1
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Lee YS, Javan H, Reems JA, Li L, Lusty Beech J, Schaaf CI, Pierce J, Phillips JD, Selzman CH. Acellular human amniotic fluid protects the ischemic/reperfused rat myocardium. Am J Physiol Heart Circ Physiol 2022; 322:H406-H416. [DOI: 10.1152/ajpheart.00331.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amniotic products are potent immunomodulators utilized clinically to repair tissue injury. Little information exists regarding the potential of cell-free human amniotic fluid (hAF) to treat cardiovascular disease. Herein, we sought to determine the influence and efficacy of acellular hAF on myocardial ischemia/reperfusion injury. Processed hAF was obtained from volunteer donors at the time of elective caesarean section and manufactured using proprietary methods. Left anterior descending coronary artery ligation was performed on rats for 60 minutes. Thirty minutes after release and reperfusion, either saline or hAF was injected intramyocardially. Serial echocardiography revealed that compared to saline injected rats, hAF animals maintained their ejection fraction and did not adversely remodel through the 4-week period. This preserved ventricular function correlated with decreased infarct size, less fibrosis, and reduced expression of cytokines and infiltrating inflammatory cells. Comparative arrays of different donor hAF lots confirmed the presence of a wide array of immunomodulatory and host-defense proteins. The observed functional cardioprotection was furthermore evident when given intravenously and across multiple hAF donors. In conclusion, our data demonstrate, for the first time, the cardioprotective effect of acellular hAF on myocardial injury. These observations spanned across diverse donors and likely result from the mixture of a plethora of naturally produced cytokines, chemokines, and immune-modulating proteins rather than a single, defined mechanistic culprit. The ubiquitous availability of hAF as a cell-free solution further suggests its potential for widespread adoption as a therapy for myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Young Sook Lee
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Hadi Javan
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jo-Anna Reems
- Cell Therapy and Regenerative Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ling Li
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jessica Lusty Beech
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Christine I. Schaaf
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jan Pierce
- Cell Therapy and Regenerative Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - John D. Phillips
- Cell Therapy and Regenerative Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Craig H. Selzman
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Gu LF, Chen JQ, Lin QY, Yang YZ. Roles of mitochondrial unfolded protein response in mammalian stem cells. World J Stem Cells 2021; 13:737-752. [PMID: 34367475 PMCID: PMC8316864 DOI: 10.4252/wjsc.v13.i7.737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress. Under physiological and pathological conditions, the UPRmt is the key to maintaining intracellular homeostasis and proteostasis. Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development, metabolism, and immune processes. UPRmt dysfunction leads to a variety of pathologies, including cancer, inflammation, neurodegenerative disease, metabolic disease, and immune disease. Stem cells have a special ability to self-renew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues. These cells are involved in development, tissue renewal, and some disease processes. Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported, the roles of the UPRmt in stem cells are not fully understood. The roles and functions of the UPRmt depend on stem cell type. Therefore, this paper summarizes the potential significance of the UPRmt in embryonic stem cells, tissue stem cells, tumor stem cells, and induced pluripotent stem cells. The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.
Collapse
Affiliation(s)
- Li-Fang Gu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia-Qi Chen
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Qing-Yin Lin
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan-Zhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750001, Ningxia Hui Autonomous Region, China,
| |
Collapse
|
4
|
Varkouhi AK, Monteiro APT, Tsoporis JN, Mei SHJ, Stewart DJ, Dos Santos CC. Genetically Modified Mesenchymal Stromal/Stem Cells: Application in Critical Illness. Stem Cell Rev Rep 2021; 16:812-827. [PMID: 32671645 PMCID: PMC7363458 DOI: 10.1007/s12015-020-10000-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Critical illnesses including sepsis, acute respiratory distress syndromes, ischemic cardiovascular disorders and acute organ injuries are associated with high mortality, morbidity as well as significant health care system expenses. While these diverse conditions require different specific therapeutic approaches, mesenchymal stem/stromal cell (MSCs) are multipotent cells capable of self-renewal, tri-lineage differentiation with a broad range regenerative and immunomodulatory activities, making them attractive for the treatment of critical illness. The therapeutic effects of MSCs have been extensively investigated in several pre-clinical models of critical illness as well as in phase I and II clinical cell therapy trials with mixed results. Whilst these studies have demonstrated the therapeutic potential for MSC therapy in critical illness, optimization for clinical use is an ongoing challenge. MSCs can be readily genetically modified by application of different techniques and tools leading to overexpress or inhibit genes related to their immunomodulatory or regenerative functions. Here we will review recent approaches designed to enhance the therapeutic potential of MSCs with an emphasis on the technology used to generate genetically modified cells, target genes, target diseases and the implication of genetically modified MSCs in cell therapy for critical illness.
Collapse
Affiliation(s)
- Amir K Varkouhi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology (NJIT), Newark, NJ, 07102, USA
| | - Ana Paula Teixeira Monteiro
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James N Tsoporis
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada
| | - Shirley H J Mei
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Claudia C Dos Santos
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada. .,Interdepartmental Division of Critical Care, St. Michael's Hospital/University of Toronto, 30 Bond Street, Room 4-008, Toronto, ON, M5B 1WB, Canada.
| |
Collapse
|
5
|
Wang MY, Wang YX, Li-Ling J, Xie HQ. Adult Stem Cell Therapy for Premature Ovarian Failure: From Bench to Bedside. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:63-78. [PMID: 33427039 DOI: 10.1089/ten.teb.2020.0205] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Premature ovarian failure (POF) is a devastating condition for women of childbearing age with serious health consequences, including distress, infertility, osteoporosis, autoimmune disorders, ischemic heart disease, and increased mortality. In addition to the mainstay estrogen therapy, stem cell therapy has been tested as the result of rapid progress in cell biology and reprogramming research. We hereby provide a review for the latest research and issues related with stem cell-based therapy for POF, and provide a commentary on various methods for enhancing its effect. Large amount of animal studies have demonstrated an extensive benefit of stem cells for failed ovarian recovering. As shown by such studies, stem cell therapy can result in recovery of hormonal levels, follicular activation, ovarian angiogenesis, and functional restoration. Meanwhile, a study of molecular pathways revealed that the function of stem cells mainly depends on their paracrine actions, which can produce multiple factors for the promotion of ovarian angiogenesis and regulation of cellular functions. Nevertheless, studies using disease models also revealed certain drawbacks. Clinical trials have shown that menstrual cycle and even pregnancy may occur in POF patients following transplantation of stem cells, although the limitations, including inadequate number of cases and space for the improvement of transplantation methodology. Only with its safety and effect get substantial improvement through laboratory experiments and clinical trials, can stem cell therapy really bring benefits to more patients. Additionally, effective pretreatment and appropriate transplantation methods for stem cells are also required. Taken together, stem cell therapy has shown a great potential for the reversal of POF and is stepping from bench to bedside. Impact statement Premature ovarian failure (POF) is a devastating condition with serious clinical consequences. The purpose of this review was to summarize the current status of stem cell therapy for POF. Considering the diversity of cell types and functions, a rigorous review is required for the guidance for further research into this field. Meanwhile, the challenges and prospect for clinical application of stem cell treatment, methodological improvements, and innovations are addressed.
Collapse
Affiliation(s)
- Ming-Yao Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yi-Xuan Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
6
|
Damasceno PKF, de Santana TA, Santos GC, Orge ID, Silva DN, Albuquerque JF, Golinelli G, Grisendi G, Pinelli M, Ribeiro Dos Santos R, Dominici M, Soares MBP. Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine. Front Cell Dev Biol 2020; 8:737. [PMID: 32974331 PMCID: PMC7471932 DOI: 10.3389/fcell.2020.00737] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been widely studied in the field of regenerative medicine for applications in the treatment of several disease settings. The therapeutic potential of MSCs has been evaluated in studies in vitro and in vivo, especially based on their anti-inflammatory and pro-regenerative action, through the secretion of soluble mediators. In many cases, however, insufficient engraftment and limited beneficial effects of MSCs indicate the need of approaches to enhance their survival, migration and therapeutic potential. Genetic engineering emerges as a means to induce the expression of different proteins and soluble factors with a wide range of applications, such as growth factors, cytokines, chemokines, transcription factors, enzymes and microRNAs. Distinct strategies have been applied to induce genetic modifications with the goal to enhance the potential of MCSs. This review aims to contribute to the update of the different genetically engineered tools employed for MSCs modification, as well as the factors investigated in different fields in which genetically engineered MSCs have been tested.
Collapse
Affiliation(s)
- Patricia Kauanna Fonseca Damasceno
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | | | - Iasmim Diniz Orge
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | - Giulia Golinelli
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Ricardo Ribeiro Dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW During the last decades, the field of regenerative medicine has been rapidly evolving. Major progress has been made in the development of biological substitutes applying the principles of cell transplantation, material science, and bioengineering. RECENT FINDINGS Among other sources, amniotic-derived products have been used for decades in various fields of medicine as a biomaterial for the wound care and tissue replacement. Moreover, human amniotic epithelial and mesenchymal cells have been intensively studied for their immunomodulatory capacities. Amniotic cells possess two major characteristics that have already been widely exploited. The first is their ability to modulate and suppress the innate and adaptive immunities, making them a true asset for chronic inflammatory disorders and for the induction of tolerance in transplantation models. The second is their multilineage differentiation capacity, offering a source of cells for tissue engineering. The latter combined with the use of amniotic membrane as a scaffold offers all components necessary to create an optimal environment for cell and tissue regeneration. This review summarizes beneficial properties of hAM and its derivatives and discusses their potential in regenerative medicine.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
8
|
Koike Y, Li B, Lee C, Alganabi M, Zhu H, Chusilp S, Lee D, Cheng S, Li Q, Pierro A. The intestinal injury caused by ischemia-reperfusion is attenuated by amniotic fluid stem cells via the release of tumor necrosis factor-stimulated gene 6 protein. FASEB J 2020; 34:6824-6836. [PMID: 32223023 DOI: 10.1096/fj.201902892rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022]
Abstract
Ischemia/reperfusion (I/R) is implicated in the pathogenesis of various acute intestinal injuries. Amniotic fluid stem cells (AFSC) are beneficial in experimental intestinal diseases. Tumor necrosis factor-induced protein 6 (TSG-6) has been shown to exert anti-inflammatory effects. We aimed to investigate if AFSC secreted TSG-6 reduces inflammation and rescues intestinal I/R injury. The superior mesenteric artery of 3-week-old rats was occluded for 90 minutes and green fluorescent protein-labeled AFSC or recombinant TSG-6 was injected intravenously upon reperfusion. AFSC distribution was evaluated at 24, 48, and 72 hours after I/R. AFSC and TSG-6 effects on the intestine were assessed 48 hours postsurgery. Intestinal organoids were used to study the effects of TSG-6 after hypoxia-induced epithelial damage. After I/R-induced intestinal injury, AFSC migrated preferentially to the ileum, the primary site of injury, through blood circulation. Engrafted AFSC reduced ileum injury, inflammation, and oxidative stress. These AFSC-mediated beneficial effects were dependent on secretion of TSG-6. Administration of TSG-6 protected against hypoxia-induced epithelial damage in intestinal organoids. Finally, TSG-6 attenuated intestinal damage during I/R by suppressing genes involved in wound and injury pathways. This study indicates that AFSC or TSG-6 have the potential of rescuing the intestine from the damage caused by I/R.
Collapse
Affiliation(s)
- Yuhki Koike
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Gastrointestinal and Paediatric Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Bo Li
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Lee
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mashriq Alganabi
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Haitao Zhu
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sinobol Chusilp
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dorothy Lee
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shigang Cheng
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Qi Li
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
9
|
Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue Cell 2020; 64:101330. [PMID: 32473704 DOI: 10.1016/j.tice.2020.101330] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent, genomic stable, self-renewable, and culturally expandable adult stem cells. MSCs facilitate tissue development, maintenance and repair, and produce secretory factors that support engraftment and trophic functions, marking them an attractive option in cell therapy, regenerative medicine and tissue engineering. METHOD In this review, we summarize the recent researches regarding the isolation and characterization of MSCs, therapeutic applications and advanced engineering techniques. We also discuss the advantages and limitations that remain to be overcome for MSCs based therapy. RESULTS It has been demonstrated that MSCs are able to modulate endogenous tissue and immune cells. Preclinical studies and early phase clinical trials have shown their great potential for tissue engineering of bone, cartilage, marrow stroma, muscle, fat, and other connective tissues. CONCLUSIONS MSC-based therapy show considerable promise to rebuild damaged or diseased tissues, which could be a promising therapeutic method for regeneration medicine.
Collapse
|
10
|
HiPS-Cardiac Trilineage Cell Generation and Transplantation: a Novel Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2019; 13:110-119. [PMID: 31152358 DOI: 10.1007/s12265-019-09891-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
Despite primary percutaneous coronary intervention (PPCI) and the availability of optimal medications, including dual antiplatelet therapy (DAPT), most patients still experience major adverse cardiovascular events (MACEs) due to frequent recurrence of thrombotic complications and myocardial infarction (MI). MI occurs secondary to a massive loss of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes (CMs). The adult cardiovascular system gradually loses the ability to spontaneously and regularly regenerate ECs, VSMCs, and CMs. However, human cells can be induced by cytokines and growth factors to regenerate human-induced pluripotent stem cells (hiPSCs), which progress to produce cardiac trilineage cells (CTCs) such as ECs, VSMCs, and CMs, replacing lost cells and inducing myocardial repair. Nevertheless, the processes and pathways involved in hiPSC-CTC generation and their potential therapeutic effects remain unknown. Herein, we provide evidence of in vitro CTC generation, the pathways involved, in vivo transplantation, and its therapeutic effect, which may provide novel targets in regenerative medicine for the treatment of cardiovascular diseases (CVDs).
Collapse
|
11
|
Proteomic analysis of human mesenchymal stromal cell secretomes: a systematic comparison of the angiogenic potential. NPJ Regen Med 2019; 4:8. [PMID: 31016031 PMCID: PMC6467904 DOI: 10.1038/s41536-019-0070-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/15/2019] [Indexed: 12/23/2022] Open
Abstract
Human mesenchymal stromal cell (hMSC) secretomes have shown to influence the microenvironment upon injury, promoting cytoprotection, angiogenesis, and tissue repair. The angiogenic potential is of particular interest for the treatment of ischemic diseases. Interestingly, hMSC secretomes isolated from different tissue sources have shown dissimilarities with respect to their angiogenic profile. This study compares angiogenesis of hMSC secretomes from adipose tissue (hADSCs), bone marrow (hBMSCs), and umbilical cord Wharton’s jelly (hWJSCs). hMSC secretomes were obtained under xenofree conditions and analyzed by liquid chromatography tandem mass spectrometry (LC/MS-MS). Biological processes related to angiogenesis were found to be enriched in the proteomic profile of hMSC secretomes. hWJSC secretomes revealed a more complete angiogenic network with higher concentrations of angiogenesis related proteins, followed by hBMSC secretomes. hADSC secretomes lacked central angiogenic proteins and expressed most detected proteins to a significantly lower level. In vivo all secretomes induced vascularization of subcutaneously implanted Matrigel plugs in mice. Differences in secretome composition were functionally analyzed with monocyte and endothelial cell (EC) in vitro co-culture experiments using vi-SNE based multidimensional flow cytometry data analysis. Functional responses between hBMSC and hWJSC secretomes were comparable, with significantly higher migration of CD14++ CD16− monocytes and enhanced macrophage differentiation compared with hADSC secretomes. Both secretomes also induced a more profound pro-angiogenic phenotype of ECs. These results suggest hWJSCs secretome as the most potent hMSC source for inflammation-mediated angiogenesis induction, while the potency of hADSC secretomes was lowest. This systematic analysis may have implication on the selection of hMSCs for future clinical studies.
Collapse
|
12
|
Su N, Jiang LY, Wang X, Gao PL, Zhou J, Wang CY, Luo Y. Membrane-Binding Adhesive Particulates Enhance the Viability and Paracrine Function of Mesenchymal Cells for Cell-Based Therapy. Biomacromolecules 2019; 20:1007-1017. [PMID: 30616345 DOI: 10.1021/acs.biomac.8b01624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the fundamental cell-material interactions is essential to designing functional materials for biomedical applications. Although mesenchymal stromal cells (MSCs) are known to secrete cytokines and exosomes that are effective to treat degenerative diseases, the inherent property of biomaterials to modulate the therapeutic function of MSCs remains to be investigated. Here, a multivalent cell-membrane adhesive conjugate was generated through polyamindoamine (PAMAM) and an oligopeptide, IKVAV, and the conjugate was further complexed with hyaluronic acid (HA). The adhesive particulates were used to coat the surface of adipose-derived mesenchymal stromal cells (Ad-MSCs) and studied in the MSC spheroid culture. The analysis showed that the adhesive complexes formed via PAMAM conjugates and HA significantly promoted the proliferation and the gene expression of pro-angiogenesis cytokines in MSCs; the production of anti-inflammatory miRNAs in exosomes could also be elevated. The transplantation of the Ad-MSCs primed with PAMAM-IKVAV/HA composite particulates in a rat myocardial infarction model further demonstrated the beneficial effects of membrane-binding materials on improving the cell retention and tissue angiogenesis. The new function of membrane-binding adhesive materials potentially provides useful ways to improve cell-based therapy.
Collapse
Affiliation(s)
- Ni Su
- Department of Biomedical Engineering, College of Engineering , Peking University Room 206, Fangzheng Building, 298 Chengfu Road , Haidian District, Beijing 100871 , China
| | - Li-Yang Jiang
- Department of Biomedical Engineering, College of Engineering , Peking University Room 206, Fangzheng Building, 298 Chengfu Road , Haidian District, Beijing 100871 , China
| | - Xi Wang
- Department of Biomedical Engineering, College of Engineering , Peking University Room 206, Fangzheng Building, 298 Chengfu Road , Haidian District, Beijing 100871 , China
| | - Peng-Lai Gao
- Department of Biomedical Engineering, College of Engineering , Peking University Room 206, Fangzheng Building, 298 Chengfu Road , Haidian District, Beijing 100871 , China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center , Academy of Military Medical Sciences , 27 Taiping Road , Haidian District, Beijing 100039 , China
| | - Chang-Yong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center , Academy of Military Medical Sciences , 27 Taiping Road , Haidian District, Beijing 100039 , China
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering , Peking University Room 206, Fangzheng Building, 298 Chengfu Road , Haidian District, Beijing 100871 , China
| |
Collapse
|
13
|
Bagheri G, Rezaee R, Tsarouhas K, Docea AO, Shahraki J, Shahriari M, Wilks MF, Jahantigh H, Tabrizian K, Moghadam AA, Bagheri S, Spandidos DA, Tsatsakis A, Hashemzaei M. Magnesium sulfate ameliorates carbon monoxide‑induced cerebral injury in male rats. Mol Med Rep 2018; 19:1032-1039. [PMID: 30569139 PMCID: PMC6323247 DOI: 10.3892/mmr.2018.9771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
Carbon monoxide (CO) has been shown to induce several cardiovascular abnormalities, as well as necrosis, apoptosis and oxidative stress in the brain. Magnesium sulfate (MS) has been shown to have beneficial activities against hypoxia in the brain. In the present study, the possible protective effects of MS against CO‑induced cerebral ischemia were investigated. For this purpose, 25 male Wistar rats were exposed to 3,000 ppm CO for 1 h. The animals were divided into 5 groups (n=5 in each group) as follows: The negative control group (not exposed to CO), the positive control group (CO exposed and treated with normal saline), and 3 groups of CO‑exposed rats treated with MS (75, 150 and 300 mg/kg/day) administered intraperitoneally for 5 consecutive days. On the 5th day, the animals were sacrificed and the brains were harvested for the evaluation of necrosis, apoptosis and oxidative stress. Histopathological evaluation revealed that MS reduced the number and intensity of necrotic insults. The Bax/Bcl2 ratio and malondialdehyde (MDA) levels were significantly decreased in a dose‑dependent manner in the MS‑treated rats compared to the positive control group, while a significant dose‑dependent increase in Akt expression, a pro‑survival protein, was observed. In addition, MS administration reduced pro‑apoptotic indice levels, ameliorated histological insults, favorably modulated oxidative status and increased Akt expression levels, indicating a possible neuroprotective effect in the case of CO poisoning. On the whole, the findings of this study indicate that MS may prove to be useful in protecting against CO‑induced cerebral injury.
Collapse
Affiliation(s)
- Gholamreza Bagheri
- Department of Health, Zabol University of Medical Sciences, 9861615881 Zabol, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran
| | | | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Jafar Shahraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, 9861615881 Zabol, Iran
| | - Malihe Shahriari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, 9861615881 Zabol, Iran
| | - Martin F Wilks
- Swiss Centre for Applied Human Toxicology, University of Basel, CH‑4055 Basel, Switzerland
| | - Hosseinali Jahantigh
- Department of Pathology, Amiralmomenin Hospital, Zabol University of Medical Sciences, 9861615881 Zabol, Iran
| | - Kaveh Tabrizian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, 9861615881 Zabol, Iran
| | - Alireza Abdollahi Moghadam
- Department of Cardiology, Emam Reza Educational Center, Mashhad University of Medical Sciences, 9137913316 Mashhad, Iran
| | - Somayeh Bagheri
- Department of Biostatisics and Epidemiology, Faculty of Public Health, Zabol University of Medical Sciences, 9861615881 Zabol, Iran
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, 9861615881 Zabol, Iran
| |
Collapse
|
14
|
Enhancement of the efficacy of mesenchymal stem cells in the treatment of ischemic diseases. Biomed Pharmacother 2018; 109:2022-2034. [PMID: 30551458 DOI: 10.1016/j.biopha.2018.11.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023] Open
Abstract
Ischemic diseases refer to a wide range of diseases caused by reduced blood flow and a subsequently deficient oxygen and nutrient supply. The pathogenesis of ischemia is multifaceted and primarily involves inflammation, oxidative stress and an apoptotic response. Over the last decade, mesenchymal stem cells (MSCs) have been widely studied as potential cell therapy agents for ischemic diseases due to their multiple favourable functions. However, the low homing and survival rates of transplanted cells have been concerns limiting for their clinical application. Recently, increasing studies have attempted to enhance the efficacy of MSCs by various strategies including genetic modification, pretreatment, combined application and biomaterial application. The purpose of this review is to summarize these creative strategies and the progress in basic and preclinical studies.
Collapse
|
15
|
Feng R, Cai M, Wang X, Zhang J, Tian Z. Early Aerobic Exercise Combined with Hydrogen-Rich Saline as Preconditioning Protects Myocardial Injury Induced by Acute Myocardial Infarction in Rats. Appl Biochem Biotechnol 2018; 187:663-676. [PMID: 30033489 DOI: 10.1007/s12010-018-2841-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/04/2018] [Indexed: 11/24/2022]
Abstract
It has been reported that hydrogen-rich saline (HRS) water reduces oxidative stress, and early aerobic exercise (eAE) acts an efficient exercise preconditioning (EP) against cardiac I/R injury. However, whether early aerobic exercise combined with hydrogen-rich saline (eAE-HRS) water can more effectively protect myocardial damage induced by acute myocardial infarction (MI) is still unknown. This study was aimed to evaluate the effect of eAE-HRS in preventing MI-induced myocardial damage and explore the possible underlying mechanisms. After Sprague-Dawley (SD) rats were given a intragastric administration of HRS (1.6 ppm) at a dosage of 10 mL/kg weight daily for 3 weeks and/or the SD rats were performed a eAE program with 3 weeks running training, the left anterior descending coronary artery was ligated to induce MI. We assessed the effects of eAE-HRS on myocardial injury and oxidative damage in the MI model of rats and detected the effects of eAE-HRS on the expressions of cardiac OGG1 and Tom40, Tom20, and Tim23. The eAE-HRS increased significantly left ventricular systolic pressure, reduced left ventricular end-diastolic pressure, and potentiated + dp/dtmax, -dp/dtmax, heart coefficient and pH after MI injury. The eAE-HRS reduced MI-induced CK-MB level, c-Tnl level, h-FABP level, infarct size. The eAE-HRS enhanced MI-induced levels of the superoxide dismutase and total antioxidant capacity, attenuated MI-induced levels of malondialdehyde and catalase. The eAE-HRS increased expressions of OGG1, Tom20 and Tim23 proteins after MI injury, but not Tom40. The eAE-HRS has the potential to be a novel precautionary measure to protect myocardial injury after MI via partially regulating expressions of antioxidant-related proteins and mitochondrial-associated proteins.
Collapse
Affiliation(s)
- Rui Feng
- College of Life Sciences, Institute of Sports and Exercise Biology, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Mengxin Cai
- College of Life Sciences, Institute of Sports and Exercise Biology, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Xudan Wang
- College of Life Sciences, Institute of Sports and Exercise Biology, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Juanjuan Zhang
- College of Life Sciences, Institute of Sports and Exercise Biology, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Zhenjun Tian
- College of Life Sciences, Institute of Sports and Exercise Biology, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, Shaanxi, People's Republic of China.
| |
Collapse
|
16
|
Belova SP, Shenkman BS, Kostrominova TY, Nemirovskaya TL. Paradoxical effect of IKKβ inhibition on the expression of E3 ubiquitin ligases and unloading-induced skeletal muscle atrophy. Physiol Rep 2018; 5:5/16/e13291. [PMID: 28839114 PMCID: PMC5582258 DOI: 10.14814/phy2.13291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
We tested whether NF‐κB pathway is indispensable for the increase in expression of E3‐ligases and unloading‐induced muscle atrophy using IKKβ inhibitor IMD‐0354. Three groups of rats were used: nontreated control (C), 3 days of unloading/hindlimb suspension with (HS+IMD) or without (HS) IMD‐0354. Levels of IκBα were higher in HS+IMD (1.16‐fold) and lower in HS (0.82‐fold) when compared with C group. IMD‐0354 treatment during unloading: had no effect on loss of muscle mass; increased mRNA levels of MuRF1 and MAFbx; increased levels of pFoxO3; and had no effect on levels of Bcl‐3, p105, and p50 proteins. Our study for the first time showed that inhibiting IKKβ in vivo during 3‐day unloading failed to diminish expression of ubiquitin ligases and prevent muscle atrophy.
Collapse
Affiliation(s)
| | | | - Tatiana Y Kostrominova
- Department of Anatomy and Cell Biology, Indiana University School of Medicine-Northwest, Gary, Indiana
| | - Tatiana L Nemirovskaya
- Institute of Biomedical Problems, RAS, Moscow, Russia .,Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Pei W, Lu T, Wang K, Ji M, Zhang S, Chen F, Li L, Li X, Guan W. Biological characterization and pluripotent identification of ovine amniotic fluid stem cells. Cytotechnology 2018; 70:1009-1021. [PMID: 29502286 DOI: 10.1007/s10616-017-0115-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/21/2017] [Indexed: 01/03/2023] Open
Abstract
Mesenchymal stem cells derived from amniotic fluid have become one of the most potential stem cell source for cell-based therapy for the reason they can be harvested at low cost and without ethical problems. Here, we obtained amniotic fluid stem cells (AFSCs) from ovine amniotic fluid and studied the expansion capacity, cell markers expression, karyotype, and multilineage differentiation ability. In our work, AFSCs were subcultured to passage 62. The cell markers, CD29, CD44, CD73 and OCT4 which analyzed by RT-PCR were positive; CD44, CD73, CD90, CD105, NANOG, OCT4 analyzed by immunofluorescence and flow cytometry were also positive. The growth curves of different passages were all typically sigmoidal. The different passages cells took on a normal karyotype. In addition, AFSCs were successfully induced to differentiate into adipocytes, osteoblasts and chondrocytes. The results suggested that the AFSCs isolated from ovine maintained normal biological characteristics and their multilineage differentiation potential provides many potential applications in cell-based therapies and tissue engineering.
Collapse
Affiliation(s)
- Wenhua Pei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West road, haidian district, Beijing, 100193, China
| | - Tengfei Lu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West road, haidian district, Beijing, 100193, China
| | - Kunfu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
| | - Meng Ji
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West road, haidian district, Beijing, 100193, China
| | - Shuang Zhang
- Research Center for Sports Scientific Experiment, Harbin Sport University, Harbin, People's Republic of China
| | - Fenghao Chen
- College of Human Movement Science, Harbin Sport University, Harbin, 150040, China
| | - Lu Li
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071000, China
| | - Xiangchen Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West road, haidian district, Beijing, 100193, China.
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West road, haidian district, Beijing, 100193, China.
| |
Collapse
|
18
|
Cui X, He Z, Liang Z, Chen Z, Wang H, Zhang J. Exosomes From Adipose-derived Mesenchymal Stem Cells Protect the Myocardium Against Ischemia/Reperfusion Injury Through Wnt/β-Catenin Signaling Pathway. J Cardiovasc Pharmacol 2017; 70:225-231. [PMID: 28582278 PMCID: PMC5642342 DOI: 10.1097/fjc.0000000000000507] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/25/2022]
Abstract
Mesenchymal stem cells (MSCs) and their secreted exosomes exert a cardioprotective role in jeopardized myocardium. However, the specific effects and underlying mechanisms of exosomes derived from adipose-derived MSCs (ADMSCs) on myocardial ischemia/reperfusion (I/R) injury remain largely unclear. In this study, ADMSC-derived exosomes (ADMSCs-ex) were administrated into the rats subjected to I/R injury and H9c2 cells exposed to hypoxia/reoxygenation (H/R). Consequently, administration of ADMSCs-ex significantly reduced I/R-induced myocardial infarction, accompanied with a decrease in serum levels of creatine kinase-myocardial band, lactate dehydrogenase, and cardiac troponin I (cTnI). Simultaneously, ADMSCs-ex dramatically antagonized I/R-induced myocardial apoptosis, along with the upregulation of Bcl-2 and downregulation of Bax, and inhibition of Caspase 3 activity in rat myocardium. Similarly, ADMSCs-ex significantly reduced cell apoptosis and the expression of Bax, but markedly increased cell viability and the expression of Bcl-2 and Cyclin D1 under H/R. Furthermore, ADMSCs-ex observably induced the activation of Wnt/β-catenin signaling by attenuating I/R- and H/R-induced inhibition of Wnt3a, p-GSK-3β (Ser9), and β-catenin expression. Importantly, treatment with Wnt/β-catenin inhibitor XAV939 partly neutralized ADMSC-ex-induced antiapoptotic and prosurvival effects in H9c2 cells. In conclusion, we confirmed that ADMSCs-ex protect ischemic myocardium from I/R injury through the activation of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaojun Cui
- Department of Human Anatomy, Institute of Stem Cell and Regenerative Medicine, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Zhangyou He
- Department of Internal Medicine, Shenzhen Guangming New District Central Hospital, Shenzhen, China
| | - Zihao Liang
- Department of Research and Development, Guangdong Landau Biotechnology Co, Ltd, Guangzhou, China; and
| | - Zhenyi Chen
- Department of Research and Development, Guangdong Landau Biotechnology Co, Ltd, Guangzhou, China; and
| | - Haifeng Wang
- Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Jiankai Zhang
- Department of Human Anatomy, Institute of Stem Cell and Regenerative Medicine, Dongguan Campus, Guangdong Medical University, Dongguan, China
- Department of Research and Development, Guangdong Landau Biotechnology Co, Ltd, Guangzhou, China; and
| |
Collapse
|
19
|
Li A, Tao Y, Kong D, Zhang N, Wang Y, Wang Z, Wang Y, Wang J, Xiao J, Jiang Y, Liu X, Zheng C. Infusion of umbilical cord mesenchymal stem cells alleviates symptoms of ankylosing spondylitis. Exp Ther Med 2017; 14:1538-1546. [PMID: 28781629 PMCID: PMC5526206 DOI: 10.3892/etm.2017.4687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
The current study evaluated 5 patients with ankylosing spondylitis (AS). Patients received intravenous transfusions of umbilical cord mesenchymal stem cells (uMSCs). All therapeutic and adverse responses were assessed and recorded during uMSC therapy. No severe adverse reactions were observed in any of the patients, although a slight transient fever was observed in 3 patients within 2–6 h of intravenous administration of uMSCs. Following treatment, the Bath Ankylosing Spondylitis Disease Activity and Bath Ankylosing Spondylitis Metrology Indices decreased, however the Bath Ankylosing Spondylitis Functional Index increased. The erythrocyte sedimentation rate in 3 patients was reduced and C-reactive protein levels in 1 patient were markedly reduced. The symptoms of AS were alleviated in all patients. The present study indicates that intravenous transfusion of uMSCs is safe and well tolerated by patients and that it effectively alleviates disease activity and clinical symptoms. In the future, a larger cohort of patients with AS should be recruited to enable the systemic evaluation of uMSC therapy.
Collapse
Affiliation(s)
- Ai Li
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Tao
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dexiao Kong
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ni Zhang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yongjing Wang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhilun Wang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yingxue Wang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Juandong Wang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Juan Xiao
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yang Jiang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaoli Liu
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chengyun Zheng
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
20
|
Balbi C, Bollini S. Fetal and perinatal stem cells in cardiac regeneration: Moving forward to the paracrine era. Placenta 2017; 59:96-106. [PMID: 28416208 DOI: 10.1016/j.placenta.2017.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CD) is a major burden for Western society. Regenerative medicine has provided encouraging results, yet it has not addressed the focal defects causing CD and mainly related to the inefficient repair programme of the heart. In this scenario, stem cells have been broadly investigated and their paracrine effect proposed as a possible working strategy to boost endogenous mechanisms of repair and regeneration from within the cardiac tissue. The scientific community is now focusing on identifying the most effective stem cell secretome, as the whole of bioactive factors and extracellular vesicles secreted by stem cells and endowed with regenerative potential. Indeed, the adult stem cell-paracrine potential for cardiac regeneration have been widely analyzed with positive outcome. Nevertheless, low yield, invasive sampling and controversial self-renewal may limit adult stem cell application. On the contrary, fetal and perinatal stem cells, which can be easily isolated from leftover sample via prenatal screening during gestation or as clinical waste material after birth, can offer an ideal alternative. These broadly multipotent immature progenitors share features with both adult and embryonic stem cells, show high self-renewal, but they are not tumorigenic neither cause any ethical concern. While fetal and perinatal stem cells demonstrated to improve cardiac function when injected in the injured heart, the comprehensive characterization of their secretome for future applications is still at its infancy. In this review, we will discuss the paracrine potential of the fetal and perinatal stem cell secretome to provide cardiac repair and resurge the dormant mechanisms of cardiac regeneration for future therapy.
Collapse
Affiliation(s)
- C Balbi
- Regenerative Medicine Laboratory, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - S Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.
| |
Collapse
|