1
|
Upadhyay A, Bakkalci D, Micalet A, Butler M, Bergin M, Moeendarbary E, Loizidou M, Cheema U. Dense Collagen I as a Biomimetic Material to Track Matrix Remodelling in Renal Carcinomas. ACS OMEGA 2024; 9:41419-41432. [PMID: 39398183 PMCID: PMC11465592 DOI: 10.1021/acsomega.4c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Aims: Renal tissue is a dynamic biophysical microenvironment, regulating healthy function and influencing tumor development. Matrix remodelling is an iterative process and aberrant tissue repair is prominent in kidney fibrosis and cancer. Biomimetic 3D models recapitulating the collagen composition and mechanical fidelity of native renal tissue were developed to investigate cell-matrix interactions in renal carcinomas. Methods: Collagen I and laminin hydrogels were engineered with renal cancer cells (ACHN and 786-O), which underwent plastic compression to generate dense matrices. Mechanical properties were determined using shear rheology and qPCR determined the gene expression of matrix markers. Results: The shear modulus and phase angle of acellular dense collagen I gels (474 Pa and 10.7) are similar to human kidney samples (1410 Pa and 10.5). After 21 days, 786-O cells softened the dense matrix (∼155 Pa), with collagen IV downregulation and upregulation of matrix metalloproteinases (MMP7 and MMP8). ACHN cells were found to be less invasive and stiffened the matrix to ∼1.25 kPa, with gene upregulation of collagen IV and the cross-linking enzyme LOX. Conclusions: Renal cancer cells remodel their biophysical environment, altering the material properties of tissue stroma in 3D models. These models can generate physiologically relevant stiffness to investigate the different matrix remodelling mechanisms utilized by cancer cells.
Collapse
Affiliation(s)
- Anuja Upadhyay
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| | - Deniz Bakkalci
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| | - Auxtine Micalet
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
- Department
of Mechanical Engineering, Roberts Building, University College London, WC1E 6BT London, United Kingdom
| | - Matt Butler
- UCB
Pharma, 216 Bath Road, SL1 3WE Slough, United Kingdom
| | | | - Emad Moeendarbary
- Department
of Mechanical Engineering, Roberts Building, University College London, WC1E 6BT London, United Kingdom
| | - Marilena Loizidou
- Division
of Surgery and Interventional Science, University
College London, Royal
Free Campus, Rowland Hill Street, NW3
2PF London, United
Kingdom
| | - Umber Cheema
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| |
Collapse
|
2
|
Lin X, Zhi Y. CircPRELID2 functions as a promoter of renal cell carcinoma through the miR-22-3p/ETV1 cascade. BMC Urol 2024; 24:104. [PMID: 38730434 PMCID: PMC11088145 DOI: 10.1186/s12894-024-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Emerging evidence has indicated that a number of circular RNAs (circRNAs) participate in renal cell carcinoma (RCC) carcinogenesis. Nevertheless, the activity and molecular process of circPRELID2 (hsa_circ_0006528) in RCC progression remain unknown. METHODS CircPRELID2, miR-22-3p and ETS variant 1 (ETV1) levels were gauged by qRT-PCR. Effect of the circPRELID2/miR-22-3p/ETV1 axis was evaluated by detecting cell growth, motility, and invasion. Immunoblotting assessed related protein levels. The relationships of circPRELID2/miR-22-3p and miR-22-3p/ETV1 were confirmed by RNA immunoprecipitation (RIP), luciferase reporter or RNA pull-down assay. RESULTS CircPRELID2 was up-regulated in RCC. CircPRELID2 silencing suppressed RCC cell growth, motility and invasion. Moreover, circPRELID2 silencing weakened M2-type macrophage polarization in THP1-induced macrophage cells. CircPRELID2 sequestered miR-22-3p, and circPRELID2 increased ETV1 expression through miR-22-3p. Moreover, the inhibitory impact of circPRELID2 silencing on RCC cell malignant behaviors was mediated by the miR-22-3p/ETV1 axis. Furthermore, circPRELID2 knockdown in vivo hampered growth of xenograft tumors. CONCLUSION Our study demonstrates that circPRELID2 silencing can mitigate RCC malignant development through the circPRELID2/miR-22-3p/ETV1 axis, highlighting new therapeutic targets for RCC treatment.
Collapse
Affiliation(s)
- Xi Lin
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, No.1 Shuanghu Branch Road, Huixing Street, Yubei District, Chongqing City, 401120, PR, China
| | - Yi Zhi
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, No.1 Shuanghu Branch Road, Huixing Street, Yubei District, Chongqing City, 401120, PR, China.
| |
Collapse
|
3
|
Liu J, Chen T, Li S, Liu W, Wang P, Shang G. Targeting matrix metalloproteinases by E3 ubiquitin ligases as a way to regulate the tumor microenvironment for cancer therapy. Semin Cancer Biol 2022; 86:259-268. [PMID: 35724822 DOI: 10.1016/j.semcancer.2022.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
The tumor microenvironment (TME) plays an important role in neoplastic development. Matrix metalloproteinases (MMPs) are critically involved in tumorigenesis by modulation of the TME and degradation of the extracellular matrix (ECM) in a large variety of malignancies. Evidence has revealed that dysregulated MMPs can lead to ECM damage, the promotion of cell migration and tumor metastasis. The expression and activities of MMPs can be tightly regulated by TIMPs, multiple signaling pathways and noncoding RNAs. MMPs are also finely controlled by E3 ubiquitin ligases. The current review focuses on the molecular mechanism by which MMPs are governed by E3 ubiquitin ligases in carcinogenesis. Due to the essential role of MMPs in oncogenesis, they have been considered the attractive targets for antitumor treatment. Several strategies that target MMPs have been discovered, including the use of small-molecule inhibitors, peptides, inhibitory antibodies, natural compounds with anti-MMP activity, and RNAi therapeutics. However, these molecules have multiple disadvantages, such as poor solubility, severe side-effects and low oral bioavailability. Therefore, it is necessary to discover the novel inhibitors that suppress MMPs for cancer therapy. Here, we discuss the therapeutic potential of targeting E3 ubiquitin ligases to inhibit MMPs. We hope this review will stimulate the discovery of novel therapeutics for the MMP-targeted treatment of a variety of human cancers.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shizhe Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Wenjun Liu
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China
| | - Peter Wang
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China.
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
4
|
Bi H, Zhang M, Wang J, Long G. The mRNA landscape profiling reveals potential biomarkers associated with acute kidney injury AKI after kidney transplantation. PeerJ 2020; 8:e10441. [PMID: 33312771 PMCID: PMC7703406 DOI: 10.7717/peerj.10441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background This study aims to identify potential biomarkers associated with acute kidney injury (AKI) post kidney transplantation. Material and Methods Two mRNA expression profiles from Gene Expression Omnibus repertory were downloaded, including 20 delayed graft function (DGF) and 68 immediate graft function (IGF) samples. Differentially expressed genes (DEGs) were identified between DGF and IGF group. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of DEGs were performed. Then, a protein-protein interaction analysis was performed to extract hub genes. The key genes were searched by literature retrieval and cross-validated based on the training dataset. An external dataset was used to validate the expression levels of key genes. Receiver operating characteristic curve analyses were performed to evaluate diagnostic performance of key genes for AKI. Results A total of 330 DEGs were identified between DGF and IGF samples, including 179 up-regulated and 151 down-regulated genes. Of these, OLIG3, EBF3 and ETV1 were transcription factor genes. Moreover, LEP, EIF4A3, WDR3, MC4R, PPP2CB, DDX21 and GPT served as hub genes in PPI network. EBF3 was significantly up-regulated in validation GSE139061 dataset, which was consistently with our initial gene differential expression analysis. Finally, we found that LEP had a great diagnostic value for AKI (AUC = 0.740). Conclusion EBF3 may be associated with the development of AKI following kidney transplantation. Furthermore, LEP had a good diagnostic value for AKI. These findings provide deeper insights into the diagnosis and management of AKI post renal transplantation.
Collapse
Affiliation(s)
- Hui Bi
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| | - Min Zhang
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| | - Jialin Wang
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| | - Gang Long
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
5
|
Song Y, Liu Y, Pan S, Xie S, Wang ZW, Zhu X. Role of the COP1 protein in cancer development and therapy. Semin Cancer Biol 2020; 67:43-52. [PMID: 32027978 DOI: 10.1016/j.semcancer.2020.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/31/2022]
Abstract
COP1, an E3 ubiquitin ligase, has been demonstrated to play a vital role in the regulation of cell proliferation, apoptosis and DNA repair. Accumulated evidence has revealed that COP1 is involved in carcinogenesis via targeting its substrates, including p53, c-Jun, ETS, β-catenin, STAT3, MTA1, p27, 14-3-3σ, and C/EBPα, for ubiquitination and degradation. COP1 can play tumor suppressive and oncogenic roles in human malignancies, urging us to summarize the functions of COP1 in tumorigenesis. In this review, we describe the structure of COP1 and its known substrates. Moreover, we dissect the function of COP1 by physiological (mouse models), pathological (human tumor specimens) and biochemical (ubiquitin substrates) Evidence. Furthermore, we discuss COP1 as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
6
|
Abstract
Cullin-RING ligase 4 (CRL4), a member of the cullin-RING ligase family, orchestrates a variety of critical cellular processes and pathophysiological events. Recent results from mouse genetics, clinical analyses, and biochemical studies have revealed the impact of CRL4 in development and cancer etiology and elucidated its in-depth mechanism on catalysis of ubiquitination as a ubiquitin E3 ligase. Here, we summarize the versatile roles of the CRL4 E3 ligase complexes in tumorigenesis dependent on the evidence obtained from knockout and transgenic mouse models as well as biochemical and pathological studies.
Collapse
|
7
|
Ko EJ, Oh YL, Kim HY, Eo WK, Kim H, Kim KH, Koh SB, Ock MS, Choi YH, Kim A, Choi HH, Park EJ, Cha HJ. Correlation of constitutive photomorphogenic 1 (COP1) and p27 tumor suppressor protein expression in ovarian cancer. Genes Genomics 2019; 41:879-884. [PMID: 31028655 DOI: 10.1007/s13258-019-00818-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase that regulates important target proteins for cell growth including p27. The tumor suppressor p27 negatively regulates the cell cycle by inhibiting cyclin-dependent kinase. COP1 negatively regulates p27 stability by mediating its nuclear export and degradation. OBJECTIVE Even if COP1 and p27 are tightly related and have significant roles in tumor progression, the expression patterns and relationship of both proteins in cancer have not yet been studied. METHOD We analyzed the expression patterns and relationship between COP1 and p27 using an ovarian cancer tissue microarray by dual immunofluorescence analysis. RESULTS The expression levels of COP1 and p27 proteins were not significantly different between ovarian cancer tissue and normal control tissue. Other clinical data including age, tumor type, tumor grade, and stage were not significantly related to expression of the two proteins. The co-relationship between COP1 and p27 proteins was significantly high (Pearson correlation coefficient 0.79, p = 8.65 × 10-22). CONCLUSIONS Our results demonstrate that while the expression levels of COP1 and p27 are highly correlated, they are not significantly related to cancer progression in ovarian cancer.
Collapse
Affiliation(s)
- Eun-Ji Ko
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea.,Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Young Lim Oh
- Department of Obstetrics and Gynecology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Heung Yeol Kim
- Department of Obstetrics and Gynecology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Wan Kyu Eo
- Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hongbae Kim
- Department of Obstetrics and Gynecology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Republic of Korea.,Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan, Republic of Korea
| | - Suk Bong Koh
- Department of Obstetrics and Gynecology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, Republic of Korea
| | - Ari Kim
- Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA
| | - Hyun Ho Choi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Eun Joo Park
- Department of Obstetrics and Gynecology, Eulji Medical Center, Eulji University, Seoul, Republic of Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
8
|
Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1871:138-159. [PMID: 30602127 DOI: 10.1016/j.bbcan.2018.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
As a member of the Cullin-RING ligase family, Cullin-RING ligase 4 (CRL4) has drawn much attention due to its broad regulatory roles under physiological and pathological conditions, especially in neoplastic events. Based on evidence from knockout and transgenic mouse models, human clinical data, and biochemical interactions, we summarize the distinct roles of the CRL4 E3 ligase complexes in tumorigenesis, which appears to be tissue- and context-dependent. Notably, targeting CRL4 has recently emerged as a noval anti-cancer strategy, including thalidomide and its derivatives that bind to the substrate recognition receptor cereblon (CRBN), and anticancer sulfonamides that target DCAF15 to suppress the neoplastic proliferation of multiple myeloma and colorectal cancers, respectively. To this end, PROTACs have been developed as a group of engineered bi-functional chemical glues that induce the ubiquitination-mediated degradation of substrates via recruiting E3 ligases, such as CRL4 (CRBN) and CRL2 (pVHL). We summarize the recent major advances in the CRL4 research field towards understanding its involvement in tumorigenesis and further discuss its clinical implications. The anti-tumor effects using the PROTAC approach to target the degradation of undruggable targets are also highlighted.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|