1
|
Su HY, Yang JJ, Zou R, An N, Chen XC, Yang C, Yang HJ, Yao CW, Liu HF. Autophagy in peritoneal fibrosis. Front Physiol 2023; 14:1187207. [PMID: 37256065 PMCID: PMC10226653 DOI: 10.3389/fphys.2023.1187207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Peritoneal dialysis (PD) is a widely accepted renal replacement therapy for patients with end-stage renal disease (ESRD). Morphological and functional changes occur in the peritoneal membranes (PMs) of patients undergoing long-term PD. Peritoneal fibrosis (PF) is a common PD-related complication that ultimately leads to PM injury and peritoneal ultrafiltration failure. Autophagy is a cellular process of "self-eating" wherein damaged organelles, protein aggregates, and pathogenic microbes are degraded to maintain intracellular environment homeostasis and cell survival. Growing evidence shows that autophagy is involved in fibrosis progression, including renal fibrosis and hepatic fibrosis, in various organs. Multiple risk factors, including high-glucose peritoneal dialysis solution (HGPDS), stimulate the activation of autophagy, which participates in PF progression, in human peritoneal mesothelial cells (HPMCs). Nevertheless, the underlying roles and mechanisms of autophagy in PF progression remain unclear. In this review, we discuss the key roles and potential mechanisms of autophagy in PF to offer novel perspectives on future therapy strategies for PF and their limitations.
Collapse
|
2
|
Bakku RK, Gupta R, Min CW, Kim ST, Takahashi G, Shibato J, Shioda S, Takenoya F, Agrawal GK, Rakwal R. Unravelling the Helianthus tuberosus L. (Jerusalem Artichoke, Kiku-Imo) Tuber Proteome by Label-Free Quantitative Proteomics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031111. [PMID: 35164374 PMCID: PMC8840128 DOI: 10.3390/molecules27031111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/09/2023]
Abstract
The present research investigates the tuber proteome of the ‘medicinal’ plant Jerusalem artichoke (abbreviated as JA) (Helianthus tuberosus L.) using a high-throughput proteomics technique. Although JA has been historically known to the Native Americans, it was introduced to Europe in the late 19th century and later spread to Japan (referred to as ‘kiku-imo’) as a folk remedy for diabetes. Genboku Takahashi research group has been working on the cultivation and utilization of kiku-imo tuber as a traditional/alternative medicine in daily life and researched on the lowering of blood sugar level, HbA1c, etc., in human subjects (unpublished data). Understanding the protein components of the tuber may shed light on its healing properties, especially related to diabetes. Using three commercially processed JA tuber products (dried powder and dried chips) we performed total protein extraction on the powdered samples using a label-free quantitate proteomic approach (mass spectrometry) and catalogued for the first time a comprehensive protein list for the JA tuber. A total of 2967 protein groups were identified, statistically analyzed, and further categorized into different protein classes using bioinformatics techniques. We discussed the association of these proteins to health and disease regulatory metabolism. Data are available via ProteomeXchange with identifier PXD030744.
Collapse
Affiliation(s)
- Ranjith Kumar Bakku
- Faculty of Engineering Information and Systems, University of Tsukuba, 1-1-1 Tenodai, Tsukuba 305-8572, Japan;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea;
| | - Cheol-Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Sun-Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
- Correspondence: (S.-T.K.); or (R.R.); Tel.: +81-90-1853-7875 (R.R.)
| | - Genboku Takahashi
- Zen-Yoga Institute, 3916 Okusa, Nakagawa-mura, Kamiina-gun, Nagano 399-3801, Japan;
| | - Junko Shibato
- Department of Functional Morphology, Shonan University Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan; (J.S.); (S.S.)
| | - Seiji Shioda
- Department of Functional Morphology, Shonan University Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan; (J.S.); (S.S.)
| | - Fumiko Takenoya
- Department of Physiology and Molecular Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan;
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal;
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal;
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Japan
- Correspondence: (S.-T.K.); or (R.R.); Tel.: +81-90-1853-7875 (R.R.)
| |
Collapse
|
3
|
Xu WT, Li TZ, Li SM, Wang C, Wang H, Luo YH, Piao XJ, Wang JR, Zhang Y, Zhang T, Xue H, Cao LK, Jin CH. Cytisine exerts anti-tumour effects on lung cancer cells by modulating reactive oxygen species-mediated signalling pathways. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:84-95. [PMID: 31852250 DOI: 10.1080/21691401.2019.1699813] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cytisine is a natural product isolated from plants and is a member of the quinolizidine alkaloid family. This study aims to investigate the effect of cytisine in human lung cancer. Cell viability was determined using the CCK-8 assay, and the results showed that cytisine inhibited the growth of lung cancer cell lines. The apoptotic effects were evaluated using flow cytometry, and the results showed that cytisine induced mitochondrial-dependent apoptosis through loss of the mitochondrial membrane potential; increased expression of BAD, cleaved caspase-3, and cleaved-PARP; and decreased expression levels of Bcl-2, pro-caspase-3, and pro-PARP. In addition, cytisine caused G2/M phase cell cycle arrest that was associated with inhibiting the AKT signalling pathway. During apoptosis, cytisine increased the phosphorylation levels of JNK, p38, and I-κB, and decreased the phosphorylation levels of ERK, STAT3, and NF-κB. Furthermore, cytisine treatment led to the generation of ROS, and the NAC attenuated cytisine-induced apoptosis. In vivo, cytisine administration significantly inhibited the lung cancer cell xenograft tumorigenesis. In conclusion, cytisine plays a critical role in suppressing the carcinogenesis of lung cancer cells through cell cycle arrest and induction of mitochondria-mediated apoptosis, suggesting that it may be a promising candidate for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tian-Zhu Li
- Molecular Medicine Research Center, School of Basic Medical Science, Chifeng University, Chifeng, China
| | - Shu-Mei Li
- Hemodialysis Center, Daqing Oilfield General Hospital, Daqing, China
| | - Cheng Wang
- Pharmacy Department, Daqing Oilfield General Hospital, Daqing, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Long-Kui Cao
- Department of Food Science and Engineering, College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,National Coarse Cereals Engineering Research Center, Daqing, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of Food Science and Engineering, College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,National Coarse Cereals Engineering Research Center, Daqing, China
| |
Collapse
|
4
|
Xu F, Liu Y, Zhu X, Li S, Shi X, Li Z, Ai M, Sun J, Hou B, Cai W, Sun H, Ni L, Zhou Y, Qiu L. Protective Effects and Mechanisms of Vaccarin on Vascular Endothelial Dysfunction in Diabetic Angiopathy. Int J Mol Sci 2019; 20:ijms20184587. [PMID: 31533227 PMCID: PMC6769517 DOI: 10.3390/ijms20184587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular complications are a major leading cause of mortality in patients suffering from type 2 diabetes mellitus (T2DM). Vascular endothelial dysfunction is a core pathophysiological event in the early stage of T2DM and eventually leads to cardiovascular disease. Vaccarin (VAC), an active flavonoid glycoside extracted from vaccariae semen, exhibits extensive biological activities including vascular endothelial cell protection effects. However, little is known about whether VAC is involved in endothelial dysfunction regulation under high glucose (HG) or hyperglycemia conditions. Here, in an in vivo study, we found that VAC attenuated increased blood glucose, increased glucose and insulin tolerance, relieved the disorder of lipid metabolism and oxidative stress, and improved endothelium-dependent vasorelaxation in STZ/HFD-induced T2DM mice. Furthermore, in cultured human microvascular endothelial cell-1 (HMEC-1) cells, we showed that pretreatment with VAC dose-dependently increased nitric oxide (NO) generation and the phosphorylation of eNOS under HG conditions. Mechanistically, VAC-treated HMEC-1 cells exhibited higher AMPK phosphorylation, which was attenuated by HG stimulation. Moreover, HG-triggered miRNA-34a upregulation was inhibited by VAC pretreatment, which is in accordance with pretreatment with AMPK inhibitor compound C (CC). In addition, both reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) and VAC abolished HG-evoked dephosphorylation of AMPK and eNOS, increased miRNA-34a expression, and decreased NO production. These results suggest that VAC impedes HG-induced endothelial dysfunction via inhibition of the ROS/AMPK/miRNA-34a/eNOS signaling cascade.
Collapse
Affiliation(s)
- Fei Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Yixiao Liu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Shuangshuang Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Xuelin Shi
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Zhongjie Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Min Ai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Jiangnan Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Lulu Ni
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Yuetao Zhou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| |
Collapse
|
5
|
Zhu W, Zhang X, Gao K, Wang X. Effect of astragaloside IV and the role of nuclear receptor RXRα in human peritoneal mesothelial cells in high glucose‑based peritoneal dialysis fluids. Mol Med Rep 2019; 20:3829-3839. [PMID: 31485615 PMCID: PMC6755149 DOI: 10.3892/mmr.2019.10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/25/2019] [Indexed: 12/03/2022] Open
Abstract
Peritoneal fibrosis is a serious complication that can occur during peritoneal dialysis (PD), which is primarily caused by damage to peritoneal mesothelial cells (PMCs). The onset of peritoneal fibrosis is delayed or inhibited by promoting PMC survival and inhibiting PMC epithelial-to-mesenchymal transition (EMT). In the present study, the effect of astragaloside IV and the role of the nuclear receptor retinoid X receptor-α (RXRα) in PMCs in high glucose-based PD fluids was investigated. Human PMC HMrSV5 cells were transfected with RXRα short hairpin RNA (shRNA), or an empty vector, and then treated with PD fluids and astragaloside IV. Cell viability, apoptosis and EMT were examined using the Cell Counting Kit-8 assay and flow cytometry, and by determining the levels of caspase-3, E-cadherin and α-smooth muscle actin (α-SMA) via western blot analysis. Cell viability and apoptosis were increased, as were the levels of E-cadherin in HMrSV5 cells following treatment with PD fluid. The protein levels of α-SMA and caspase-3 were increased by treatment with PD fluid. Exposure to astragaloside IV inhibited these changes; however, astragaloside IV did not change cell viability, apoptosis, E-cadherin or α-SMA levels in HMrSV5 cells under normal conditions. Transfection of HMrSV5 cells with RXRα shRNA resulted in decreased viability and E-cadherin expression, and increased apoptosis and α-SMA levels, in HMrSV5 cells treated with PD fluids and co-treated with astragaloside IV or vehicle. These results suggested that astragaloside IV increased cell viability, and inhibited apoptosis and EMT in PMCs in PD fluids, but did not affect these properties of PMCs under normal condition. Thus, the present study suggested that RXRα is involved in maintaining viability, inhibiting apoptosis and reducing EMT of PMCs in PD fluid.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xin Zhang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Kun Gao
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xufang Wang
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
6
|
da Silva Souza SV, da Rosa PB, Neis VB, Moreira JD, Rodrigues ALS, Moretti M. Effects of cholecalciferol on behavior and production of reactive oxygen species in female mice subjected to corticosterone-induced model of depression. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:111-120. [PMID: 31463580 DOI: 10.1007/s00210-019-01714-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
Major depressive disorder (or depression) is one of the most frequent psychiatric illnesses in the population, with chronic stress being one of the main etiological factors. Studies have shown that cholecalciferol supplementation can lead to attenuation of the depressive state; however, the biochemical mechanisms involved in the relationship between cholecalciferol and depression are not very well known. The objective of this study was to investigate the effects of the administration of cholecalciferol on behavioral parameters (tail suspension test (TST), open field test (OFT), splash test (ST)) and redox state (dichlorofluorescein (DCF)) in adult female Swiss mice subjected to a model of depression induced by chronic corticosterone treatment. Corticosterone (20 mg/kg, p.o.) was administered once a day for 21 days. For investigation of the antidepressant-like effect, cholecalciferol (100 IU/kg) or fluoxetine (10 mg/kg, positive control) was administered p.o. within the last 7 days of corticosterone administration. After the treatments, the behavioral tests and biochemical analyses in the hippocampus and prefrontal cortex of the rodent samples were performed. Animals submitted to repeated corticosterone administration showed a depressive-like behavior, evidenced by a significant increase in the immobility time in the TST, which was significantly reduced by the administration of cholecalciferol or fluoxetine. In addition, the groups treated with cholecalciferol and fluoxetine showed a significant decrease in the production of reactive oxygen species (ROS) in the hippocampus. These results show that cholecalciferol, similar to fluoxetine, has a potential antidepressant-like effect, which may be related to the lower ROS production.
Collapse
Affiliation(s)
- Suene Vanessa da Silva Souza
- Graduate Program in Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Priscila Batista da Rosa
- Biochemistry Department, Biological Science Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Vivian Binder Neis
- Biochemistry Department, Biological Science Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Júlia Dubois Moreira
- Graduate Program in Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Biochemistry Department, Biological Science Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Morgana Moretti
- Biochemistry Department, Biological Science Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
7
|
Zhang T, He L, Sun W, Qin Y, Zhang P, Zhang H. 1,25‑Dihydroxyvitamin D3 enhances the susceptibility of anaplastic thyroid cancer cells to adriamycin‑induced apoptosis by increasing the generation of reactive oxygen species. Mol Med Rep 2019; 20:2641-2648. [PMID: 31524258 PMCID: PMC6691249 DOI: 10.3892/mmr.2019.10530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is a very aggressive malignancy that is resistant to various types of chemotherapy in humans. Most patients with late-stage ATC cannot undergo surgery and receive chemotherapy drugs. The present study investigated the influence of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) pretreatment on adriamycin (ADM) chemotherapy efficacy in the 8305c and 8505c ATC cell lines. The apoptotic effects of ADM on ATC cells pretreated with 1,25(OH)2D3 were evaluated. Cell viability was identified by using the Cell Counting Kit-8 assay. Apoptosis was assessed by flow cytometry and staining with Hoechst 33342. The expression of the apoptotic protein cleaved caspase-3 was tested with a colorimetric assay kit and by western blotting. Reactive oxygen species (ROS) generation was assessed with the antioxidant N-acetyl-L-cysteine (NAC) and the assay H2-DCFDA. In addition, ROS production could be reversed by NAC treatment. The present study demonstrated that 1,25(OH)2D3 enhanced ADM-induced apoptosis in 8305c and 8505c cell lines. Furthermore, 1,25(OH)2D3 improved the ADM-induced ROS production and expression of cleaved caspase-3. NAC treatment inhibited the expression of cleaved caspase-3 in ATC cells, and reduced apoptosis in cells that were pretreated with 1,25(OH)2D3 and ADM. These results demonstrated that 1,25(OH)2D3 may enhance ADM-induced apoptosis by increasing ROS generation in ATC cells.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Liang He
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuan Qin
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ping Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
8
|
Zhao JL, Guo MZ, Zhu JJ, Zhang T, Min DY. Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1). Cell Mol Biol Lett 2019; 24:32. [PMID: 31143210 PMCID: PMC6532179 DOI: 10.1186/s11658-019-0157-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/09/2019] [Indexed: 11/11/2022] Open
Abstract
Objective Peritoneal fibrosis remains a serious complication of long-term peritoneal dialysis (PD) leading to peritoneal membrane ultrafiltration failure. Epithelial–mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is a key process of peritoneal fibrosis. Curcumin has been previously shown to inhibit EMT of renal tubular epithelial cells and prevent renal fibrosis. There are only limited reports on inhibition of PMCs-EMT by curcumin. This study aimed to investigate the effect of curcumin on the regulation of EMT and related pathway in PMCs treated with glucose-based PD. Methods EMT of human peritoneal mesothelial cells (HMrSV5) was induced with glucose-based peritoneal dialysis solutions (PDS). Cells were divided into a control group, PDS group, and PDS group receiving varied concentrations of curcumin. Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability, and a transwell migration assay was used to verify the capacity of curcumin to inhibit EMT in HMrSV5 cells. Real-time quantitative PCR and western blot were used to detect the expression of genes and proteins associated with the EMT. Results High glucose PDS decreased cell viability and increased migratory capacity. Curcumin reversed growth inhibition and migration capability of human peritoneal mesothelial cells (HPMCs). In HMrSV5 cells, high glucose PDS also decreased expression of epithelial markers, and increased expression of mesenchymal markers, a characteristic of EMT. Real-time RT-PCR and western blot revealed that, compared to the 4.25% Dianeal treated cells, curcumin treatment resulted in increased expression of E-cadherin (epithelial marker), and decreased expression of α-SMA (mesenchymal markers) (P < 0.05). Furthermore, curcumin reduced mRNA expression of two extracellular matrix protein, collagen I and fibronectin. Curcumin also reduced TGF-β1 mRNA and supernatant TGF-β1 protein content in the PDS-treated HMrSV5 cells (P < 0.05). Furthermore, it significantly reduced protein expression of p-TAK1, p-JNK and p-p38 in PDS-treated HMrSV5 cells. Conclusions Our results demonstrate that curcumin showed an obvious protective effect on PDS-induced EMT of HMrSV5 cells and suggest implication of the TAK1, p38 and JNK pathway in mediating the effects of curcumin in EMT of MCs.
Collapse
Affiliation(s)
- Jun-Li Zhao
- 1Department of Nephrology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Pudong New District, Shanghai, 201318 China
| | - Mei-Zi Guo
- 2Department of Geriatrics, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Pudong New District, Shanghai, 201318 China
| | - Jun-Jun Zhu
- 1Department of Nephrology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Pudong New District, Shanghai, 201318 China
| | - Ting Zhang
- 1Department of Nephrology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Pudong New District, Shanghai, 201318 China
| | - Dan-Yan Min
- 1Department of Nephrology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Pudong New District, Shanghai, 201318 China
| |
Collapse
|
9
|
Antioxidant Supplementation in Renal Replacement Therapy Patients: Is There Evidence? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9109473. [PMID: 30774749 PMCID: PMC6350615 DOI: 10.1155/2019/9109473] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022]
Abstract
The disruption of balance between production of reactive oxygen species and antioxidant systems in favor of the oxidants is termed oxidative stress (OS). To counteract the damaging effects of prooxidant free radicals, all aerobic organisms have antioxidant defense mechanisms that are aimed at neutralizing the circulating oxidants and repair the resulting injuries. Antioxidants are either endogenous (the natural defense mechanisms produced by the human body) or exogenous, found in supplements and foods. OS is present at the early stages of chronic kidney disease, augments progressively with renal function deterioration, and is further exacerbated by renal replacement therapy. End-stage renal disease patients, on hemodialysis (HD) or peritoneal dialysis (PD), suffer from accelerated OS, which has been associated with increased risk for mortality and cardiovascular disease. During HD sessions, the bioincompatibility of dialyzers and dialysate trigger activation of white blood cells and formation of free radicals, while a significant loss of antioxidants is also present. In PD, the bioincompatibility of solutions, including high osmolality, elevated lactate levels, low pH, and accumulation of advanced glycation end-products trigger formation of prooxidants, while there is significant loss of vitamins in the ultrafiltrate. A number of exogenous antioxidants have been suggested to ameliorate OS in dialysis patients. Vitamins B, C, D, and E, coenzyme Q10, L-carnitine, a-lipoic acid, curcumin, green tea, flavonoids, polyphenols, omega-3 polyunsaturated fatty acids, statins, trace elements, and N-acetylcysteine have been studied as exogenous antioxidant supplements in both PD and HD patients.
Collapse
|
10
|
Li L, Zhong Y, Ma Z, Yang C, Wei H, Chen L, Li C, Wu D, Rong MZ, Li Y. Methyl ferulic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway. Int J Oncol 2018; 53:225-236. [PMID: 29749464 DOI: 10.3892/ijo.2018.4379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/19/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the anti-apoptotic effects of methyl ferulic acid (MFA) on L-02 cell apoptosis induced by ethanol, and to elucidate the possible underlying mechanisms. L-02 cells were examined after being soaked in ethanol (400 mM) to allow the ethanol to permeate into the cells for 24 h. Cell survival was measured by MTT assay. Cell apoptosis was assessed by both flow cytometry and single-stranded DNA assays. Intracellular reactive oxygen species (ROS) production was determined using the 2',7'-dichlorofluorescein-diacetate dye. The protein expression levels of p38, p-p38, JNK, p-JNK, NADPH oxidase 4 (NOX4), p22, Bax and Bcl-2 were measured by western blot analysis. The mRNA expression levels of NOX4 and p22 were measured by RT-PCR. It was identified that MFA markedly suppressed the ethanol-induced apoptosis and necrosis of L-02 cells. In addition, MFA decreased the expression levels of superoxide dismutase, catalase and phospholipid hydroperoxide gluthione peroxidase, and downregulated the levels of Bax/Bcl-2 and the cleaved forms of caspase-3 in a dose- and time-dependent manner. This indicated that MFA attenuated the apoptosis of L-02 cells. MFA also decreased the elevated mRNA and protein expression levels of Nox4 and p22phox, and the production of intracellular ROS triggered by ethanol. Further analysis demonstrated that MFA significantly attenuated the phosphorylation of JNK and p38, which are major components of the mitogen-activated protein kinase (MAPK) pathways. On the whole, the findings of this study demonstrated that MFA attenuated the apoptotic cell death of L-02 cells by reducing the generation of ROS and inactivating the MAPK pathways.
Collapse
Affiliation(s)
- Li Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yujuan Zhong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Zuheng Ma
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Chengfang Yang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Hanning Wei
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Li Chen
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Chen Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Dan Wu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Ming Zhi Rong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yongwen Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
11
|
Oligomeric Proantho Cyanidins provides neuroprotection against early brain injury following subarachnoid hemorrhage possibly via anti-oxidative, anti-inflammatory and anti-apoptotic effects. J Clin Neurosci 2017; 46:148-155. [DOI: 10.1016/j.jocn.2017.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/19/2017] [Accepted: 07/11/2017] [Indexed: 11/21/2022]
|
12
|
Zhu BB, Wang H, Chi YF, Wang YM, Yao XM, Liu S, Qiu H, Fang J, Yin PH, Zhang XM, Peng W. Protective effects of probucol on Ox-LDL-induced epithelial-mesenchymal transition in human renal proximal tubular epithelial cells via LOX‑1/ROS/MAPK signaling. Mol Med Rep 2017; 17:1289-1296. [PMID: 29115480 DOI: 10.3892/mmr.2017.7935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
Oxidized low-density lipoprotein (Ox-LDL), as a strong oxidant, results in renal injury through multiple mechanisms. The aim of the present study was to determine the injury effects of Ox‑LDL and the potential protective effects of the antioxidant reagent probucol on epithelial‑mesenchymal transition (EMT) in human renal proximal tubular epithelial cells (HK‑2) and to further explore the role and interrelation of lectin‑like oxidized low‑density lipoprotein receptor‑1 (LOX‑1), reactive oxygen species (ROS) and mitogen‑activated protein kinase (MAPK) pathway. In the present study, concentrations of 0‑100 µg/ml Ox‑LDL were used to induce HK‑2 cell EMT. Then, probucol (20 µmol/l) and the LOX‑1 inhibitor, polyinosinic acid (250 µg/ml), were also used to pretreat HK‑2 cells. Intracellular ROS activity was evaluated using the specific probe 2',7'‑dichlorodihydrofluorescein diacetate (DCFH‑DA). Concentration of nitric oxide (NO) was determined using a biochemical colorimetric method. Expression of E‑cadherin, α‑smooth muscle actin (SMA), LOX‑1, NADPH oxidase 4 (NOX4), cytochrome b‑245 α chain (p22phox), extracellular signal‑regulated kinase (ERK), and p38 MAPK protein levels were examined by western blotting. The results revealed that Ox‑LDL induced the expression of LOX‑1 and α‑SMA and reduced the expression of E‑cadherin in a dose‑dependent manner, and these effects were inhibited by polyinosinic acid or probucol pretreatment. Stimulation with 50 µg/ml Ox‑LDL induced the expression of NOX4 and p22phox and increased intracellular ROS activity, but NO production in the cell supernatants was not affected. The Ox‑LDL‑mediated increases in Nox4 and p22phox expression and in ROS activity were inhibited by probucol pretreatment. Further investigations into the underlying molecular pathways demonstrated that ERK and p38 MAPK were activated by Ox‑LDL stimulation and then inhibited by probucol pretreatment. The findings of the present study therefore suggest that Ox‑LDL induced EMT in HK‑2 cells, the mechanism of which may be associated with LOX‑1‑related oxidative stress via the ERK and p38 MAPK pathways. Notably, pretreatment with probucol inhibited the Ox‑LDL‑induced oxidative stress by reducing the expression of LOX‑1, and blocked the progression of EMT.
Collapse
Affiliation(s)
- Bing Bing Zhu
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Hao Wang
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yang Feng Chi
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yun Man Wang
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xing Mei Yao
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Shuang Liu
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Huiling Qiu
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Ji Fang
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Pei Hao Yin
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xue Mei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Wen Peng
- Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
13
|
Nakayama M, Zhu WJ, Watanabe K, Gibo A, Sherif AM, Kabayama S, Ito S. Dissolved molecular hydrogen (H 2) in Peritoneal Dialysis (PD) solutions preserves mesothelial cells and peritoneal membrane integrity. BMC Nephrol 2017; 18:327. [PMID: 29089029 PMCID: PMC5664574 DOI: 10.1186/s12882-017-0741-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 10/06/2017] [Indexed: 11/14/2022] Open
Abstract
Background Peritoneal dialysis (PD) is used as renal replacement therapy in patients with end-stage kidney disease. However, peritoneal membrane failure remains problematic and constitutes a critical cause of PD discontinuation. Recent studies have revealed the unique biological action of molecular hydrogen (H2) as an anti-oxidant, which ameliorates tissue injury. In the present study, we aimed to examine the effects of H2 on the peritoneal membrane of experimental PD rats. Method Eight-week-old male Sprague-Dawley rats were divided into the following groups (n = 8–11 each) receiving different test solutions: control group (no treatment), PD group (commercially available lactate-based neutral 2.5% glucose PD solution), and H2PD group (PD solution with dissolved H2 at 400 ppb). Furthermore, the influence of iron (FeCl3: 5 μM: inducer of oxidative cellular injury) in the respective PD solutions was also examined (Fe-PD and Fe-H2PD groups). The H2PD solution was manufactured by bathing a PD bag in H2-oversaturated water created by electrolysis of the water. Twenty mL of the test solutions were intraperitoneally injected once a day for 10 days. Parietal peritoneum samples and cells collected from the peritoneal surface following treatment with trypsin were subjected to analysis. Results In the PD group as compared to controls, a mild but significant sub-mesothelial thickening was observed, with increase in the number of cells in the peritoneal surface tissue that were positive for apoptosis, proliferation and vimentin, as seen by immunostaining. There were significantly fewer of such changes in the H2PD group, in which there was a dominant presence of M2 (CD163+) macrophages in the peritoneum. The Fe-PD group showed a significant loss of mesothelial cells with sub-mesothelial thickening, these changes being ameliorated in the Fe-H2PD group. Conclusion H2-dissolved PD solutions could preserve mesothelial cells and peritoneal membrane integrity in PD rats. Clinical application of H2 in PD could be a novel strategy for protection of peritoneal tissue during PD treatment.
Collapse
Affiliation(s)
- Masaaki Nakayama
- Tohoku University, Tohoku University Hospital, Research Division of Chronic Kidney Disease and Dialysis Treatment, 1-1 Seiryo-machi, Aoba-ku, Sendai city, 980-8574, Japan. .,Tohoku University, United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Sendai, Japan.
| | - Wan-Jun Zhu
- Tohoku University, Tohoku University Hospital, Research Division of Chronic Kidney Disease and Dialysis Treatment, 1-1 Seiryo-machi, Aoba-ku, Sendai city, 980-8574, Japan.,Tohoku University, United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Sendai, Japan.,Trim Medical Institute Co., Ltd., Osaka, Japan
| | - Kimio Watanabe
- Tohoku University, Tohoku University Hospital, Research Division of Chronic Kidney Disease and Dialysis Treatment, 1-1 Seiryo-machi, Aoba-ku, Sendai city, 980-8574, Japan.,Tohoku University, United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Sendai, Japan
| | - Ayano Gibo
- Fukushima Medical University, Fukushima, Japan
| | - Ali M Sherif
- The Tokyo Jikei University School of Medicine, Department of Nephrology and Hypertension, Tokyo, Japan
| | - Shigeru Kabayama
- Tohoku University, Tohoku University Hospital, Research Division of Chronic Kidney Disease and Dialysis Treatment, 1-1 Seiryo-machi, Aoba-ku, Sendai city, 980-8574, Japan.,Tohoku University, United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Sendai, Japan.,Trim Medical Institute Co., Ltd., Osaka, Japan
| | - Sadayoshi Ito
- Tohoku University, United Centers for Advanced Research and Translational Medicine, Center for Advanced and Integrated Renal Science, Sendai, Japan
| |
Collapse
|
14
|
Effect of 1,25(OH)2D3 on high glucose‑induced autophagy inhibition in peritoneum. Mol Med Rep 2017; 16:7080-7085. [PMID: 28901396 DOI: 10.3892/mmr.2017.7408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 07/14/2017] [Indexed: 11/05/2022] Open
Abstract
High glucose (HG) may damage the structure and function of the peritoneal membrane, and is considered to be one of the most important factors that leads to peritoneal fibrosis and ultrafiltration failure. Recently, 1,25(OH)2D3, the active form of vitamin D, was demonstrated to protect against epithelial‑mesenchymal transition and fibrosis in peritoneal mesothelium and other organs. Accumulating evidence has suggested that autophagy serves a protective role in certain diseases by regulating cell survival. The present study examined whether 1,25(OH)2D3 has an effect on autophagy in peritoneal mesothelial cells. The protein level of Beclin, anti‑ubiquitin‑binding protein p62 (p62), microtubule‑associated proteins 1A/1B light chain 3B (LC3-II), mechanistic target of rapamycin (mTOR) and phosphorylated mTOR were evaluated by western blot analysis. Autophagosomes were detected under transmission electron microscopy. It was revealed that exposure to HG inhibited autophagy in peritoneal mesothelial cells. However, 1,25(OH)2D3 alleviated autophagy inhibition induced by HG in human peritoneal mesothelial cells, which activated expression of autophagy‑associated genes encoding Beclin‑1 and LC3-II downregulated the expression of p62 via mTOR signaling pathway. In a mouse model of HG‑treated peritoneal mesothelium, autophagy inhibition was observed in peritoneum, 1,25(OH)2D3 attenuated HG‑induced autophagy inhibition in peritoneal mesothelium via the mTOR signaling pathway. These findings suggested that 1,25(OH)2D3 may be a potential therapy for peritoneal injury.
Collapse
|
15
|
Yang L, Fan Y, Zhang X, Huang W, Ma J. 1,25(OH)2D3 treatment attenuates high glucose‑induced peritoneal epithelial to mesenchymal transition in mice. Mol Med Rep 2017; 16:3817-3824. [PMID: 28765896 PMCID: PMC5646959 DOI: 10.3892/mmr.2017.7096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 05/17/2017] [Indexed: 11/05/2022] Open
Abstract
It has been previously demonstrated that 1,25(OH)2D3 prevents the progression of epithelial to mesenchymal transition (EMT). However, it remains unclear whether 1,25(OH)2D3 has a role in peritoneal EMT stimulated by high glucose (HG) peritoneal dialysis fluid (PDF). The present study was performed to investigate the role of 1,25(OH)2D3 in the progression of EMT in the peritoneal mesothelium. A total of 35 male Kunming mice were randomly assigned into seven groups. In the control group, no diasylate or saline was infused. In the saline group, the mice were intraperitoneally injected with saline every day for 4 weeks. In the vitamin D group, the mice were subjected to intraperitoneal injections of 1 or 5 µg/kg of 1,25(OH)2D3 once weekly (every Monday) for 4 weeks. The peritoneal dialysis (PD) group were intraperitoneally injected with a conventional 4.25% PDF daily for 4 weeks. The vitamin D+PD group were intraperitoneally injected with 4.25% PDF daily and co‑treated with 1 µg/kg or 5 µg/kg 1,25(OH)2D3 once weekly, for 4 weeks. The peritoneal morphology and thickness were assessed by hematoxylin and eosin and Masson's trichrome staining. The peritoneal protein level of EMT markers (α‑smooth muscle actin, fibronectin and E‑cadherin), vitamin D receptor (VDR), B cell lymphoma‑2 (Bcl‑2), Bcl‑2‑associated X protein, transforming growth factor (TGF)‑β and Smad3 were evaluated by western blot analysis or immunohistochemical staining. Furthermore, apoptosis was assessed using a Caspase‑3 activity assay. The results demonstrated that after 4 weeks of intraperitoneal injections in mice, HG‑PDF decreased the expression of VDR, promoted EMT and apoptosis, and increased the thickness of the peritoneal membrane. However, 1,25(OH)2D3 treatment attenuated HG‑induced EMT and apoptosis, and decreased peritoneal thickness, which may partially occur through inhibition of transforming growth factor TGF‑β/Smad pathways via 1,25(OH)2D3 binding to VDR. The present study demonstrated that 1,25(OH)2D3 attenuated HG‑induced EMT and apoptosis in the peritoneal mesothelium through TGF‑β/Smad pathways. 1,25(OH)2D3 treatment in conjunction with HG dialysate may provide an improved solution to the peritoneal injury in the process of PD.
Collapse
Affiliation(s)
- Lina Yang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi Fan
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiuli Zhang
- Department of Nephrology, Benxi Center Hospital, China Medical University, Benxi, Liaoning 117000, P.R. China
| | - Wenyu Huang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jianfei Ma
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
16
|
Ge GF, Shi WW, Yu CH, Jin XY, Zhang HH, Zhang WY, Wang LC, Yu B. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits. Toxicol Appl Pharmacol 2017; 318:23-32. [DOI: 10.1016/j.taap.2017.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/14/2022]
|