1
|
Anakha J, Dobariya P, Sharma SS, Pande AH. Recombinant human endostatin as a potential anti-angiogenic agent: therapeutic perspective and current status. Med Oncol 2023; 41:24. [PMID: 38123873 DOI: 10.1007/s12032-023-02245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
Angiogenesis is the physiological process that results in the formation of new blood vessels develop from pre-existing vasculature and plays a significant role in several physiological and pathological processes. Inhibiting angiogenesis, a crucial mechanism in the growth and metastasis of cancer, has been proposed as a potential anticancer therapy. Different studies showed the beneficial effects of angiogenesis inhibitors either in patients suffering from different cancers, alone or in combination with conventional therapies. Even though there are currently a number of efficient anti-angiogenic drugs, including monoclonal antibodies and kinase inhibitors, the associated toxicity profile and their affordability constraints are prompting researchers to search for a safe and affordable angiostatic agent for cancer treatment. Endostatin is one of the endogenous anti-angiogenic candidates that have been extensively pursued for the treatment of cancer, but even over three decades after its discovery, we have not made much advancement in employing it as an anticancer therapeutic despite of its remarkable anti-angiogenic effect with low toxicity profile. A recombinant human endostatin (rh-Es) variant for non-small cell lung cancer was approved by China in 2006 and has since been used effectively. Several other successful clinical trials related to endostatin for various malignancies are either ongoing or have already been completed with promising results. Thus, in this review, we have provided an overview of existing anti-angiogenic drugs developed for cancer therapy, with a summary of tumour angiogenesis in the context of Endostatin, and clinical status of rh-Es in cancer treatment. Furthermore, we briefly discuss the various strategies to improve endostatin features (poor pharmacokinetic properties) for developing rh-Es as a safe and effective agent for cancer treatment.
Collapse
Affiliation(s)
- J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Prakashkumar Dobariya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
2
|
Cunningham C, Bolcaen J, Bisio A, Genis A, Strijdom H, Vandevoorde C. Recombinant Endostatin as a Potential Radiosensitizer in the Treatment of Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2023; 16:219. [PMID: 37259367 PMCID: PMC9961924 DOI: 10.3390/ph16020219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 11/03/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer, which is the leading cause of cancer-related deaths worldwide. Over the past decades, tumour angiogenesis has been intensely studied in the treatment of NSCLC due to its fundamental role in cancer progression. Several anti-angiogenic drugs, such as recombinant endostatin (RE), have been evaluated in several preclinical and clinical trials, with mixed and often disappointing results. However, there is currently an emerging interest in RE due to its ability to create a vascular normalization window, which could further improve treatment efficacy of the standard NSCLC treatment. This review provides an overview of preclinical and clinical studies that combined RE and radiotherapy for NSCLC treatment. Furthermore, it highlights the ongoing challenges that have to be overcome in order to maximize the benefit; as well as the potential advantage of combinations with particle therapy and immunotherapy, which are rapidly gaining momentum in the treatment landscape of NSCLC. Different angiogenic and immunosuppressive effects are observed between particle therapy and conventional X-ray radiotherapy. The combination of RE, particle therapy and immunotherapy presents a promising future therapeutic triad for NSCLC.
Collapse
Affiliation(s)
- Charnay Cunningham
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Cape Town 7602, South Africa
- Radiation Biophysics Division, SSC Laboratory, NRF Ithemba LABS, Cape Town 7131, South Africa
| | - Julie Bolcaen
- Radiation Biophysics Division, SSC Laboratory, NRF Ithemba LABS, Cape Town 7131, South Africa
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Amanda Genis
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Cape Town 7602, South Africa
| | - Hans Strijdom
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Cape Town 7602, South Africa
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany
| |
Collapse
|
3
|
Hu M, Zhang T, Gu M, Li J, Zhang H, Wang Q, Hu F, Yang Y, Li B. Pretreatment to Posttreatment Hypoxia Inducible Factor-1α Ratios as a Potentially Predictive Marker for First-Line Treatment in Nonsmall Cell Lung Cancer Patients without Known Driver Mutations. Genet Test Mol Biomarkers 2020; 24:798-803. [PMID: 33347392 DOI: 10.1089/gtmb.2020.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) are key angiogenic regulatory factors. The aim of this study was to identify the most useful prognostic angiogenic factors in advanced nonsmall cell lung cancer (NSCLC) without known driver gene mutations. Methods: Eligible patients were pathologically confirmed to have advanced NSCLC without known driver mutations. All patients were treated with standard first-line chemotherapy ± bevacizumab. Serum concentrations of HIF-1α, VEGF, sVEGFR1, sVEGFR2, and endostatin were measured via enzyme-linked immunosorbent assays (ELISAs) prior to and after two cycles of treatment. Area under the curve (AUC) and optimal cutoff values were calculated by receiver operator characteristic curve (ROC) analyses. The parameters that predicted survival were evaluated by univariate and multivariate Cox proportional hazard analyses. Results: A total of 47 patients were included in this study. HIF-1α levels decreased significantly after treatment in the nonprogressing (partial response/stable disease) patient group (707.94 vs. 355.53 pg/mL, p = 0.002), but increased levels were seen in patients with progressive disease, however, the extent of change did not reach significance (173.70 vs. 416.34 pg/mL, p = 0.078). An HIF-1α ratio of 1.18 was chosen as the best point to predict treatment response through ROC analyses. Via univariate and multivariate analyses, we found that patients with a HIF-1α ratio ≥1.18 after treatment were significantly more likely to have a prolonged progression-free survival (PFS, HR 0.303, 95% CI: 0.153-0.603, p = 0.001) and overall survival (OS, HR 0.436, 95% CI: 0.153-0.603, p = 0.025). Conclusions: We identified the pretreatment to posttreatment HIF-1α ratio as a promising predictor for PFS and OS in NSCLC patients without known driver mutations.
Collapse
Affiliation(s)
- Mingming Hu
- Oncology Department, Beijing Chest Hospital of Capital Medical University, Beijing, China
| | - Tongmei Zhang
- Oncology Department, Beijing Chest Hospital of Capital Medical University, Beijing, China
| | - Meng Gu
- Laboratory of Molecular Biology, Beijing Chest Hospital of Capital Medical University, Beijing, China
| | - Jie Li
- Oncology Department, Beijing Chest Hospital of Capital Medical University, Beijing, China
| | - Hongmei Zhang
- Oncology Department, Beijing Chest Hospital of Capital Medical University, Beijing, China
| | - Qunhui Wang
- Oncology Department, Beijing Chest Hospital of Capital Medical University, Beijing, China
| | - Fanbin Hu
- Oncology Department, Beijing Chest Hospital of Capital Medical University, Beijing, China
| | - Yuan Yang
- Oncology Department, Beijing Chest Hospital of Capital Medical University, Beijing, China
| | - Baolan Li
- Oncology Department, Beijing Chest Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Sankhe R, Pai SRK, Kishore A. Tumour suppression through modulation of neprilysin signaling: A comprehensive review. Eur J Pharmacol 2020; 891:173727. [PMID: 33160935 DOI: 10.1016/j.ejphar.2020.173727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/09/2023]
Abstract
Peptidases are emerging as promising drug targets in tumour suppression. Neprilysin, also known as neutral endopeptidase, is a cell surface peptidase that degrades various peptides such as angiotensin II, endothelin I, Substance P, etc., and reduces their local concentration. Neprilysin is expressed in various tissues such as kidney, prostate, lung, breast, brain, intestine, adrenal gland, etc. The tumour-suppressor mechanisms of neprilysin include its peptidase activity that degrades mitogenic growth factors such as fibroblast growth factor-2 and insulin-like growth factors, and the protein-protein interaction of neprilysin with phosphatase and tensin homolog, focal adhesion kinase, ezrin/radixin/moesin, and phosphoinositide 3-kinase. Studies have shown that the levels of neprilysin play an important role in malignancies. NEP is downregulated in prostate, renal, lung, breast, urothelial, cervical, hepatic cancers, etc. Histone deacetylation and hypermethylation of the neprilysin promoter region are the common mechanisms involved in the downregulation of neprilysin. Downregulation of the peptidase promotes angiogenesis, cell survival and cell migration. This review presents an overview of the role of neprilysin in malignancy, the tumour suppression mechanisms of neprilysin, the epigenetic mechanisms responsible for downregulation of neprilysin, and the potential pharmacological approaches to upregulate neprilysin levels and its activity.
Collapse
Affiliation(s)
- Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Ebrahimi S, Javid H, Alaei A, Hashemy SI. New insight into the role of substance P/neurokinin-1 receptor system in breast cancer progression and its crosstalk with microRNAs. Clin Genet 2020; 98:322-330. [PMID: 32266968 DOI: 10.1111/cge.13750] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
The neuropeptide substance P (SP) triggers a variety of tumor-promoting signaling pathways through the activation of neurokinin-1receptor (NK1R), a class of neurokinin G protein-coupled receptors superfamily. Recent researches in our and other laboratories have shown the overexpression of both SP and NK1R in breast cancer (BC) patients. SP/NK1R signaling is strongly implicated in the pathogenesis of BC through affecting cell proliferation, migration, metastasis, angiogenesis, and resistance. Therefore, SP/NK1R signaling responses must be rigorously regulated; otherwise, they would contribute to a more aggressive BC phenotype. Recently, microRNAs (miRNAs) as a specific class of epigenetic regulators have been shown to regulate NK1R and thus, controlling SP/NK1R signaling responses in BC. This review summarizes the current knowledge of the role of SP/NK1R signaling and its therapeutic potentials in BC. We also provide an overview regarding the effects of miRNA-mediated NK1R regulatory mechanisms in controlling BC tumorigenesis to gain a clearer view and thus better management of cancer.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Alaei
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Zingoni A, Vulpis E, Loconte L, Santoni A. NKG2D Ligand Shedding in Response to Stress: Role of ADAM10. Front Immunol 2020; 11:447. [PMID: 32269567 PMCID: PMC7109295 DOI: 10.3389/fimmu.2020.00447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
NKG2D is an activating receptor expressed by NK cells and some subsets of T cells and represents a major recognition receptor for detection and elimination of cancer cells. The ligands of NKG2D are stress-induced self-proteins that can be secreted as soluble molecules by protease-mediated cleavage. The release of NKG2D ligands in the extracellular milieu is considered a mode of finely controlling their surface expression levels and represents a relevant immune evasion mechanism employed by cancer cells to elude NKG2D-mediated immune surveillance. A disintegrin and metalloproteinase 10 (ADAM10), a catalytically active member of the ADAM family of proteases, is involved in the cleavage of some NKG2D ligands in various types of cancer cells either in steady state conditions and in response to an ample variety of stress stimuli. Appealing immunotherapeutic strategies devoted to promoting NK cell-mediated recognition and elimination of cancer cells are based on the upregulation of NK cell activating ligands. In particular, activation of DNA damage response (DDR) and the induction of cellular senescence by chemotherapeutic agents are associated with increased expression of NKG2D ligands on cancer cell surface. Herein, we will review advances on the protease-mediated cleavage of NKG2D ligands in response to chemotherapy-induced stress focusing on: (i) the role played by ADAM10 in this process and (ii) the implications of NKG2D ligand shedding in the course of cancer therapy and in senescent cells.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Vulpis
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luisa Loconte
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
7
|
Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs. Matrix Biol 2017; 75-76:170-189. [PMID: 29133183 DOI: 10.1016/j.matbio.2017.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| | - Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| |
Collapse
|