1
|
Loeffler FF, Viana IFT, Fischer N, Coêlho DF, Silva CS, Purificação AF, Araújo CMCS, Leite BHS, Durães-Carvalho R, Magalhães T, Morais CNL, Cordeiro MT, Lins RD, Marques ETA, Jaenisch T. Identification of a Zika NS2B epitope as a biomarker for severe clinical phenotypes. RSC Med Chem 2021; 12:1525-1539. [PMID: 34671736 DOI: 10.1039/d1md00124h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
The identification of specific biomarkers for Zika infection and its clinical complications is fundamental to mitigate the infection spread, which has been associated with a broad range of neurological sequelae. We present the characterization of antibody responses in serum samples from individuals infected with Zika, presenting non-severe (classical) and severe (neurological disease) phenotypes, with high-density peptide arrays comprising the Zika NS1 and NS2B proteins. The data pinpoints one strongly IgG-targeted NS2B epitope in non-severe infections, which is absent in Zika patients, where infection progressed to the severe phenotype. This differential IgG profile between the studied groups was confirmed by multivariate data analysis. Molecular dynamics simulations and circular dichroism have shown that the peptide in solution presents itself in a sub-optimal conformation for antibody recognition, which led us to computationally engineer an artificial protein able to stabilize the NS2B epitope structure. The engineered protein was used to interrogate paired samples from mothers and their babies presenting Zika-associated microcephaly and confirmed the absence of NS2B IgG response in those samples. These findings suggest that the assessment of antibody responses to the herein identified NS2B epitope is a strong candidate biomarker for the diagnosis and prognosis of Zika-associated neurological disease.
Collapse
Affiliation(s)
- Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems Potsdam Germany
| | - Isabelle F T Viana
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Nico Fischer
- Section Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital Germany
| | - Danilo F Coêlho
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil.,Department of Fundamental Chemistry, Federal University of Pernambuco Recife PE Brazil
| | - Carolina S Silva
- Department of Chemical Engineering, Federal University of Pernambuco Recife PE Brazil
| | - Antônio F Purificação
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Catarina M C S Araújo
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Bruno H S Leite
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | | | - Tereza Magalhães
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Clarice N L Morais
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Marli T Cordeiro
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Roberto D Lins
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Ernesto T A Marques
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Pittsburgh PA USA
| | - Thomas Jaenisch
- Section Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital Germany .,German Centre for Infection Research (DZIF) Heidelberg Site Heidelberg Germany
| |
Collapse
|
2
|
Preparation of CD3 Antibody-Conjugated, Graphene Oxide Coated Iron Nitride Magnetic Beads and Its Preliminary Application in T Cell Separation. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7050058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunomagnetic beads (IMBs) for cell sorting are universally used in medical and biological fields. At present, the IMBs on the market are ferrite coated with a silicon shell. Based on a new type of magnetic material, the graphene coated iron nitride magnetic particle (G@FeN-MP), which we previously reported, we prepared a novel IMB, a graphene oxide coated iron nitride immune magnetic bead (GO@FeN-IMBs), and explored its feasibility for cell sorting. First, the surface of the G@FeN-MP was oxidized to produce oxygen-containing groups as carboxyl, etc. by the optimized Hummers’ method, followed by a homogenization procedure to make the particles uniform in size and dispersive. The carboxy groups generated were then condensed and coupled with anti-CD3 antibodies by the carbodiimide method to produce an anti-CD3-GO@FeN-IMB after the coupling efficacy was proved by bovine serum albumin (BSA) and labeled antibodies. Finally, the anti-CD3-GO@FeN-IMBs were incubated with a cell mixture containing human T cells. With the aid of a magnetic stand, the T cells were successfully isolated from the cell mixture. The isolated T cells turned out to be intact and could proliferate with the activation of the IMBs. The results show that the G@FeN-MP can be modified for IMB preparation, and the anti-CD3-GO@FeN-IMBs we prepared can potentially separate T cells.
Collapse
|
3
|
Yamashiro R, Sakudo A, Nagatsu M. Efficient recovery and enrichment of infectious rotavirus using separation with antibody-integrated graphite-encapsulated magnetic nanobeads produced by argon/ammonia gas plasma technology. Int J Nanomedicine 2019; 14:1865-1876. [PMID: 30880985 PMCID: PMC6419588 DOI: 10.2147/ijn.s191784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Rotavirus is the representative cause of severe acute gastroenteritis in young children. A characteristic feature of rotavirus is low infectious dose and robustness of the virion, suggesting sanitation and hygiene will have little impact. Thus, development of a vaccine should be given priority. Efficient capture of infectious viruses is an important step in generating a vaccine. Previously, antibody-integrated magnetic nanobeads (MNBs) have been developed for virus capture. This study examines the applicability of this method for infectious rotavirus recovery and enrichment. Materials and methods Graphite-encapsulated MNBs were treated with radio frequency (RF) excited Ar/NH3 gas mixture plasma to introduce amino groups onto their surfaces. Rotavirus viral protein 7 (VP7) antibody was attached to the surface of MNBs via these amino groups using a coupling agent, N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP). The antibody-integrated MNBs were incubated with rotavirus-infected cell lysate and then separated from the supernatant by applying a magnetic field. After thorough washing, rotavirus was recovered and enrichment analysis done by polymerase chain reaction (PCR), immunochromatography, and an infection analysis using MA104 cells. Results and discussion Immunochromatography and PCR indicate that anti-rotavirus antibody-integrated MNPs efficiently capture rotavirus with the capsid protein and viral RNA. The estimated recovery rate was 80.2% by PCR and 90.0% by infection analysis, while the concentrating factor was 7.9-fold by PCR and 6.7-fold by infection analysis. In addition, the absence of non-specific binding to the antibody-integrated MNPs was confirmed using anti-dengue virus antibody-integrated MNBs as a negative control. Conclusion These results suggest that this capture procedure is a useful tool for recovery and enrichment of infectious rotavirus. Moreover, when combined with a suitable virus assay this capture procedure can increase the sensitivity of rotavirus detection. Therefore, this capture method is a valuable tool for generating vaccines as well as for developing sensitive detection systems for viruses.
Collapse
Affiliation(s)
- Risa Yamashiro
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan,
| | - Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan,
| | - Masaaki Nagatsu
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| |
Collapse
|
4
|
Singh RK, Dhama K, Karthik K, Tiwari R, Khandia R, Munjal A, Iqbal HMN, Malik YS, Bueno-Marí R. Advances in Diagnosis, Surveillance, and Monitoring of Zika Virus: An Update. Front Microbiol 2018; 8:2677. [PMID: 29403448 PMCID: PMC5780406 DOI: 10.3389/fmicb.2017.02677] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/22/2017] [Indexed: 02/05/2023] Open
Abstract
Zika virus (ZIKV) is associated with numerous human health-related disorders, including fetal microcephaly, neurological signs, and autoimmune disorders such as Guillain-Barré syndrome (GBS). Perceiving the ZIKA associated losses, in 2016, the World Health Organization (WHO) declared it as a global public health emergency. In consequence, an upsurge in the research on ZIKV was seen around the globe, with significant attainments over developing several effective diagnostics, drugs, therapies, and vaccines countering this life-threatening virus at an early step. State-of-art tools developed led the researchers to explore virus at the molecular level, and in-depth epidemiological investigations to understand the reason for increased pathogenicity and different clinical manifestations. These days, ZIKV infection is diagnosed based on clinical manifestations, along with serological and molecular detection tools. As, isolation of ZIKV is a tedious task; molecular assays such as reverse transcription-polymerase chain reaction (RT-PCR), real-time qRT-PCR, loop-mediated isothermal amplification (LAMP), lateral flow assays (LFAs), biosensors, nucleic acid sequence-based amplification (NASBA) tests, strand invasion-based amplification tests and immune assays like enzyme-linked immunosorbent assay (ELISA) are in-use to ascertain the ZIKV infection or Zika fever. Herein, this review highlights the recent advances in the diagnosis, surveillance, and monitoring of ZIKV. These new insights gained from the recent advances can aid in the rapid and definitive detection of this virus and/or Zika fever. The summarized information will aid the strategies to design and adopt effective prevention and control strategies to counter this viral pathogen of great public health concern.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Hafiz M. N. Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Mexico
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rubén Bueno-Marí
- Laboratorios Lokímica, Departamento de Investigación y Desarrollo (I+D), Valencia, Spain
| |
Collapse
|
5
|
Shukla S, Hong SY, Chung SH, Kim M. Rapid Detection Strategies for the Global Threat of Zika Virus: Current State, New Hypotheses, and Limitations. Front Microbiol 2016; 7:1685. [PMID: 27822207 PMCID: PMC5075579 DOI: 10.3389/fmicb.2016.01685] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
The current scenario regarding the widespread Zika virus (ZIKV) has resulted in numerous diagnostic studies, specifically in South America and in locations where there is frequent entry of travelers returning from ZIKV-affected areas, including pregnant women with or without clinical symptoms of ZIKV infection. The World Health Organization, WHO, announced that millions of cases of ZIKV are likely to occur in the USA in the near future. This situation has created an alarming public health emergency of international concern requiring the detection of this life-threatening viral candidate due to increased cases of newborn microcephaly associated with ZIKV infection. Hence, this review reports possible methods and strategies for the fast and reliable detection of ZIKV with particular emphasis on current updates, knowledge, and new hypotheses that might be helpful for medical professionals in poor and developing countries that urgently need to address this problem. In particular, we emphasize liposome-based biosensors. Although these biosensors are currently among the less popular tools for human disease detection, they have become useful tools for the screening and detection of pathogenic bacteria, fungi, and viruses because of their versatile advantageous features compared to other sensing devices. This review summarizes the currently available methods employed for the rapid detection of ZIKV and suggests an innovative approach involving the application of a liposome-based hypothesis for the development of new strategies for ZIKV detection and their use as effective biomedicinal tools.
Collapse
Affiliation(s)
- Shruti Shukla
- Department of Food Science and Technology, Yeungnam University Gyeongsan-si, South Korea
| | - Sung-Yong Hong
- School of Biosystem and Biomedical Science, College of Health Sciences, Korea University Seoul, South Korea
| | - Soo Hyun Chung
- School of Biosystem and Biomedical Science, College of Health Sciences, Korea University Seoul, South Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University Gyeongsan-si, South Korea
| |
Collapse
|
6
|
Sakudo A, Baba K, Ikuta K. Capturing and concentrating adenovirus using magnetic anionic nanobeads. Int J Nanomedicine 2016; 11:1847-57. [PMID: 27274228 PMCID: PMC4869635 DOI: 10.2147/ijn.s104926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | | | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan; Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa, Japan
| |
Collapse
|