1
|
Xie J, Hu X, Li H, Zhu H, Lin W, Li L, Wang J, Song H, Jia L. Murine models of neonatal susceptibility to a clinical strain of enterovirus A71. Virus Res 2023; 324:199038. [PMID: 36599394 DOI: 10.1016/j.virusres.2022.199038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/11/2022] [Accepted: 12/31/2022] [Indexed: 01/02/2023]
Abstract
Enterovirus A71 (EV-A71) is neurotropic and one of the primary enteric pathogens responsible for severe central nervous system infection in infants and young children. Neonatal mice are ideal models for studying the pathogenesis of infection caused by EV-A71. In this study, we assessed the susceptibility of neonatal BALB/c, C57BL/6, ICR, Kunming, and NIH mice to a clinically isolated EV-A71 strain. One-day-old mice were challenged with a clinical isolate of EV-A71 via intraperitoneal injection, then observed for 13 days for mortality, body-weight changes, and limb paralysis. RT-qPCR was performed to quantify viral RNA in the brain, spinal cord, skeletal muscle, and lungs of BALB/c and C57BL/6 mice. The expression of murine scavenger receptor class B member 2 (mSCARB2) was measured by western blotting. Finally, lesions were assessed by histological examination. We found that neonatal BALB/c and C57BL/6 mice were both susceptible to EV-A71, leading to decreased survival rate, greater body weight loss, and prominent hind-limb paralysis. Tissue viral loads of C57BL/6J mice were markedly higher than those of BALB/c mice, indicating that EV-A71 replicated more efficiently in C57BL/6 mice. Increased expression of mSCARB2 was observed 5 days after infection in C57BL/6 mice, which coincided with the peak in EV-A71 replication. Histological examination indicated that infection caused obvious pathogenic lesions. In conclusion, C57BL/6 are most susceptible to infection caused by EV-A71 and can be used as a model for studying its pathogenesis and test therapeutic options.
Collapse
Affiliation(s)
- Jing Xie
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Xinyan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China; Center for Disease Control and Prevention of PLA, Beijing, China
| | - Huan Li
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Hongwei Zhu
- Department of Orthopedic Surgery, Fourth center of Chinese PLA General Hospital, Beijing, China
| | - Weishi Lin
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Lizhong Li
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Ji Wang
- Chinese Center for Disease Controls and Prevention, Beijing, China
| | - Hongbin Song
- Center for Disease Control and Prevention of PLA, Beijing, China.
| | - Leili Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China; Center for Disease Control and Prevention of PLA, Beijing, China.
| |
Collapse
|
2
|
Wu Y, Qu Z, Xiong R, Yang Y, Liu S, Nie J, Liang C, Huang W, Wang Y, Fan C. A practical method for evaluating the in vivo efficacy of EVA-71 vaccine using a hSCARB2 knock-in mouse model. Emerg Microbes Infect 2021; 10:1180-1190. [PMID: 34044752 PMCID: PMC8205003 DOI: 10.1080/22221751.2021.1934558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/12/2023]
Abstract
Hand-foot-and-mouth disease is a contagious disease common among children under 5 years old worldwide. It is caused by strains of enterovirus, especially EV-A71, which can lead to severe disease. Vaccines are the only way to fight this disease. Accordingly, it is necessary to establish an efficient and accurate methodology to evaluate vaccine efficacy in vivo. Here, we established a practical method using a hSCARB2 knock-in mouse model, which was susceptible to EV-A71 infection at 5-6 weeks of age, to directly determine the efficacy of vaccines. Unlike traditional approaches, one-week-old hSCARB2 mice were immunized twice with a licensed vaccine, with an interval of a week. The titre of antibodies was measured after 1 week. Mice at 4 weeks of age were challenged with EV-A71 intraperitoneally and intracranially, respectively. The unimmunized hSCARB2 mice displayed systemic clinical symptoms and succumbed to the disease at a rate of approximately 50%. High viral loads were detected in the lungs, brain, and muscles, accompanied by clear pathological changes. The expression of IL-1β, IL-13, IL-17, and TNF-α was significantly upregulated. By contrast, the immunized group was practically normal and indistinguishable from the control mice. These results indicate that the hSCARB2 knock-in mouse is susceptible to infection in adulthood, and the in vivo efficacy of EV-A71 vaccine could be directly evaluated in this mouse model. The method developed here may be used in the development of new vaccines against HFMD or quality control of licensed vaccines.
Collapse
Affiliation(s)
- Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Zhe Qu
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Rui Xiong
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Yanwei Yang
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Jianhui Nie
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Chunnan Liang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| |
Collapse
|
3
|
Abstract
Hand, Foot and Mouth Disease (HFMD) is usually a self-limiting, mild childhood disease that is caused mainly by Coxsackie virus A16 (CVA16) and Enterovirus A71 (EV-A71), both members of the Picornaviridae family. However, recurring HFMD outbreaks and epidemics due to EV-A71 infection in the Western Pacific region, and the propensity of EV-A71 strains to cause severe neurological complications have made this neurotropic virus a serious public health concern in afflicted countries. High mutation rate leading to viral quasispecies combined with frequent intra- and inter-typic recombination events amongst co-circulating EV-A71 strains have contributed to the great diversity and fast evolution of EV-A71 genomes, making impossible any accurate prediction of the next epidemic strain. Comparative genome sequence analyses and mutagenesis approaches have led to the identification of a number of viral determinants involved in EV-A71 fitness and virulence. These viral determinants include amino acid residues located in the structural proteins of the virus, affecting attachment to the host cell surface, receptor binding, and uncoating events. Critical residues in non-structural proteins have also been identified, including 2C, 3A, 3C proteases and the RNA-dependent RNA polymerase. Finally, mutations altering key secondary structures in the 5’ untranslated region were also found to influence EV-A71 fitness and virulence. While our current understanding of EV-A71 pathogenesis remains fragmented, these studies may help in the rational design of effective treatments and broadly protective vaccine candidates.
Collapse
Affiliation(s)
- Pei Yi Ang
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Connie Wan Hui Chong
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
4
|
Regulation of RDN on Th1/ILC1 cell imbalance in HFMD patients caused by EV71 infection. Chin J Nat Med 2021; 19:205-211. [PMID: 33781454 DOI: 10.1016/s1875-5364(21)60022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 11/23/2022]
Abstract
Enterovirus 71 (EV71) infection is more likely to cause hand, foot and mouth disease (HFMD) in children, which can lead to neurogenic complications and higher mortality. As a commonly used clinical medicine, Reduning injection (RDN) helps to shorten the symptoms of patients with HFMD and facilitate the early recovery of children. However, the regulatory mechanism of RDN on the HFMD immune system disorder caused by EV71 remains to be discussed. This study collected detailed treatment data of 56 children with HFMD who entered the affiliated Children's Hospital of Nanjing Medical University during 2019. Retrospective analysis of clinical data showed that the symptoms of the RDN treatment group were improved compared with the untreated group. To explore its mechanism, the relevant detection indicators were detected by flow cytometry, enzyme-linked immunosorbent assay and real-time quantitative PCR. It was found that the number and function of innate immune (ILCs) and adaptive immunity (Th1, Th2 and secreted cytokines) were reduced, suggesting that RDN plays a role by regulating cellular immunity. The in vitro differentiation inhibition test further confirmed that RDN affected Th1 differentiation by inhibiting the expression of transcription factors on the basis of Th1 cell differentiation in vitro.
Collapse
|
5
|
Abstract
EV-A71 was supposed to infect the CNS through the neural pathway and the circulation of the blood in previous studies. Reverse axon transport had been confirmed as an important pathway for EV-A71 to infect the CNS; however, it is still unknown how EV-A71 infects the CNS through the circulation of the blood. Combined with the infectivity of sEVs secreted from EV-A71-infected cells and the characteristic that sEVs could cross the blood-brain barrier, we considered that sEVs may play a vital role in EV-A71 pathogenesis of the CNS. Enterovirus A71 (EV-A71) is the major pathogen of hand, foot, and mouth disease (HFMD); in some severe cases, it could develop into central nervous system (CNS) disease such as aseptic meningitis, encephalitis, and neurogenic pulmonary edema in children under 5 years. The EV-A71 pathogenesis which is involved with the CNS is unclear due to the lack of a simple and reliable mouse model thus far. Most clinical EV-A71 isolates could not effectively infect the neonatal mouse, which used to be an EV-A71 infection model. The small extracellular vesicles (sEVs) released from clinical EV-A71 isolate-infected cells were infectious in cell lines and could cause a high viral replication in mice. Neonatal ICR mice were injected intraperitoneally with these infectious sEVs and showed more weight loss and higher mortality than those mice injected with the clinical EV-A71 isolate. By using these sEVs, we provided a simple and effective method by which we can generate a stable and valuable animal model for the studies of EV-A71 pathogenesis and therapy. IMPORTANCE EV-A71 was supposed to infect the CNS through the neural pathway and the circulation of the blood in previous studies. Reverse axon transport had been confirmed as an important pathway for EV-A71 to infect the CNS; however, it is still unknown how EV-A71 infects the CNS through the circulation of the blood. Combined with the infectivity of sEVs secreted from EV-A71-infected cells and the characteristic that sEVs could cross the blood-brain barrier, we considered that sEVs may play a vital role in EV-A71 pathogenesis of the CNS.
Collapse
|
6
|
Zhou F, Chen X, Chen G, Yan J, Xiao Y. Identification of SAA and ACTB as potential biomarker of patients with severe HFMD using iTRAQ quantitative proteomics. Clin Biochem 2019; 67:1-6. [PMID: 30817906 DOI: 10.1016/j.clinbiochem.2019.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 02/01/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Abstract
Hand, foot and mouth disease (HFMD) is an infectious disease caused by a variety of enterovirus infections, and the most common types of virus infections are the newenterovirus71 (EV71) and coxsackievirus A group 16 (CoxA16). A small fraction of HFMD will cause further severe HFMD. A rapid and accurate diagnosis biomarker of severe HFMD is important for the timely treatment. In the study, we conducted a clinical biomarker discovery study using iTRAQ combined with MS. Serum proteome alterations in severe HFMD group (n = 32) and health control group (n = 32) were analyzed. 47 proteins were upregulated (fold change > 1.5) between the severe HFMD group and HC group. The identified proteins were classified into different groups according to the molecular function, biology processes, cellular component. During the up-regulated proteins, serum amyloid A (SAA) and human β-actin (ACTB), were confirmed in the serum of the severe HFMD and HC by ELISA assay. SAA and ACTB levels were significantly higher in the sever HFMD patients (P < .01), consistent with iTRAQ-LC-MS/MS analysis. In summary, Our results showed that SAA and human β-actin (ACTB) may be served as a potential biomarker of the clinical diagnosis of severe HFMD.
Collapse
Affiliation(s)
- Fangye Zhou
- Fujian Medical University Teaching Hospital, First Hospital of Putian, China
| | - Xianqian Chen
- Fujian Medical University Teaching Hospital, First Hospital of Putian, China.
| | - Guoxian Chen
- Fujian Medical University Teaching Hospital, First Hospital of Putian, China
| | - Junhua Yan
- Fujian Medical University Teaching Hospital, First Hospital of Putian, China
| | - Yupeng Xiao
- Fujian Medical University Teaching Hospital, First Hospital of Putian, China
| |
Collapse
|
7
|
Dong ZP, Wang Q, Zhang ZJ, Carr MJ, Li D, Shi WF. Murine model of acute myocarditis and cerebral cortical neuron edema induced by coxsackievirus B4. Zool Res 2018; 39:52-57. [PMID: 29511145 PMCID: PMC5869242 DOI: 10.24272/j.issn.2095-8137.2017.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Globally, coxsackievirus B4 (CV-B4) has been continuously isolated and evidence suggests an association with the development of pancreatitis and type I diabetes. In addition, CV-B4 is also associated with myocarditis and severe central nervous system (CNS) complications, which remain poorly studied and understood. In the present study, we established an Institute for Cancer Research (ICR) mouse model of CV-B4 infection and examined whether CV-B4 infection resulted in a predisposition to myocarditis and CNS infection. We found high survival in both the treatment and control group, with no significant differences in clinical outcomes observed. However, pathological lesions were evident in both brain and heart tissue of the CV-B4-infected mice. In addition, high viral loads were found in the neural and cardiac tissues as early as 2 days post infection. Expressions of IFN-γ and IL-6 in sera were significantly higher in CV-B4-infected mice compared to uninfected negative controls, suggesting the involvement of these cytokines in the development of histopathological lesions. Our murine model successfully reproduced the acute myocarditis and cerebral cortical neuron edema induced by CV-B4, and may be useful for the evaluation of vaccine candidates and potential antivirals against CV-B4 infection.
Collapse
Affiliation(s)
- Zhao-Peng Dong
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian Shandong 271000, China
- Shanghai Jinshan Center for Disease Control and Prevention, Shanghai 201599, China
| | - Qian Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian Shandong 271000, China
- School of Public Health, Taishan Medical University, Taian Shandong 271016, China
| | - Zhen-Jie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian Shandong 271000, China
| | - Michael J Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8589, Japan
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Dong Li
- School of Public Health, Taishan Medical University, Taian Shandong 271016, China
| | - Wei-Feng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian Shandong 271000, China.
| |
Collapse
|
8
|
Yee PTI, Poh CL. T Cell Immunity To Enterovirus 71 Infection In Humans And Implications For Vaccine Development. Int J Med Sci 2018; 15:1143-1152. [PMID: 30123051 PMCID: PMC6097258 DOI: 10.7150/ijms.26450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/05/2018] [Indexed: 01/23/2023] Open
Abstract
Enterovirus 71 (EV-A71) is one of the major pathogens causing hand, foot and mouth disease (HFMD). Some strains can lead to neurological disease and fatality in children. Up to date, there is no FDA-approved vaccine to prevent severe HFMD and mortality. Although the inactivated vaccine has advanced to production in China, lack of long-term protection and the requirement of multiple boosters have necessitated the development of other types of vaccines. Recent studies indicate that cellular and not humoral immunity determines the clinical outcome of EV-A71 infections. High levels of cytokines such as IL-1β, IL-6, IL-10 and IFN-γ tend to correlate with clinical severity in patients with pulmonary edema and encephalitis. The live attenuated vaccine may serve as the preferred choice as it can induce excellent humoral and cellular immunity as well as live-long immunity. Expression of certain HLA alleles such as TNF-α promoter type II (-308 allele), HLA-A33 and HLA-DR17 responses have been linked to severe HFMD. However, the high variability of MHC genes could restrict T cell recognition and be a major obstacle in the design of peptide vaccines. Hence, the development of a T cell universal vaccine (incorporating both CD4+ and CD8+ T cell epitopes) that induces broad, multifunctional and cross-reactive CD8+ T cell responses maybe desirable.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia
| |
Collapse
|
9
|
Jin Z, Yang L, Ding G, Yang G, Han Y, Zhang X, Li W. Sophocarpine against enterovirus 71 in vitro. Exp Ther Med 2017; 14:3792-3797. [PMID: 29042981 DOI: 10.3892/etm.2017.4958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Sophocarpine (SCA) is a bioactive alkaloid present in Sophoraflavescens Ait. The present study demonstrated that SCA inhibited enterovirus 71 (EV71) infection in Vero cells. The results indicated that the 50% cytotoxicity concentration of SCA for Vero cells was 1,346 µg/ml, and the 50% inhibition concentration of SCA against EV71 was 350 µg/ml. SCA produced a marked inhibitory effect against EV71 when the Vero cells were treated with SCA prior to infection with the virus. Additionally, SCA was effective against EV71 when the Vero cells were infected with EV71 (100xTCID50) that had been treated with SCA for 2 h, and was effective when the Vero cells were infected with EV71 (100xTCID50) at 37°C under 5% CO2 for 2 h prior to treatment with SCA for 2 h. SCA was demonstrated to inhibit the attachment and penetration of EV71 and was more effective at inhibiting attachment. The assay additionally verified that SCA suppressed the replication of viral genomic RNA and indicated that SCA may inhibit EV71 infection in vitro.
Collapse
Affiliation(s)
- Zengjun Jin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of The Chinese Academy of Sciences, Beijing 100049, P.R. China.,Handan Municipal Centre for Disease Control and Prevention, Handan, Hebei 056008, P.R. China
| | - Lixin Yang
- Hebei Centre for Disease Control and Prevention, Shijiazhuang, Hebei 050021, P.R. China
| | - Guotao Ding
- Handan Municipal Centre for Disease Control and Prevention, Handan, Hebei 056008, P.R. China.,College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, P.R. China
| | - Guoxing Yang
- Handan Municipal Centre for Disease Control and Prevention, Handan, Hebei 056008, P.R. China
| | - Yonghong Han
- Handan Municipal Centre for Disease Control and Prevention, Handan, Hebei 056008, P.R. China
| | - Xia Zhang
- School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Weihao Li
- Handan Municipal Centre for Disease Control and Prevention, Handan, Hebei 056008, P.R. China
| |
Collapse
|
10
|
Li P, Yue Y, Song N, Li B, Meng H, Yang G, Li Z, An L, Qin L. Genome analysis of enterovirus 71 strains differing in mouse pathogenicity. Virus Genes 2016; 52:161-71. [PMID: 26781949 DOI: 10.1007/s11262-015-1271-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/08/2015] [Indexed: 11/25/2022]
Abstract
Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD) and is occasionally associated with severe neurological diseases. The investigation of virulence determinants of EV71 is rudimentary. Therefore, it is important to understand the relationship between EV71 virulence and genomic information. In this study, a series of analyses about full-length genomic sequence were performed on six EV71 strains isolated from HFMD patients with either severe or mild clinical symptoms. A one-day-old BALB/c mouse model was used to study the infection characteristics. Results showed all six strains were of the subgenogroup C4a. Viral full-length genomic sequence analysis showed that a total of 40 nucleotide differences between strains of highly and low virulence were revealed. Among all mutations, three nucleotide mutations were found in the untranslated region. A mutation, nt115, at internal ribozyme entry site (IRES) caused RNA secondary structural change. The other 37 mutations were all located in the open reading frame resulting in 8 amino acid mutations. Importantly, we discovered that a mutation of amino acid (Asn1617 → Asp1617) in the 3C proteinase (3C(pro)) of highly and low pathogenic strains could lead to conformational change at the active center, suggesting that this site may be a virulence determinant of EV71.
Collapse
Affiliation(s)
- Peng Li
- College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014, People's Republic of China
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan, 250062, People's Republic of China
| | - Yingying Yue
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan, 250062, People's Republic of China
| | - Nannan Song
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan, 250062, People's Republic of China
| | - Bingqing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan, 250062, People's Republic of China
| | - Hong Meng
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan, 250062, People's Republic of China
| | - Guiwen Yang
- College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Zhihui Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan, 250062, People's Republic of China
| | - Liguo An
- College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014, People's Republic of China.
| | - Lizeng Qin
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan, 250062, People's Republic of China.
| |
Collapse
|