1
|
Jeepipalli S, Gurusamy P, Luz Martins AR, Colella E, Nadakuditi SR, Desaraju T, Yada A, Onime J, William J, Bhattacharyya I, Chan EKL, Kesavalu L. Altered microRNA Expression Correlates with Reduced TLR2/4-Dependent Periodontal Inflammation and Bone Resorption Induced by Polymicrobial Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632435. [PMID: 39829929 PMCID: PMC11741372 DOI: 10.1101/2025.01.10.632435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Periodontitis (PD) is a polymicrobial dysbiotic immuno-inflammatory disease. Toll-like receptors (TLRs) are present on gingival epithelial cells and recognize pathogen-associated molecular patterns (PAMPs) on pathogenic bacteria, induce the secretion of proinflammatory cytokines, and initiate innate and adaptive antigen-specific immune responses to eradicate the invading microbes. Since PD is a chronic inflammatory disease, TLR2/TLR4 plays a vital role in disease pathogenesis and maintaining the periodontium during health. Many factors modulate the TLR-mediated signaling pathway, including specific miRNAs. The present study was designed to characterize the function of TLR2/4 signaling to the miRNA profile after polybacterial infection with Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in C57BL6/J wild-type, TLR2 -/- , and TLR4 -/- mice (n=16/group) using RT-qPCR. The selection of 15 dominant miRNAs for RT-qPCR analysis was based on prior NanoString global miRNA expression profiling in response to polymicrobial and monobacterial infection. Polybacterial infections established gingival colonization in wild-type, TLR2 -/- and TLR4 -/- mice with induction of bacterial-specific IgG. A significant reduction in alveolar bone resorption (ABR) and gingival inflammation was observed in the mandibles of TLR2/4 -/- mice compared to C57BL6/J wild-type mice ( p <0.0001). Periodontal bacteria disseminated from gingival tissue to the multiple organs in wild-type and TLR2 -/- mice (heart, lungs, brain, kidney) and limited to heart ( F. nucleatum ), lungs ( P. gingivalis ), kidney ( T. forsythia ) in TLR4 -/- mice. The diagnostic potential of miRNAs was assessed by receiver operating characteristic (ROC) curves. Among 15 miRNAs, three were upregulated in C57BL6/J wild-type mice, two in TLR2 -/- , and seven in TLR4 -/- mice. Notably, the anti-inflammatory miR-146a-5p was consistently upregulated in all the mice. Additionally, miR-15a-5p was upregulated in wild-type and TLR2 -/- mice. let-7c-5p was upregulated in TLR4 -/- mice and downregulated in the wild-type mice. Multi-species oral bacterial infection alters the TLR2/4 signaling pathways by modulating the expression of several potential biomarker miRNAs in periodontium. IMPORTANCE Periodontitis is the most prevalent chronic immuno-infectious multispecies dysbiotic disease of the oral cavity. The Toll-like receptors (TLR) provide the first line of defense, one of the best-characterized pathogens-detection systems and play a vital role in recognizing multiple microbial products. Multispecies infection with periodontal bacteria S. gordonii, F. nucleatum, P. gingivalis, T. denticola, and T. forsythia induced gingival inflammation, alveolar bone resorption (ABR) and miRNA expression in the C57BL6/J wild-type mice and whereas infection did not increase significant ABR in the TLR2/4 deficient mice. Among the 15 miRNAs investigated, miR-146a - 5p, miR-15a-5p were upregulated in wild-type and TLR2 -/- mice and miR-146a-5p, miR-30c-5p, let-7c-5p were upregulated in the TLR4 -/- mice compared to sham-infected controls. Notably, inflammatory miRNA miR-146a-5p was upregulated uniquely among the three different infection groups. The upregulated miRNAs (miR-146a, miR-15-a-5p, let-7c-5p) and downregulated miRNAs could be markers for TLRs-mediated induction of periodontitis.
Collapse
|
2
|
Silva ED, Pereira-Sousa D, Ribeiro-Costa F, Cerqueira R, Enguita FJ, Gomes RN, Dias-Ferreira J, Pereira C, Castanheira A, Pinto-do-Ó P, Leite-Moreira AF, Nascimento DS. Pericardial Fluid Accumulates microRNAs That Regulate Heart Fibrosis after Myocardial Infarction. Int J Mol Sci 2024; 25:8329. [PMID: 39125899 PMCID: PMC11313565 DOI: 10.3390/ijms25158329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Pericardial fluid (PF) has been suggested as a reservoir of molecular targets that can be modulated for efficient repair after myocardial infarction (MI). Here, we set out to address the content of this biofluid after MI, namely in terms of microRNAs (miRs) that are important modulators of the cardiac pathological response. PF was collected during coronary artery bypass grafting (CABG) from two MI cohorts, patients with non-ST-segment elevation MI (NSTEMI) and patients with ST-segment elevation MI (STEMI), and a control group composed of patients with stable angina and without previous history of MI. The PF miR content was analyzed by small RNA sequencing, and its biological effect was assessed on human cardiac fibroblasts. PF accumulates fibrotic and inflammatory molecules in STEMI patients, namely causing the soluble suppression of tumorigenicity 2 (ST-2), which inversely correlates with the left ventricle ejection fraction. Although the PF of the three patient groups induce similar levels of fibroblast-to-myofibroblast activation in vitro, RNA sequencing revealed that PF from STEMI patients is particularly enriched not only in pro-fibrotic miRs but also anti-fibrotic miRs. Among those, miR-22-3p was herein found to inhibit TGF-β-induced human cardiac fibroblast activation in vitro. PF constitutes an attractive source for screening diagnostic/prognostic miRs and for unveiling novel therapeutic targets in cardiac fibrosis.
Collapse
Affiliation(s)
- Elsa D. Silva
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - Daniel Pereira-Sousa
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Center for Translational Medicine (CTM), International Clinical Research Centre (ICRC), St. Anne’s Hospital, 60200 Brno, Czech Republic
- Department of Biomedical Sciences, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Francisco Ribeiro-Costa
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - Rui Cerqueira
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, 4150-180 Porto, Portugal; (R.C.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Rita N. Gomes
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - João Dias-Ferreira
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - Cassilda Pereira
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic of Porto, 4200-465 Porto, Portugal
| | - Ana Castanheira
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
- INL—International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Perpétua Pinto-do-Ó
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - Adelino F. Leite-Moreira
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, 4150-180 Porto, Portugal; (R.C.)
| | - Diana S. Nascimento
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
3
|
Maries L, Moatar AI, Chis AR, Marian C, Luca CT, Sirbu IO, Gaiță D. Plasma hsa-miR-22-3p Might Serve as an Early Predictor of Ventricular Function Recovery after ST-Elevation Acute Myocardial Infarction. Biomedicines 2023; 11:2289. [PMID: 37626785 PMCID: PMC10452683 DOI: 10.3390/biomedicines11082289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Left ventricle remodeling (LVR) after acute myocardial infarction (aMI) leads to impairment of both systolic and diastolic function, a major contributor to heart failure (HF). Despite extensive research, predicting post-aMI LVR and HF is still a challenge. Several circulant microRNAs have been proposed as LVR predictors; however, their clinical value is controversial. Here, we used real-time quantitative polymerase chain reaction (qRT-PCR) to quantify hsa-miR-22-3p (miR-22) plasma levels on the first day of hospital admission of ST-elevation aMI (STEMI) patients. We analyzed miR-22 correlation to the patients' clinical and paraclinical variables and evaluated its ability to discriminate between post-aMI LVR and non-LVR. We show that miR-22 is an excellent aMI discriminator and can distinguish between LVR and non-LVR patients. The discriminative performance of miR-22 significantly improves the predictive power of a multiple logistic regression model based on four continuous variables (baseline ejection fraction and end-diastolic volume, CK-MB, and troponin). Furthermore, we found that diabetes mellitus, hematocrit level, and the number of erythrocytes significantly influence its levels. These data suggest that miR-22 might be used as a predictor of ventricular function recovery in STEMI patients.
Collapse
Affiliation(s)
- Liana Maries
- Biochemistry Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.M.); (A.I.M.); (A.R.C.); (C.M.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexandra Ioana Moatar
- Biochemistry Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.M.); (A.I.M.); (A.R.C.); (C.M.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Aimee Rodica Chis
- Biochemistry Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.M.); (A.I.M.); (A.R.C.); (C.M.)
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Catalin Marian
- Biochemistry Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.M.); (A.I.M.); (A.R.C.); (C.M.)
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Constantin Tudor Luca
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.T.L.); (D.G.)
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Ioan-Ovidiu Sirbu
- Biochemistry Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.M.); (A.I.M.); (A.R.C.); (C.M.)
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dan Gaiță
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.T.L.); (D.G.)
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
4
|
Almaghrbi H, Giordo R, Pintus G, Zayed H. Non-coding RNAs as biomarkers of myocardial infarction. Clin Chim Acta 2023; 540:117222. [PMID: 36627010 DOI: 10.1016/j.cca.2023.117222] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Non-coding RNAs (ncRNAs) encompass a family of ubiquitous RNA molecules that lack protein-coding potential and have tissue-specific expression. A significant body of evidence indicates that ncRNA's aberrant expression plays a critical role in disease onset and development. NcRNAs' biochemical characteristics such as disease-associated concentration changes, structural stability, and high abundance in body fluids make them promising prognostic and diagnostic biomarkers. Myocardial infarction (MI) is a leading cause of mortality worldwide. Acute myocardial infarction (AMI), the term in use to describe MI's early phase, is generally diagnosed by physical examination, electrocardiogram (ECG), and the presence of specific biomarkers. In this regard, compared to standard MI biomarkers, such as the cardiac troponin isoforms (cTnT & cTnI) and the Creatinine Kinase (CK), ncRNAs appears to provide better sensitivity and specificity, ensuring a rapid and correct diagnosis, an earlier treatment, and consequently a good prognosis for the patients. This review aims to summarize and discuss the most promising and recent data on the potential clinical use of circulating ncRNAs as MI biomarkers. Specifically, we focused primarily on miRNAs and lncRNAs, highlighting their significant specificity and sensitivity, discussing their limitations, and suggesting possible overcoming approaches.
Collapse
Affiliation(s)
- Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, United Arab Emirates
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates.
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
5
|
Abdallah HY, Hassan R, Fareed A, Abdelgawad M, Mostafa SA, Mohammed EAM. Identification of a circulating microRNAs biomarker panel for non-invasive diagnosis of coronary artery disease: case-control study. BMC Cardiovasc Disord 2022; 22:286. [PMID: 35751015 PMCID: PMC9233383 DOI: 10.1186/s12872-022-02711-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/09/2022] [Indexed: 12/07/2022] Open
Abstract
Background Circulating microRNAs (miRNAs) are considered a hot spot of research that can be employed for monitoring and/or diagnostic purposes in coronary artery disease (CAD). Since different disease features might be reflected on altered profiles or plasma miRNAs concentrations, a combination of miRNAs can provide more reliable non-invasive biomarkers for CAD. Subjects and methods We investigated a panel of 14-miRNAs selected using bioinformatics databases and current literature searching for miRNAs involved in CAD using quantitative real-time PCR technique in 73 CAD patients compared to 73 controls followed by function and pathway enrichment analysis for the 14-miRNAs. Results Our results revealed three out of the 14 circulating miRNAs understudy; miRNAs miR133a, miR155 and miR208a were downregulated. While 11 miRNAs were up-regulated in a descending order from highest fold change to lowest: miR-182, miR-145, miR-21, miR-126, miR-200b, miR-146A, miR-205, miR-135b, miR-196b, miR-140b and, miR-223. The ROC curve analysis indicated that miR-145, miR-182, miR-133a and, miR-205 were excellent biomarkers with the highest AUCs as biomarkers in CAD. All miRNAs under study except miR-208 revealed a statistically significant relation with dyslipidemia. MiR-126 and miR-155 showed significance with BMI grade, while only miR-133a showed significance with the obese patients in general. MiR-135b and miR-140b showed a significant correlation with the Wall Motion Severity Index. Pathway enrichment analysis for the miRNAS understudy revealed pathways relevant to the fatty acid biosynthesis, ECM-receptor interaction, proteoglycans in cancer, and adherens junction. Conclusion The results of this study identified a differentially expressed circulating miRNAs signature that can discriminate CAD patients from normal subjects. These results provide new insights into the significant role of miRNAs expression associated with CAD pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02711-9.
Collapse
Affiliation(s)
- Hoda Y Abdallah
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt. .,Center of Excellence in Molecular & Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Ranya Hassan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ahmed Fareed
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Sally Abdallah Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Abdel-Moemen Mohammed
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.,Center of Excellence in Molecular & Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Marathon-Induced Cardiac Strain as Model for the Evaluation of Diagnostic microRNAs for Acute Myocardial Infarction. J Clin Med 2021; 11:jcm11010005. [PMID: 35011745 PMCID: PMC8745173 DOI: 10.3390/jcm11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The current gold standard biomarker for myocardial infarction (MI), cardiac troponin (cTn), is recognized for its high sensitivity and organ specificity; however, it lacks diagnostic specificity. Numerous studies have introduced circulating microRNAs as potential biomarkers for MI. This study investigates the MI-specificity of these serum microRNAs by investigating myocardial stress/injury due to strenuous exercise. Methods: MicroRNA biomarkers were retrieved by comprehensive review of 109 publications on diagnostic serum microRNAs for MI. MicroRNA levels were first measured by next-generation sequencing in pooled sera from runners (n = 46) before and after conducting a full competitive marathon. Hereafter, reverse transcription quantitative real-time PCR (qPCR) of 10 selected serum microRNAs in 210 marathon runners was performed (>10,000 qPCR measurements). Results: 27 potential diagnostic microRNA for MI were retrieved by the literature review. Eight microRNAs (miR-1-3p, miR-21-5p, miR-26a-5p, miR-122-5p, miR-133a-3p, miR-142-5p, miR-191-5p, miR-486-3p) showed positive correlations with cTnT in marathon runners, whereas two miRNAs (miR-134-5p and miR-499a-5p) showed no correlations. Upregulation of miR-133a-3p (p = 0.03) and miR-142-5p (p = 0.01) went along with elevated cTnT after marathon. Conclusion: Some MI-associated microRNAs (e.g., miR-133a-3p and miR-142-5p) have similar kinetics under strenuous exercise and MI as compared to cTnT, which suggests that their diagnostic specificity could be limited. In contrast, several MI-associated microRNAs (miR-26a-5p, miR-134-5p, miR-191-5p) showed different release behavior; hence, combining cTnT with these microRNAs within a multi-marker strategy may add diagnostic accuracy in MI.
Collapse
|
7
|
Wu Z, Geng J, Bai Y, Qi Y, Chang C, Jiao Y, Guo Z. MicroRNA-22 inhibition promotes the development of atherosclerosis via targeting interferon regulator factor 5. Exp Cell Res 2021; 409:112922. [PMID: 34780785 DOI: 10.1016/j.yexcr.2021.112922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is generally accepted as a chronic inflammatory disease and is the most important pathological process underlying the cardiovascular diseases. MiR-22 exerts an important role in tumorgenesis, obesity and NAFLD development, as well as cardiovascular diseases. However, a certain role of miR-22 in the pathogenesis of atherosclerosis remains undetermined. Here, we showed that miR-22 exhibited a negative association with the deteriorated atherosclerotic plaque and showed significant downregulated expression in macrophages. Next, treatment of ApoE deficiency (ApoE-/-) mice with miR-22 inhibitors which were then subjected to high fat diet (HFD) for 12 weeks were performed to investigate the function of miR-22 on atherogenesis. The results exhibited that miR-22 inhibition dramatically promoted atherosclerotic plaques but attenuated plaque stabilization which were accompanied by decreased smooth muscle cell and collagen content, but increased macrophage infiltration and lipid accumulation. More importantly, the in vivo and in vitro experiments suggested that miR-22 inhibition accelerated inflammatory response and foam cell formation. Mechanistically, we demonstrated interferon regulator factor 5 (IRF5) was an important target of miR-22 and it was required for the regulation of inflammation mediated by miR-22 inhibition. Collectively, these evidences revealed that miR-22 inhibition promoted the atherosclerosis progression through activation of IRF5.
Collapse
Affiliation(s)
- Zhenhua Wu
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300073, China
| | - Jie Geng
- Cardiac Intensive Care Unit, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Yunpeng Bai
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Yujuan Qi
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Chao Chang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Yan Jiao
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Zhigang Guo
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China.
| |
Collapse
|
8
|
Sharma AR, Shashikiran U, Uk AR, Shetty R, Satyamoorthy K, Rai PS. Aberrant DNA methylation and miRNAs in coronary artery diseases and stroke: a systematic review. Brief Funct Genomics 2021; 19:259-285. [PMID: 31950130 DOI: 10.1093/bfgp/elz043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/31/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Coronary artery disease (CAD) and ischemic stroke are the two most predominant forms of cardiovascular diseases (CVDs) caused by genetic, epigenetic and environmental risk factors. Although studies on the impact of 'epigenetics' in CVDs is not new, its effects are increasingly being realized as a key regulatory determinant that may drive predisposition, pathophysiology and therapeutic outcome. The most widely studied epigenetic risk factors are regulated by DNA methylation and miRNA expression. To keep pace with growing developments and discoveries, a comprehensive review was performed using Pubmed, Science Direct and Scopus databases to highlight the role of DNA methylation and miRNAs in CAD and stroke subjects. Network analysis was performed using ClueGO software and miRTargetLink database. We identified 32 studies of DNA methylation on CAD and stroke, of which, 6 studies showed differences in global DNA methylation, 10 studies reported the genome-wide difference in DNA methylation and 16 studies demonstrated altered DNA methylation at 14 candidate loci. The network analysis showed positive regulation of nitric oxide biosynthetic process, homocysteine metabolic process and negative regulation of lipid storage. About, 155 miRNAs were associated with CAD, stroke and related phenotypes in 83 studies. Interestingly, mir-223 hypomethylation and altered expression were associated with cerebral infarction and stroke. The target prediction for 18 common miRNAs between CAD and stroke showed strong interaction with SP3 and SP1 genes. This systematic review addresses the present knowledge on DNA methylation and miRNAs in CAD and stroke, whose abnormal regulation has been implicated in etiology or progression of the diseases.
Collapse
|
9
|
Huang C, Xiao S, Xia Z, Cheng Y, Li Y, Tang W, Shi B, Qin C, Xu H. The Diagnostic Value of Plasma miRNA-497, cTnI, FABP3 and GPBB in Pediatric Sepsis Complicated with Myocardial Injury. Ther Clin Risk Manag 2021; 17:563-570. [PMID: 34113113 PMCID: PMC8185456 DOI: 10.2147/tcrm.s309800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/05/2021] [Indexed: 02/05/2023] Open
Abstract
Objective To investigate the diagnostic value of plasma miRNA-497, cardiac troponin I (cTnI), fatty acid binding protein 3 (FABP3), glycogen phosphorylase isoenzyme BB (GPBB) in pediatric sepsis complicated with myocardial injury. Methods From August 2018 to February 2020, 82 children with sepsis admitted to our hospital and 50 health children who came for physical examination (defined as control group) were enrolled in this study. Children with sepsis and myocardial injury were enrolled in the combined group (n=35), and those without myocardial injury were enrolled in the sepsis group (n=47). General data of three groups were collected, and the levels of miRNA-497, FABP3, GPBB, creatine kinase isoenzyme MB (CK-MB), procalcitonin (PCT), C-reactive protein (CRP), cTnI and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were detected and the cardiac function was measured. The diagnostic value of plasma miRNA-497, cTnI, FABP3 and GPBB in pediatric sepsis complicated with myocardial injury was analyzed. Results The infection site of the combined group was not significantly different from that of the sepsis group. The levels of miRNA-497, FABP3, GPBB, CK-MB, PCT, CRP, cTnI, NT-proBNP in the combined group were all higher than those in the sepsis group and the control group (P<0.05), and the left ventricular ejection fraction (LVEF) in the combined group was significantly lower than that in the other two group (P<0.05). The area under the curve (AUC) of the combination of miRNA-497, FABP3, GPBB, and cTnI in the diagnosis of sepsis complicated with myocardial injury was significantly higher than that of CK-MB, PCT, CRP, NT-proBNP alone (P<0.05), but there was no significant difference when compared with miRNA-497, FABP3, GPBB and cTnI alone (P>0.05). When the optimal thresholds of miRNA-497, FABP3, GPBB, and cTnI were set to 2.03, 6.23ng/mL, 4.01ng/mL, 1.23ng/mL, respectively, the sensitivity was 95.65%, 88.89%, 82.61%, 87.50%, respectively; the specificity was 83.33%, 94.12%, 83.33%, 90.91%, respectively; and the accuracy was 91.43%, 91.43%, 82.86%, 88.57%, respectively. Pearson correlation analysis indicating that miRNA-497 was positively correlated with the levels of FABP3, GPBB, and cTnI in the combined group (r=0.821, 0.621, 0.782, P<0.05). Conclusion Plasma miRNA-497, cTnI, FABP3, and GPBB levels were increased in pediatric sepsis complicated with myocardial injury, and their combination had high diagnostic value, which was of great clinical significance for early diagnosis and early treatment of pediatric sepsis complicated with myocardial injury.
Collapse
Affiliation(s)
- Chengjiao Huang
- Department of PICU, Maternal and Child Health Hospital of Hubei Province (Women and Children's Hospital of Hubei Province), Wuhan, People's Republic of China
| | - Shuna Xiao
- Department of PICU, Maternal and Child Health Hospital of Hubei Province (Women and Children's Hospital of Hubei Province), Wuhan, People's Republic of China
| | - Zhi Xia
- Department of PICU, Maternal and Child Health Hospital of Hubei Province (Women and Children's Hospital of Hubei Province), Wuhan, People's Republic of China
| | - Ying Cheng
- Department of PICU, Maternal and Child Health Hospital of Hubei Province (Women and Children's Hospital of Hubei Province), Wuhan, People's Republic of China
| | - Yong Li
- Department of PICU, Maternal and Child Health Hospital of Hubei Province (Women and Children's Hospital of Hubei Province), Wuhan, People's Republic of China
| | - Wen Tang
- Department of PICU, Maternal and Child Health Hospital of Hubei Province (Women and Children's Hospital of Hubei Province), Wuhan, People's Republic of China
| | - Buyun Shi
- Department of PICU, Maternal and Child Health Hospital of Hubei Province (Women and Children's Hospital of Hubei Province), Wuhan, People's Republic of China
| | - Chenguang Qin
- Department of PICU, Maternal and Child Health Hospital of Hubei Province (Women and Children's Hospital of Hubei Province), Wuhan, People's Republic of China
| | - Hui Xu
- Department of PICU, Maternal and Child Health Hospital of Hubei Province (Women and Children's Hospital of Hubei Province), Wuhan, People's Republic of China
| |
Collapse
|
10
|
Nejati K, Alivand M, Arabzadeh A. MicroRNA-22 in female malignancies: Focusing on breast, cervical, and ovarian cancers. Pathol Res Pract 2021; 223:153452. [PMID: 33993061 DOI: 10.1016/j.prp.2021.153452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs), a novelty-defined class of regulatory genes, have revolutionized principles of classical bimolecular. These RNAs regulate the expression of a gene through inhibition of translational initiation or targeting mRNAs for degradation. MiRNAs act in several biological operations, including proliferation, differentiation, and cell death, and their expression is often abnormal in human diseases such as cancer. In recent years, miR-22 has attracted much attention from researchers. Its expression is downregulated in female malignancies such as breast, cervical, and ovarian cancers, exhibiting that miR-22 plays a tumor-suppressive function in these cancers. Also, different reports exist about the involvement of miR-22 in non-tumor diseases. In the present review, we report the results of performed studies on the potential roles of miR-22 in female malignancies with a focus on breast, cervical, and ovarian cancers. Also, we summary its predicted target genes in various cancers. In conclusion, it is effective for researchers to understand the role of miR-22 in different cellular operations.
Collapse
Affiliation(s)
- Kazem Nejati
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - MohammadReza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AmirAhmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
11
|
Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, Stewart DJ, Dayan N, Landry T, Pilote L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res 2021; 116:1113-1124. [PMID: 31782762 DOI: 10.1093/cvr/cvz302] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/24/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
The aim of this systematic review was to assess dysregulated miRNA biomarkers in coronary artery disease (CAD). Dysregulated microRNA (miRNAs) have been shown to be linked to cardiovascular pathologies including CAD and may have utility as diagnostic and prognostic biomarkers. We compared miRNAs identified in acute coronary syndrome (ACS) compared with stable CAD and control populations. We conducted a systematic search of controlled vocabulary and free text terms related to ACS, stable CAD and miRNA in Biosis Previews (OvidSP), The Cochrane Library (Wiley), Embase (OvidSP), Global Health (OvidSP), Medline (PubMed and OvidSP), Web of Science (Clarivate Analytics), and ClinicalTrials.gov which yielded 7370 articles. Of these, 140 original articles were appropriate for data extraction. The most frequently reported miRNAs in any CAD (miR-1, miR-133a, miR-208a/b, and miR-499) are expressed abundantly in the heart and play crucial roles in cardiac physiology. In studies comparing ACS cases with stable CAD patients, miR-21, miR-208a/b, miR-133a/b, miR-30 family, miR-19, and miR-20 were most frequently reported to be dysregulated in ACS. While a number of miRNAs feature consistently across studies in their expression in both ACS and stable CAD, when compared with controls, certain miRNAs were reported as biomarkers specifically in ACS (miR-499, miR-1, miR-133a/b, and miR-208a/b) and stable CAD (miR-215, miR-487a, and miR-502). Thus, miR-21, miR-133, and miR-499 appear to have the most potential as biomarkers to differentiate the diagnosis of ACS from stable CAD, especially miR-499 which showed a correlation between the level of their concentration gradient and myocardial damage. Although these miRNAs are potential diagnostic biomarkers, these findings should be interpreted with caution as the majority of studies conducted predefined candidate-driven assessments of a limited number of miRNAs (PROSPERO registration: CRD42017079744).
Collapse
Affiliation(s)
- Amanpreet Kaur
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada
| | - Sharon T Mackin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kenny Schlosser
- Ottawa Hospital Research Institute and Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Fui Lin Wong
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Malik Elharram
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Duncan J Stewart
- Ottawa Hospital Research Institute and Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Natalie Dayan
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Tara Landry
- Medical Library, Montreal General Hospital, McGill University Health Centre, Montreal, Canada
| | - Louise Pilote
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
12
|
Ghantous CM, Kamareddine L, Farhat R, Zouein FA, Mondello S, Kobeissy F, Zeidan A. Advances in Cardiovascular Biomarker Discovery. Biomedicines 2020; 8:biomedicines8120552. [PMID: 33265898 PMCID: PMC7759775 DOI: 10.3390/biomedicines8120552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the leading causes of mortality worldwide. Among them, hypertension and its pathological complications pose a major risk for the development of other cardiovascular diseases, including heart failure and stroke. Identifying novel and early stage biomarkers of hypertension and other cardiovascular diseases is of paramount importance in predicting and preventing the major morbidity and mortality associated with these diseases. Biomarkers of such diseases or predisposition to their development are identified by changes in a specific indicator’s expression between healthy individuals and patients. These include changes in protein and microRNA (miRNA) levels. Protein profiling using mass spectrometry and miRNA screening utilizing microarray and sequencing have facilitated the discovery of proteins and miRNA as biomarker candidates. In this review, we summarized some of the different, promising early stage protein and miRNA biomarker candidates as well as the currently used biomarkers for hypertension and other cardiovascular diseases. Although a number of promising markers have been identified, it is unlikely that a single biomarker will unambiguously aid in the classification of these diseases. A multi-marker panel-strategy appears useful and promising for classifying and refining risk stratification among patients with cardiovascular disease.
Collapse
Affiliation(s)
- Crystal M. Ghantous
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Keserwan 72, Lebanon;
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Rima Farhat
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Stefania Mondello
- Oasi Research Institute-IRCCS, 94018 Troina, Italy;
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Asad Zeidan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Basic Medical Science, Faculty of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: ; Tel.: +97-431-309-19
| |
Collapse
|
13
|
Xiao L, Pei T, Huang W, Zhou M, Fu J, Tan J, Liu T, Song Y, Yang S. MicroRNA22-5p targets ten-eleven translocation and regulates estrogen receptor 2 expression in infertile women with minimal/mild endometriosis during implantation window. PLoS One 2020; 15:e0234086. [PMID: 32658928 PMCID: PMC7357761 DOI: 10.1371/journal.pone.0234086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
Based on microRNA (miR) microarray analysis, we previously found that miR22-5p expression is decreased in the mid-luteal endometrium of women with minimal/mild endometriosis. Bioinformatics analysis predicted that miR22-5p targets ten-eleven translocation (TET2) 3'-untranslated region. This study aimed to determine the regulation and roles of miR22-5p in the pathogenesis of minimal/mild endometriosis-associated infertility. MiR22-5p and TET2 expression in the mid-luteal endometrium from women with or without minimal/mild endometriosis was analyzed. After transfection with miR22-5p mimics or inhibitor, TET2 expression was analyzed by quantitative reverse transcription (RT-q) PCR, western blotting and immunohistochemistry. 5-Hydroxymethylcytosine was determined by immunofluorescence and dot blotting. Expression and promoter methylation of estrogen receptor 2 (ESR2) was measured by RT-qPCR and western blotting, and by bisulfite sequencing, respectively. We first established that miR22-5p expression decreased and TET2 expression increased in minimal/mild endometriosis during implantation window. TET2 was found to be a direct target of miR22-5p. MiR22-5p regulated the expression of ESR2, but did not directly affect methylation of its promoter region (-197/+359). Our results suggest that an imbalance in miR22-5p expression in the mid-luteal endometrium may be involved in minimal/mild endometriosis-associated infertility.
Collapse
Affiliation(s)
- Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Tianjiao Pei
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
- * E-mail:
| | - Min Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Jing Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Jing Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Yong Song
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Shiyuan Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
14
|
CircFOXO3 rs12196996, a polymorphism at the gene flanking intron, is associated with circFOXO3 levels and the risk of coronary artery disease. Aging (Albany NY) 2020; 12:13076-13089. [PMID: 32614786 PMCID: PMC7377899 DOI: 10.18632/aging.103398] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/25/2020] [Indexed: 01/02/2023]
Abstract
CircFOXO3 plays an important role in the pathogenesis of coronary artery disease (CAD). Single nucleotide polymorphisms (SNPs) at circRNA flanking introns may change its back-splicing and influence circRNA formation. Here, we aimed to investigate the influence of the polymorphisms at the circFOXO3 flanking introns on individual susceptibility to CAD. A total of 1185 individuals were included in the case-control study. In a multivariate logistic regression analysis, we determined that the rs12196996 G variant was significantly associated with increased CAD risk (OR = 1.36, P = 0.014). A similar trend of the association was observed in the recessive model (OR = 2.57, P = 0.003). Stratified analysis revealed a more significant association with CAD risk among younger subjects and non-smokers. Consistent with these results, the haplotype rs12196996G-rs9398171C containing rs12196996G allele was also associated with increased CAD risk (OR = 1.31, P = 0.013). Further investigation revealed that the rs12196996 GG genotype was associated with decreased circFOXO3 expression, but not linear FOXO3 levels. Taken together, our data provide the first evidence that the rs12196996 polymorphism at the circFOXO3 gene flanking intron is associated with CAD risk in the Chinese Han population, which is probably due to influence circFOXO3 levels.
Collapse
|
15
|
Wang X, Tian L, Sun Q. Diagnostic and prognostic value of circulating miRNA-499 and miRNA-22 in acute myocardial infarction. J Clin Lab Anal 2020; 34:2410-2417. [PMID: 32529742 PMCID: PMC7439427 DOI: 10.1002/jcla.23332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Currently, acute myocardial infarction (AMI) represents a serious cardiovascular disease with high morbidity and mortality. Therefore, this study aimed to systematically evaluate the roles of miRNA-499 and miRNA-22 as potential biomarkers for AMI. METHODS According to the inclusion and exclusion criteria, we measured circulating levels of miRNAs in 50 AMI patients and 50 non-MI populations. The expression levels of plasma miRNA-499 and miRNA-22 were analyzed by real-time fluorescent quantitative polymerase chain reaction (qRT-PCR). A statistical analysis of clinical data of AMI patients was conducted by 90-day follow-up. RESULTS Real-time PCR analysis showed that the relative expression level of miRNA-499 increased gradually among the three groups (P < .05). However, the expression of miRNA-22 showed a downward trend (P < .05). According to logistic analysis, the relative levels of miRNA-499 and miRNA-22 were important predictors of AMI. When the miRNA-499 and miRNA-22 levels were 0.377 and 0.946 separately, the diagnostic value of miRNA-499 and miRNA-22 for AMI was 86.00% and 86.00% for sensitivity, and 98.00% and 94.00% for specificity, respectively. In addition, compared to the baseline GRACE scoring system, the combination of miRNA-499, miRNA-22, and GRACE scores had a stronger discriminating power for MACE occurrence, with a sensitivity of 100.00% and a specificity of 79.40%. CONCLUSIONS The results showed that plasma miRNA-499 and miRNA-22 were more sensitive and specific for the diagnosis of AMI, suggesting that they can be used as potential biomarkers for clinical diagnosis of AMI.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Clinical Laboratory, Hospital Affiliated to Chengde Medical University, Chengde, China
| | - Lu Tian
- Clinical Laboratory, Hospital Affiliated to Chengde Medical University, Chengde, China
| | - Qiyu Sun
- Clinical Laboratory, Hospital Affiliated to Chengde Medical University, Chengde, China
| |
Collapse
|
16
|
Noncoding RNAs as Biomarkers for Acute Coronary Syndrome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3298696. [PMID: 32337239 PMCID: PMC7154975 DOI: 10.1155/2020/3298696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Acute coronary syndrome (ACS), consisting of acute myocardial infarction and unstable angina, is the most dangerous and fatal form of coronary heart disease. Acute coronary syndrome has sudden onset and rapid development, which may lead to malignant life-threatening conditions at any time. Therefore, early detection and diagnosis are critical for patients with ACS. Recent studies have found that noncoding RNA is of great significance in the diagnosis and treatment of cardiovascular diseases. In this review, we summarized recent data on circulating noncoding RNAs (including microRNA, long noncoding RNA, and circular RNA) as diagnostic and prognostic markers in ACS including acute myocardial infarction and unstable angina. Specifically, microRNAs (miRNAs) as diagnostic markers are divided into three types: miRNAs of increased expression in ACS, miRNAs of decreased expression in ACS, and miRNAs of contradictory expression in ACS. Moreover, we described these miRNAs of increased expression in ACS based on miRNAs family. This review may result in a great guidance of noncoding RNAs as biomarkers for ACS in clinical practice.
Collapse
|
17
|
Wexler Y, Nussinovitch U. The Diagnostic Value of Mir-133a in ST Elevation and Non-ST Elevation Myocardial Infarction: A Meta-Analysis. Cells 2020; 9:cells9040793. [PMID: 32218383 PMCID: PMC7226415 DOI: 10.3390/cells9040793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
Numerous studies have reported correlations between plasma microRNA signatures and cardiovascular disease. MicroRNA-133a (Mir-133a) has been researched extensively for its diagnostic value in acute myocardial infarction (AMI). While initial results seemed promising, more recent studies cast doubt on the diagnostic utility of Mir-133a, calling its clinical prospects into question. Here, the diagnostic potential of Mir-133a was analyzed using data from multiple papers. Medline, Embase, and Web of Science were systematically searched for publications containing “Cardiovascular Disease”, “MicroRNA”, “Mir-133a” and their synonyms. Diagnostic performance was assessed using area under the summary receiver operator characteristic curve (AUC), while examining the impact of age, sex, final diagnosis, and time. Of the 753 identified publications, 9 were included in the quantitative analysis. The pooled AUC for Mir-133a was 0.73. Analyses performed separately on studies using healthy vs. symptomatic controls yielded pooled AUCs of 0.89 and 0.68, respectively. Age and sex were not found to significantly affect diagnostic performance. Our findings indicate that control characteristics and methodological inconsistencies are likely the causes of incongruent reports, and that Mir-133a may have limited use in distinguishing symptomatic patients from those suffering AMI. Lastly, we hypothesized that Mir-133a may find a new use as a risk stratification biomarker in patients with specific subsets of non-ST elevation myocardial infarction (NSTEMI).
Collapse
Affiliation(s)
- Yehuda Wexler
- Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, POB 9649, Haifa 3109601, Israel;
| | - Udi Nussinovitch
- Applicative Cardiovascular Research Center (ACRC) and Department of Cardiology, Meir Medical Center, Kfar Saba 44281, Israel
- Correspondence: ; Tel.: +972-53-526-8535
| |
Collapse
|
18
|
Schiano C, Benincasa G, Franzese M, Della Mura N, Pane K, Salvatore M, Napoli C. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther 2020; 210:107514. [PMID: 32105674 DOI: 10.1016/j.pharmthera.2020.107514] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complex pathobiology underlying cardiovascular diseases (CVDs) has yet to be explained. Aberrant epigenetic changes may result from alterations in enzymatic activities, which are responsible for putting in and/or out the covalent groups, altering the epigenome and then modulating gene expression. The identification of novel individual epigenetic-sensitive trajectories at single cell level might provide additional opportunities to establish predictive, diagnostic and prognostic biomarkers as well as drug targets in CVDs. To date, most of studies investigated DNA methylation mechanism and miRNA regulation as epigenetics marks. During atherogenesis, big epigenetic changes in DNA methylation and different ncRNAs, such as miR-93, miR-340, miR-433, miR-765, CHROME, were identified into endothelial cells, smooth muscle cells, and macrophages. During man development, lipid metabolism, inflammation and homocysteine homeostasis, alter vascular transcriptional mechanism of fundamental genes such as ABCA1, SREBP2, NOS, HIF1. At histone level, increased HDAC9 was associated with matrix metalloproteinase 1 (MMP1) and MMP2 expression in pro-inflammatory macrophages of human carotid plaque other than to have a positive effect on toll like receptor signaling and innate immunity. HDAC9 deficiency promoted inflammation resolution and reverse cholesterol transport, which might block atherosclerosis progression and promote lesion regression. Here, we describe main human epigenetic mechanisms involved in atherosclerosis, coronary heart disease, ischemic stroke, peripheral artery disease; cardiomyopathy and heart failure. Different epigenetics mechanisms are activated, such as regulation by circular RNAs, as MICRA, and epitranscriptomics at RNA level. Moreover, in order to open new frontiers for precision medicine and personalized therapy, we offer a panoramic view on the most innovative bioinformatic tools designed to identify putative genes and molecular networks underlying CVDs in man.
Collapse
Affiliation(s)
- Concetta Schiano
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | | | | | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy
| |
Collapse
|
19
|
Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic Biomarkers in Cardiovascular Diseases. Front Genet 2019; 10:950. [PMID: 31649728 PMCID: PMC6795132 DOI: 10.3389/fgene.2019.00950] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of death worldwide and greatly impact quality of life and medical costs. Enormous effort has been made in research to obtain new tools for efficient and quick diagnosis and predicting the prognosis of these diseases. Discoveries of epigenetic mechanisms have related several pathologies, including cardiovascular diseases, to epigenetic dysregulation. This has implications on disease progression and is the basis for new preventive strategies. Advances in methodology and big data analysis have identified novel mechanisms and targets involved in numerous diseases, allowing more individualized epigenetic maps for personalized diagnosis and treatment. This paves the way for what is called pharmacoepigenetics, which predicts the drug response and develops a tailored therapy based on differences in the epigenetic basis of each patient. Similarly, epigenetic biomarkers have emerged as a promising instrument for the consistent diagnosis and prognosis of cardiovascular diseases. Their good accessibility and feasible methods of detection make them suitable for use in clinical practice. However, multicenter studies with a large sample population are required to determine with certainty which epigenetic biomarkers are reliable for clinical routine. Therefore, this review focuses on current discoveries regarding epigenetic biomarkers and its controversy aiming to improve the diagnosis, prognosis, and therapy in cardiovascular patients.
Collapse
Affiliation(s)
- Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayés-Genís
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Service, HUGTiP, Badalona, Spain
- Department of Medicine, Barcelona Autonomous University (UAB), Badalona, Spain
| |
Collapse
|
20
|
Zhang L, Zhang J, Tong Q, Wang G, Dong H, Wang Z, Sun Q, Wu H. Reduction of miR-29a-3p induced cardiac ischemia reperfusion injury in mice via targeting Bax. Exp Ther Med 2019; 18:1729-1737. [PMID: 31410131 PMCID: PMC6676207 DOI: 10.3892/etm.2019.7722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
The current study mainly aimed to evaluate the expression and the potential mechanism of miR-29a-3p in the hearts of mice after cardiac ischemia reperfusion (CIR) injury. Quantitative PCR was carried out to assess the relative levels of miR-29a-3p in the hearts of a CIR injury mouse model. To the best of our knowledge, the current study is the first to show that the level of miR-29a-3p was significantly decreased in the hearts of CIR injury mouse models compared with that of sham controls. Moreover, the authors found that decreased miR-29a-3p levels enhanced the production of reactive oxygen species in cardiomyocytes. Meanwhile, the inhibition of miR-29a-3p induced substantial cardiomyocyte apoptosis. Further study showed that the inhibition of miR-29a-3p decreased the activation of Akt and p38, suggesting a stress-induced self-regulatory mechanism after CIR injury in primary cardiomyocytes. A dual luciferase assay and western blot analysis showed that Bax was a target gene of miR-29a-3p. The authors also measured the level of miR-29a-3p in the plasma of 100 acute myocardial infarction (AMI) patients and found that circulating miR-29a-3p was significantly decreased in AMI patients. Receiver operating characteristic curve analysis showed that miR-29a-3p could be used to screen AMI patients from healthy controls. Hence, the authors of the current study propose that reduced miR-29a-3p levels in primary cardiomyocytes contribute to CIR injury-related apoptosis mainly by targeting Bax.
Collapse
Affiliation(s)
- Liang Zhang
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Jian Zhang
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Qiguang Tong
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Guannan Wang
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Hongling Dong
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Zhonglu Wang
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Qi Sun
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Hangyu Wu
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
21
|
Sailo L, Kumar A, Sah V, Chaudhary R, Upmanyu V, Tiwari AK, Kumar A, Pandey A, Saxena S, Singh A, Wani SA, Gandham RK, Rai A, Mishra BP, Singh RK. Genome-wide integrated analysis of miRNA and mRNA expression profiles to identify differentially expressed miR-22-5p and miR-27b-5p in response to classical swine fever vaccine virus. Funct Integr Genomics 2019; 19:901-918. [PMID: 31134483 DOI: 10.1007/s10142-019-00689-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
The present study was conducted to identify the differentially expressed miRNAs (DE miRNAs) in the peripheral blood mononuclear cells of crossbred pigs in response to CSF vaccination on 7 and 21 days of post vaccination as compared to unvaccinated control (0 dpv). Simultaneously, set of miRNA was predicted using mRNA seq data at same time point. The proportion of CD4-CD8+ and CD4+CD8+ increased after vaccination, and the mean percentage inhibition was 86.89% at 21 dpv. It was observed that 22 miRNAs were commonly expressed on both the time points. Out of predicted DE miRNAs, it was found that 40 and 35 DE miRNAs were common, obtained from miRNA seq analysis and predicted using mRNA seq data on 7 dpv versus 0 dpv and 21 dpv versus 0 dpv respectively. Two DE miRNAs, ssc-miR-22-5p and ssc-miR-27b-5p, were selected based on their log2 fold change and functions of their target genes in immune process/pathway of viral infections. The validations of DE miRNAs using qRT-PCR were in concordance with miRNA seq analysis. Two set of target genes, CD40 and SWAP70 (target gene of ssc-miR-22-5p) and TLR4 and Lyn (target gene of ssc-miR-27b-5p), were validated and were in concordance with results of RNA seq analysis at a particular time point (except TLR4). The first report of genome-wide identification of differentially expressed miRNA in response to live attenuated vaccine virus of classical swine fever revealed miR-22-5p and miR-27b-5p were differentially expressed at 7 dpv and 21 dpv.
Collapse
Affiliation(s)
- Lalrengpuii Sailo
- Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Amit Kumar
- Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India.
| | - Vaishali Sah
- Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Rajni Chaudhary
- Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Vikramaditya Upmanyu
- Standardization Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - A K Tiwari
- Standardization Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Ajay Kumar
- Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Aruna Pandey
- Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Shikha Saxena
- Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - Akansha Singh
- Animal Genetics and Breeding, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | | - Ravi Kumar Gandham
- Animal Biotechnology, National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India.
| | - Anil Rai
- Head Centre for Bioinformatics, IASRI, New Delhi, 110012, India
| | - B P Mishra
- Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| | - R K Singh
- Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, 143122, India
| |
Collapse
|
22
|
Wang D, Guo C, Kong T, Mi G, Li J, Sun Y. Serum miR-22 may be a biomarker for papillary thyroid cancer. Oncol Lett 2019; 17:3355-3361. [PMID: 30867770 PMCID: PMC6396224 DOI: 10.3892/ol.2019.10011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
The present study aimed to examine whether serum microRNA (miR)-22 may be considered a potential biomarker to differentiate patients with papillary thyroid cancer (PTC) from healthy controls. Reverse transcription-quantitative polymerase chain reaction demonstrated that serum miR-22 expression was significantly enhanced in patients with PTC compared with in patients with benign thyroid nodules (BTN) and healthy controls. The expression levels of miR-22 were also increased in the thyroid tissue of patients with PTC compared with in patients with BTN. In addition, increased miR-22 in the serum of patients with PTC was positively associated with metastasis. Furthermore, miR-22 serum levels were increased in patients with PTC and the B-Raf proto-oncogene, serine/threonine kinase V600E mutation. Meanwhile, compared with patients with PTC and ≤1 ng/ml thyroglobulin (Tg)-fine needle aspiration biopsy (FNAB), serum miR-22 was significantly enhanced in patients with PTC and 1-10 ng/ml Tg-FNAB and >10 ng/ml Tg-FNAB. A receiver operating characteristic analysis demonstrated that serum miR-22 distinguished patients with PTC from patients with BTN and healthy controls. In conclusion, to the best of our knowledge, the present study was the first to demonstrate that upregulation of serum miR-22 may be used as a potential biomarker to distinguish patients with PTC from healthy controls.
Collapse
Affiliation(s)
- Deping Wang
- Department of Endocrinology and Metabolism, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Changxiu Guo
- Department of Endocrinology and Metabolism, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Tingting Kong
- Department of Otolaryngology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Guangxi Mi
- Department of Otolaryngology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jiantao Li
- Department of Otolaryngology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yuhan Sun
- Department of Otolaryngology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
23
|
Wang C, Jing Q. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacol Sin 2018; 39:1110-1119. [PMID: 29698386 DOI: 10.1038/aps.2017.205] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/25/2017] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is a main threat to human lives worldwide. Early and accurate diagnoses warrant immediate medical care, which would reduce mortality and improve prognoses. Circulating non-coding RNAs have been demonstrated to serve as competent biomarkers for various diseases. Following the identification of cardiac-specific microRNA miR-208a in circulation, more non-coding RNAs (miR-1, miR-499 and miR-133) have been identified as biomarkers not only for the diagnosis of AMI but also for prognosis post infarction. Here, we summarized recent findings on non-coding RNAs as biomarkers for early diagnosis of ST-segment elevation myocardial infarction and for disease monitoring of myocardial infarction. In addition, the prognostic potential of non-coding RNAs in patients treated with percutaneous coronary intervention was also described. We also include studies based on biobanks, and build a miRNA release spectrum after AMI, which provides quantitative and time-lapse monitoring of AMI progress. With this spectrum, we are able to customize personal medical care, which prevents further damage. By constructing a network of circulating non-coding RNAs with high specificity and sensitivity, detailed diagnostic information was provided for personalized medicine. Unveiling the roles and kinetics of circulating non-coding RNAs may lead to a revolution in clinical diagnosis.
Collapse
|
24
|
Maciejak A, Kostarska-Srokosz E, Gierlak W, Dluzniewski M, Kuch M, Marchel M, Opolski G, Kiliszek M, Matlak K, Dobrzycki S, Lukasik A, Segiet A, Sygitowicz G, Sitkiewicz D, Gora M, Burzynska B. Circulating miR-30a-5p as a prognostic biomarker of left ventricular dysfunction after acute myocardial infarction. Sci Rep 2018; 8:9883. [PMID: 29959359 PMCID: PMC6026144 DOI: 10.1038/s41598-018-28118-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
Left ventricular (LV) dysfunction after acute myocardial infarction (AMI) is associated with an increased risk of heart failure (HF) development. Diverse microRNAs (miRNAs) have been shown to appear in the bloodstream following various cardiovascular events. The aim of this study was to identify prognostic miRNAs associated with LV dysfunction following AMI. Patients were divided into subgroups comprising patients who developed or not LV dysfunction within six months of the infarction. miRNA profiles were determined in plasma and serum samples of the patients on the first day of AMI. Levels of 14 plasma miRNAs and 16 serum miRNAs were significantly different in samples from AMI patients who later developed LV dysfunction compared to those who did not. Two miRNAs were up-regulated in both types of material. Validation in an independent group of patients, using droplet digital PCR (ddPCR) confirmed that miR-30a-5p was significantly elevated on admission in those patients who developed LV dysfunction and HF symptoms six months after AMI. A bioinformatics analysis indicated that miR-30a-5p may regulate genes involved in cardiovascular pathogenesis. This study demonstrates, for the first time, a prognostic value of circulating miR-30a-5p and its association with LV dysfunction and symptoms of HF after AMI.
Collapse
Affiliation(s)
- Agata Maciejak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Edyta Kostarska-Srokosz
- Chair and Department of Cardiology, Hypertension and Internal Medicine, Second Faculty of Medicine, Medical University of Warsaw, Mazovian Bródnowski Hospital, Warsaw, Poland
| | - Wlodzimierz Gierlak
- Chair and Department of Cardiology, Hypertension and Internal Medicine, Second Faculty of Medicine, Medical University of Warsaw, Mazovian Bródnowski Hospital, Warsaw, Poland
| | - Miroslaw Dluzniewski
- Cardiology Department, Midtown Medical Center, Mazovia Brodno Hospital, Warsaw, Poland
| | - Marek Kuch
- Chair and Department of Cardiology, Hypertension and Internal Medicine, Second Faculty of Medicine, Medical University of Warsaw, Mazovian Bródnowski Hospital, Warsaw, Poland
| | - Michal Marchel
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Opolski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Kiliszek
- Department of Cardiology and Internal Diseases, Military Institute of Medicine, Warsaw, Poland
| | - Krzysztof Matlak
- Department of Cardiac Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Slawomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Lukasik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Segiet
- 1st Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grazyna Sygitowicz
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Sitkiewicz
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Warsaw, Warsaw, Poland
| | - Monika Gora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Beata Burzynska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
25
|
Abstract
Epidemiological and experimental observations tend to prove that environment, lifestyle or nutritional challenges influence heart functions together with genetic factors. Furthermore, when occurring during sensitive windows of heart development, these environmental challenges can induce an 'altered programming' of heart development and shape the future heart disease risk. In the etiology of heart diseases driven by environmental challenges, epigenetics has been highlighted as an underlying mechanism, constituting a bridge between environment and heart health. In particular, micro-RNAs which are involved in each step of heart development and functions seem to play a crucial role in the unfavorable programming of heart diseases. This review describes the latest advances in micro-RNA research in heart diseases driven by early exposure to challenges and discusses the use of micro-RNAs as potential targets in the reversal of the pathophysiology.
Collapse
|
26
|
Wu ZJ, Chen YF, Wang HD, Gao FH. [Expression of plasma miRNA-497 in children with sepsis-induced myocardial injury and its clinical significance]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:32-36. [PMID: 29335079 PMCID: PMC7390325 DOI: 10.7499/j.issn.1008-8830.2018.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To study the expression of plasma miRNA-497 in children with sepsis-induced myocardial injury and its clinical significance. METHODS A total of 148 children with sepsis were enrolled. According to the presence or absence of myocardial injury, these children were divided into myocardial injury group (n=58) and non-myocardial injury group (n=90). The two groups were compared in terms of the changes in plasma levels of miRNA-497, cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), N-terminal pro-brain natriuretic peptide (NT-proBNP), procalcitonin (PCT), and C-reactive protein (CRP) and left ventricular ejection fraction (LVEF). The receiver operating characteristic (ROC) curve was plotted to evaluate the value of plasma miRNA-497, cTnI, and CK-MB in the diagnosis of myocardial injury. A Pearson correlation analysis was used to determine the correlation of miRNA-497 with cTnI, CK-MB, NT-proBNP, PCT, CRP, and LVEF. RESULTS Compared with the non-myocardial injury group, the myocardial injury group had significantly higher plasma levels of miRNA-497, cTnI, CK-MB, NT-proBNP, PCT, and CRP (P<0.05). Plasma miRNA-497, cTnI, and CK-MB when measured alone or in combination had an area under the ROC curve of 0.918, 0.931, 0.775, and 0.940 respectively. At the optimal cut-off value of 2.05, miRNA-497 had a sensitivity of 90.4% and a specificity of 91.2%. The correlation analysis showed that there was a good correlation between plasma miRNA-497 and cTnI in children with myocardial injury (r=0.728, P<0.01). CONCLUSIONS Plasma miRNA-497 has a similar value as cTnI in the diagnosis of sepsis-induced myocardial injury in children and may be used as a potential marker for early diagnosis of myocardial injury.
Collapse
Affiliation(s)
- Zhong-Jing Wu
- Department of Clinical Laboratory, Haikou Maternal and Child Health Care Hospital, Haikou 570102, China.
| | | | | | | |
Collapse
|
27
|
Yang Y, Yu T, Jiang S, Zhang Y, Li M, Tang N, Ponnusamy M, Wang JX, Li PF. miRNAs as potential therapeutic targets and diagnostic biomarkers for cardiovascular disease with a particular focus on WO2010091204. Expert Opin Ther Pat 2017. [PMID: 28627982 DOI: 10.1080/13543776.2017.1344217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION A number of miRNAs have been reported to be critically involved in the regulation of cardiovascular disease (CVDs). Therefore, the development of potent analogues/inhibitors for miRNAs have thus become a key focus in the present drug discovery. In this review, we discuss the basic research and clinical use of miRNAs as the early diagnosis and therapeutic targets for CVD. We have also focused on the efficiency of therapeutically targeting miR-499, which is considered as one of the most promising molecules for treating CVDs. Areas covered: In this review, we have discussed the patents and patent applications related to miRNAs detected in CVD patients published in recent years. This review also covers the expression pattern of miR-499, as well as it highlights functions of its inhibitors in CVD. We used Google and Pubmed search engines to find relevant patents. Expert opinion: Although a massive number of miRNAs are patented as CVD biomarkers, further work is absolutely required to evaluate the reliable diagnostic values and therapeutic potential of these candidates. Overall, targeting miRNAs is definitely a promising strategy to be investigated for diagnosis and treatment of CVDs in future, however, the delivery system and off-targets effects are still a difficult challenge need to be elucidated.
Collapse
Affiliation(s)
- Yanyan Yang
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Tao Yu
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Shaoyan Jiang
- b Department of cardiology , The Affiliated Cardiovascular Hospital of Qingdao University , Qingdao , People's Republic of China
| | - Yinfeng Zhang
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Mengpeng Li
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Ningning Tang
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Murugavel Ponnusamy
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Jian-Xun Wang
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Pei-Feng Li
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| |
Collapse
|
28
|
Chen J, Zhu J, Wang Z, Yao X, Wu X, Liu F, Zheng W, Li Z, Lin A. MicroRNAs Correlate with Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder in a Chinese Population. Med Sci Monit 2017; 23:2565-2583. [PMID: 28550707 PMCID: PMC5458669 DOI: 10.12659/msm.904642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Recent studies identified a set of differentially expressed miRNAs in whole blood that may discriminate neuromyelitis optica spectrum disorders (NMOSD) from relapsing-remitting multiple sclerosis (RRMS). This study invalidated 9 known miRNAs in Chinese patients. Material/Methods The levels of miRNAs in whole blood were assayed in healthy controls (n=20) and patients with NMOSD (n=45), RRMS (n=17) by quantitative real-time polymerase chain reaction (qRT-PCR), and pairwise-compared between groups. They were further analyzed for association with clinical features and MRI findings of the diseases. Results Compared with healthy controls, miR-22b-5p, miR-30b-5p and miR-126-5p were down-regulated in NMOSD, in contrast, both miR-101-5p and miR-126-5p were up-regulated in RRMS. Moreover, the levels of miR-101-5p, miR-126-5p and miR-660-5p, were significantly higher in RRMS than in NMOSD (P=0.04, 0.01 and 0.02, respectively). The level of miR-576-5p was significantly higher in patients underwent relapse for ≤3 times than those for ≥4 times. In addition, its level was significantly higher in patients suffered from a severe visual impairment (visual sight ≤0.1). Moreover, the levels of each of the 9 miRNAs were lower in NMOSD patients with intracranial lesions (NMOSD-IC) than those without (NMOSD-non-IC). Despite correlations of miRNAs with these disease subtypes, all AUCs of ROC generated to discriminate patients and controls, as well as intracranial lesions, were <0.8. Conclusions Certain miRNAs are associated with RRMS and NMOSD. They are also related to the clinical features, especially intracranial lesions of NMOSD. However, none of the miRNAs alone or in combination was powerful to ensure the diagnosis and differentiation of the 2 disease subtypes.
Collapse
Affiliation(s)
- Jianglong Chen
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland).,Department of Neurology, Jinjiang Hospital of traditional Chinese Medicine, Jinjiang, Fujian, China (mainland)
| | - Jiting Zhu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Zeng Wang
- Department of Neurology, The Third Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Xiaoping Yao
- Department of Neurology, Jinjiang Hospital of traditional Chinese Medicine, Jinjiang, Fujian, China (mainland)
| | - Xuan Wu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Fang Liu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Weidong Zheng
- Department of Ophthalmology, Jinjiang Hospital of Traditional Chinese Medicine, Fuzhou, Fujian, China (mainland)
| | - Zhiwen Li
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Aiyu Lin
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
29
|
A plasma mir-125a-5p as a novel biomarker for Kawasaki disease and induces apoptosis in HUVECs. PLoS One 2017; 12:e0175407. [PMID: 28467514 PMCID: PMC5415180 DOI: 10.1371/journal.pone.0175407] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Background Kawasaki disease (KD) is a childhood systemic vasculitis that exhibits a specific preference for the coronary arteries. The aetiology remains unknown and there are no especially diagnostic tests. microRNAs (miRNAs) are 18 to 23 nucleotides non-coding RNAs that are negative regulator of gene expression and play a crucial role in the regulatory network of the genome. Recently, circulating miRNAs have been found presentation in human plasma and displayed some characteristics of the ideal biomarker. However, few researches explored differentially expressed miRNAs in the plasma of KD patients. Our study is to identify circulating miRNAs in KD plasma which can serve as potential biomarkers of KD diagnosis. Materials and methods The total of five pairs of acute KD and normal plasma samples were analyzed using ABI miRNAs TLDA Assay chip. Differentially expression of miR-125a-5p in plasma were confirmed by quantitative real-time PCR (qRT-PCR) in independent cohort (acute KD = 30, convalescent KD = 30 and healthy control = 32). After bioinformatics prediction, miR-125a-5p vector and inhibitor were transfected into HUVECs respectively, to observe MKK7 expression as a potential target gene. Flow cytometry was used to analyze apoptosis. The mRNA and protein levels of desired genes including MKK7, Caspase-3, Bax and Bcl2 were detected by qRT-PCR and western blotting. Results Eighteen miRNAs were differentially expressed in acute KD’s plasma compared with healthy control. miR-125a-5p was significantly increased in plasma of KD patients (p = 0.000), but no variation between acute and convalescent KD (p = 0.357). Moreover, the results from the gain and loss functions of miR-125a-5p in HUVECs have shown that miR-125a-5p remarkably suppressed MKK7 expression, as a novel target gene. Importantly, miR-125a-5p also induced apoptosis in HUVECs through inhibition MKK7 levels to regulate Bax/Bcl2 pathway resulting to activate Caspase-3. Conclusion Our study indicated that the circulating miR-125a-5p levels in KD’s plasma have remarkably evaluated compared with healthy individuals. miR-125a-5p might play a role in the development of KD by regulating target gene MKK7 to induce apoptosis in vascular endothelial cells. Therefore, our findings have suggested that detected miR-125a-5p levels in plasma could be used as a potential biomarker in early KD diagnosis.
Collapse
|
30
|
Stenfeldt C, Arzt J, Smoliga G, LaRocco M, Gutkoska J, Lawrence P. Proof-of-concept study: profile of circulating microRNAs in Bovine serum harvested during acute and persistent FMDV infection. Virol J 2017; 14:71. [PMID: 28388926 PMCID: PMC5384155 DOI: 10.1186/s12985-017-0743-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
Background Changes in the levels of circulating microRNAs (miRNAs) in the serum of humans and animals have been detected as a result of infection with a variety of viruses. However, to date, such a miRNA profiling study has not been conducted for foot-and-mouth disease virus (FMDV) infection. Methods The relative abundance of 169 miRNAs was measured in bovine serum collected at three different phases of FMDV infection in a proof-of-concept study using miRNA PCR array plates. Results Alterations in specific miRNA levels were detected in serum during acute, persistent, and convalescent phases of FMDV infection. Subclinical FMDV persistence produced a circulating miRNA profile distinct from cattle that had cleared infection. bta-miR-17-5p was highest expressed during acute infection, whereas bta-miR-31 was the highest during FMDV persistence. Interestingly, miR-1281was significantly down-regulated during both acute and persistent infection. Cattle that cleared infection resembled the baseline profile, adding support to applying serum miRNA profiling for identification of sub-clinically infected FMDV carriers. Significantly regulated miRNAs during acute or persistent infection were associated with cellular proliferation, apoptosis, modulation of the immune response, and lipid metabolism. Conclusions These findings suggest a role for non-coding regulatory RNAs in FMDV infection of cattle. Future studies will delineate the individual contributions of the reported miRNAs to FMDV replication, determine if this miRNA signature is applicable across all FMDV serotypes, and may facilitate development of novel diagnostic applications. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0743-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Stenfeldt
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - Jonathan Arzt
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - George Smoliga
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - Michael LaRocco
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - Joseph Gutkoska
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - Paul Lawrence
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA.
| |
Collapse
|