India.,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
6
|
Hanna DH, R. Saad G. Induction of mitochondria mediated apoptosis in human ovarian cancer cells by folic acid coated tin oxide nanoparticles. PLoS One 2021; 16:e0258115. [PMID: 34597348 PMCID: PMC8486119 DOI: 10.1371/journal.pone.0258115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This study aims to prepare folic acid coated tin oxide nanoparticles (FA-SnO2 NPs) for specifically targeting human ovarian cancer cells with minimum side effects against normal cells. METHODS The prepared FA-SnO2 NPs were characterized by FT-IR, UV-vis spectroscopy, XRD, SEM and TEM. The inhibition effects of FA-SnO2 NPs against SKOV3 cancer cell were tested by MTT and LDH assay. Apoptosis induction in FA-SnO2 NPs treated SKOV3 cells were investigated using Annexin V/PI, AO/EB and Comet assays and the possible mechanisms of the cytotoxic action were studied by Flow cytometry, qRT-PCR, Immunohistochemistry, and Western blotting analyses. The effects of FA-SnO2 NPs on reactive oxygen species generation in SKOV3 cells were also examined. Additionally, the safety of utilization FA-SnO2 NPs were studied in vivo using Wister rats. RESULTS The obtained FA-SnO2 NPs displayed amorphous spherical morphology with an average diameter of 157 nm and a zeta potential value of -24 mV. Comparing to uncoated SnO2 NPs, FA-SnO2 NPs had a superior inhibition effect towards SKOV3 cell growth that was suggested to be mediated through higher reactive oxygen species generation. It was showed that FA-SnO2 NPs increased significantly the % of apoptotic cells in the sub- G1 and G2/M phases with a higher intensity comet nucleus in SKOV3 treated cells. Furthermore, FA-SnO2 NPs was significantly increased the expression levels of P53, Bax, and cleaved Caspase-3 and accompanied with a significant decrease of Bcl-2 in the treated SKOV3 cells. CONCLUSION Overall, the results suggested that an increase in cellular FA-SnO2 NPs internalization resulted in a significant induced cytotoxicity in SKOV3 cancer cells in dose-dependent mode through ROS-mediated cell apoptosis that may have occurred through mitochondrial pathway. Additionally, the results confirmed the safety of utilization FA-SnO2 NPs against living systems. So, FA-SnO2 NPs with a specific targeting moiety may be a promising therapeutic candidate for human ovarian cancer.
Collapse
Affiliation(s)
- Demiana H. Hanna
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | - Gamal R. Saad
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Shujaa Edin HY, Al-Haj NA, Rasedee A, Banu Alitheen N, Abdul Kadir A, Wun How C, Sulaiman Rahman H, Al-Shwyeh HA. Recombinant human Erythropoietin enhanced the cytotoxic effects of tamoxifen toward the spheroid MCF-7 breast cancer cells. Saudi J Biol Sci 2021; 28:5214-5220. [PMID: 34466099 PMCID: PMC8381065 DOI: 10.1016/j.sjbs.2021.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Erythropoietin (EPO) is widely used to treat anemia in patients undergoing chemotherapy for cancers. The main objective of this study was to investigate the effect of rHuEPO on the response of spheroid breast cancer, MCF-7, cells to tamoxifen treatment. The MCF-7 spheroids were treated with 10 mg/mL tamoxifen in combination with either 0, 10, 100 or 200 IU/mL rHuEPO for 24, 48 or 72 h. The viability of the MCF-7 cells was determined using the annexin-V, cell cycle, caspases activation and acridine orange/propidium iodide staining. rHuEPO-tamoxifen combination significantly (p greater than 0.05) increased the number of spheroid MCF-7 cells entering early apoptotic phase after 12 h and late apoptotic phase after 24 h of treatment; primarily the result of the antiproliferative effect tamoxifen. Tamoxifen alone significantly (p < 0.05) increased the caspase-3 and −9 activities in the spheroid MCF-7 cells by 200 to 550% of the control. Combination rHuEPO and tamoxifen produced much lesser effect on the caspase-8 activity. The rHuEPO in the combination treatment had concentration-dependently caused decrease in the caspase activities. rHuEPO-tamoxifen combination markedly increased MCF-7 cells entering the SubG0/G1 phase of the cell cycle by more than 500% of the control, while decreasing those entering the G2 + M and S phases by 50%. After 72 h, the combination treatment produced greater (p < 0.05) change in the SubG0/G1 phase than tamoxifen treatment alone. Morphologically, spheroid MCF-7 cells subjected to combination rHuEPO-tamoxifen treatment showed nuclear condensation and margination, cytoplasmic blebbing, necrosis, and early and late apoptosis. Thus, the study showed that rHuEPO-tamoxifen combination induced apoptosis in the spheroid MCF-7 cells. The apoptotic effect of the rHuEPO-tamoxifen combination treatment on the MCF-7 cells was greater than that produced by tamoxifen alone. The rHuEPO-tamoxifen treatment enhanced the caspase-independent apoptotic effects of tamoxifen on the spheroid MCF-7 cells.
Collapse
Key Words
- CC, correlation coefficient
- CV, coefficient of variance
- DG, geometrical mean of diameter
- ECRB, Eppendorf A-4-62 centrifuge rotor 1 MTP buckets
- ESBR, The Eppendorf swing-bucket rotor with tubes rack
- HD, Hanging drop
- Hanging drop
- MCF-7, GMD, geometrical mean diameter
- MCF-7, human breast cell line
- OLT, Overlay technique
- Overlay technique
- Recombinant human erythropoietin
- S, surface area
- Spheroids
- TAM Tamoxifen ULAT, ultra-low adhesive plate
- Tamoxifen
- Ultra-low adhesive plate
- poly-HEMA, Poly 2-hydroxyethyl methacrylate
- rHuEPO, Recombinant human erythropoietin
Collapse
Affiliation(s)
| | - Nagi A Al-Haj
- Faculty of Medicine and Health Sciences, Sana'a University, Yemen
| | - Abdullah Rasedee
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | | | | | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | | | - Hussah Abdullah Al-Shwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441-1982, Saudi Arabia
| |
Collapse
|
8
|
Hanna DH, Lotfy VF, Basta AH, Saad GR. Comparative evaluation for controlling release of niacin from protein- and cellulose-chitosan based hydrogels. Int J Biol Macromol 2020; 150:228-237. [DOI: 10.1016/j.ijbiomac.2020.02.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
|
9
|
Hanna DH, Saad GR. Nanocurcumin: preparation, characterization and cytotoxic effects towards human laryngeal cancer cells. RSC Adv 2020; 10:20724-20737. [PMID: 35517737 PMCID: PMC9054308 DOI: 10.1039/d0ra03719b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to prepare curcumin nanoparticles (nanocurcumin) by a sol-oil method to improve curcumin absorption and bioavailability, and to investigate the therapeutic effects of the prepared nanoparticles on the inhibition mechanisms towards human Hep-2 cancer cells. The nanoparticles were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, and zeta potential analysis. The prepared curcumin nanoparticles possessed a narrow particle size distribution with an average diameter of 28 nm. The inhibition effects on the growth of human Hep-2 cells were investigated using neutral red uptake and lactate dehydrogenase assays. The results indicated that the nanocurcumin has a selective effect in inhibiting Hep-2 cell growth in a dose- and time-dependent mode with the most effective IC50 value (17 ± 0.31 μg ml−1) obtained after 48 h of incubation without any cytotoxic effects on normal cells. This IC50 value of nanocurcumin revealed a significant increase of early and late apoptotic cells with an intense comet nucleus of Hep-2 cells as a marker of DNA damage. Flow cytometry analysis of the progression of apoptosis in nanocurcumin Hep-2 treated cells showed that arresting in the cell cycle in the G2/M phase with increasing apoptotic cells in the sub-G1 phase. At the same time, real-time PCR analysis indicated that the treatment of Hep-2 cells with nanocurcumin resulted in upregulation of P53, Bax, and Caspase-3, whereas there was downregulation of Bcl-XL. These findings gave insights into understanding that the inhibition mechanisms of nanocurcumin on the proliferation of Hep-2 cancer cells was through the G2/M cell cycle arrest and the induction of apoptosis was dependent on Caspase-3 and p53 activation. However, in vivo studies with an animal model are essential to validate these results. The aim of this study was to prepare curcumin nanoparticles using a sol–oil method to improve curcumin absorption and bioavailability, and to investigate the therapeutic effect of the prepared nanoparticles on the inhibition mechanisms toward human Hep-2 cancer cells.![]()
Collapse
Affiliation(s)
- Demiana H. Hanna
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| | - Gamal R. Saad
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| |
Collapse
|
10
|
Beh CY, Rasedee A, Selvarajah GT, Yazan LS, Omar AR, Foong JN, How CW, Foo JB. Enhanced anti-mammary gland cancer activities of tamoxifen-loaded erythropoietin-coated drug delivery system. PLoS One 2019; 14:e0219285. [PMID: 31291309 PMCID: PMC6619690 DOI: 10.1371/journal.pone.0219285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/20/2019] [Indexed: 12/28/2022] Open
Abstract
Nanomedicine is an emerging area in the medical field, particularly in the treatment of cancers. Nanostructured lipid carrier (NLC) was shown to be a good nanoparticulated carrier for the delivery of tamoxifen (TAM). In this study, the tamoxifen-loaded erythropoietin-coated nanostructured lipid carriers (EPO-TAMNLC) were developed to enhance the anti-cancer properties and targetability of TAM, using EPO as the homing ligand for EPO receptors (EpoRs) on breast cancer tissue cells. Tamoxifen-loaded NLC (TAMNLC) was used for comparison. The LA7 cells and LA7 cell-induced rat mammary gland tumor were used as models in the study. Immunocytochemistry staining showed that LA7 cells express estrogen receptors (ERs) and EpoRs. EPO-TAMNLC and TAMNLC significantly (p<0.05) inhibited proliferation of LA7 in dose- and time-dependent manner. EPO-TAMNLC induced apoptosis and G0/G1 cell cycle arrest of LA7 cells. Both drug delivery systems showed anti-mammary gland tumor properties. At an intravenous dose of 5 mg kg-1 body weight, EPO-TAMNLC and TAMNLC were not toxic to rats, suggesting that both are safe therapeutic compounds. In conclusion, EPO-TAMNLC is not only a unique drug delivery system because of the dual drug-loading feature, but also potentially highly specific in the targeting of breast cancer tissues positive for ERs and EpoRs. The incorporation of TAM into NLC with and without EPO coat had significantly (p<0.05) improved specificity and safety of the drug carriers in the treatment of mammary gland tumors.
Collapse
Affiliation(s)
- Chaw Yee Beh
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail: , (AR); (CYB)
| | - Abdullah Rasedee
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail: , (AR); (CYB)
| | | | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Jia Ning Foong
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Chee Wun How
- Centre for Pre-University Studies, Faculty of Pharmacy, MAHSA University, Jenjarom, Kuala Langat, Selangor, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Science, Taylor’s University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
11
|
Evaluation of in vitro efficacy of docetaxel-loaded calcium carbonate aragonite nanoparticles (DTX-CaCO 3NP) on 4T1 mouse breast cancer cell line. In Vitro Cell Dev Biol Anim 2017; 53:896-907. [PMID: 28916966 DOI: 10.1007/s11626-017-0197-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/09/2017] [Indexed: 10/18/2022]
Abstract
Cockle shell-derived calcium carbonate nanoparticles have shown promising potentials as slow drug-releasing compounds in cancer chemotherapy. In this study, we evaluated the in vitro efficacy of docetaxel (DTX)-loaded CaCO3NP on 4T1 cell line. This was achieved by evaluating the following: cytotoxicity using MTT assay, fluorescence imaging, apoptosis with Annexin V assay, cell cycle analysis, scanning (SEM) and transmission electron microscopy (TEM), and scratch assay. Based on the results, DTX-CaCO3NP with a DTX concentration of 0.5 μg/mL and above had comparable cytotoxic effects with free DTX at 24 h, while all concentrations had similar cytotoxic effect on 4T1 cells at 48 and 72 h. Fluorescence and apoptosis assay showed a higher (p < 0.05) number of apoptotic cells in both free DTX and DTX-CaCO3NP groups. Cell cycle analysis showed cycle arrest at subG0 and G2/M phases in both treatment groups. SEM showed presence of cellular blebbing, while TEM showed nuclear fragmentation, apoptosis, and vacuolation in the treatment groups. Scratch assay showed lower (p < 0.05) closure in both free DTX and DTX-CaCO3NP groups. The results from this study showed that DTX-CaCO3NP has similar anticancer effects on 4T1 cells as free DTX, and since it has a slow release rate, it is a more preferred substitute for free DTX.
Collapse
|
12
|
Natural lipids enriched self-nano-emulsifying systems for effective co-delivery of tamoxifen and naringenin: Systematic approach for improved breast cancer therapeutics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1703-1713. [PMID: 28343014 DOI: 10.1016/j.nano.2017.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 01/08/2023]
Abstract
The nano-miceller drug delivery carriers of tamoxifen (TMX) having natural ingredients like polyunsaturated fatty acid (PUFA) with self-nano-emulsifying properties was developed with naringenin (NG) in a synergistic manner i.e. TMX-NG-SNEDDS. The optimized nano-formulation revealed complete drug release in 30 min and >80% permeation in 45 min. Superior cellular uptake potential (4.6-6.5-fold) of the TMX-NG-SNEDDS using Caco-2 cells while cytotoxicity study on MCF-7 cells indicated significant results (P<0.05) of TMX-NG-SNEDDS. The in vivo pharmacokinetic study also construed remarkable improvement (7.3 and 11.4-fold increase in Cmax and AUC) in rate of drug absorption and 2-fold reduction in Tmax by optimized TMX-NG-SNEDDS. In vivo DMBA model construed superior efficacy of the formulation by reducing tumor size, and improved survival rate of the animals justifies its safety aspect as well.
Collapse
|
13
|
Chung TW, Choi H, Lee JM, Ha SH, Kwak CH, Abekura F, Park JY, Chang YC, Ha KT, Cho SH, Chang HW, Lee YC, Kim CH. Oldenlandia diffusa suppresses metastatic potential through inhibiting matrix metalloproteinase-9 and intercellular adhesion molecule-1 expression via p38 and ERK1/2 MAPK pathways and induces apoptosis in human breast cancer MCF-7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:309-317. [PMID: 27876502 DOI: 10.1016/j.jep.2016.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Oldenlandia diffusa (OD) has long been known as an apoptotic inducer in breast tumors in ethnomedicine. AIM OF THE STUDY To scientifically confirm the anti-breast cancer effects of water, methanol (MeOH) and butanol (BuOH) extracts of O. diffusa on cell apoptosis, matrix metalloproteinases (MMPs), intercellular adhesion molecule (ICAM)-1 and intracellular signaling in MCF-7 breast cancer cells. MATERIALS AND METHODS MeOH extracts (MOD) and BuOH extracts (BOD) were prepared and examined for their ability to inhibit phorbol myristate acetate (PMA)-induced matrix metalloproteinase (MMP)-9 and intercellular adhesion molecule (ICAM)-1 expressions in MCF-7 human breast cancer cells. Additionally, transwell migration, invasion and transcriptional activity were assessed. Results of immunofluorescence confocal microscopy for translocation of NF-κB and p-ERK and p-p38 were also checked. Finally, apoptotic signals including processed caspase-8, caspase-7, poly ADP-ribose polymerase, Bax and Bcl-2 were examined. RESULTS MOD and BOD specifically inhibited PMA-induced MMP-9 expression as well as invasive and migration potential via ICAM-1. The inhibitory activity was also based on the suppressed transcriptional activity in MCF-7 breast cancer cells. Results of immunofluorescence confocal microscopy showed that translocation of NF-κB decreased upon BOD and MOD treatments, with a decreased level of p-ERK and p-p38 phosphorylation. In addition, treatment of MCF-7 cells with MOD and BOD activated apoptosis-linked proteins including enzymatically active forms of processed caspase-8, caspase-7 and poly ADP-ribose polymerase, together with increased expression of mitochondrial apoptotic protein, Bax and decreased expression of Bcl-2. CONCLUSION The results indicate that OD as an anti-metastatic agent suppresses the metastatic response by targeting p-ERK, p-38 and NF-κB, thus reducing the invasion capacity of MCF-7 breast cancer cells through inhibition of MMP-9 and ICAM-1 expression and plays an important role in the regulation of breast cancer cell apoptosis.
Collapse
Affiliation(s)
- Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine and Research Center for Healthy Aging, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea.
| | - Hyunju Choi
- Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Korea.
| | - Ji-Min Lee
- Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Korea.
| | - Sun-Hyung Ha
- Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Korea.
| | - Choong-Hwan Kwak
- Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Korea.
| | - Fukushi Abekura
- Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Korea.
| | - Jun-Young Park
- Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Korea.
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea.
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine and Research Center for Healthy Aging, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea.
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju 363-951, Korea.
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Korea.
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea.
| | - Cheorl-Ho Kim
- Division of Applied Medicine, School of Korean Medicine and Research Center for Healthy Aging, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea.
| |
Collapse
|