1
|
Deng X, Zeng Y, Qiu X, Zhong M, Xiong X, Luo M, Zhang J, Chen X. CRIP1 supports the growth and migration of AML-M5 subtype cells by activating Wnt/β-catenin pathway. Leuk Res 2023; 130:107312. [PMID: 37224580 DOI: 10.1016/j.leukres.2023.107312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous hematopoietic disorder. To effectively eradicate AML, it is urgent to develop new therapeutic approaches and identify novel molecular targets. In silico analysis indicated that the expression of cysteine-rich intestinal protein 1 (CRIP1) was significantly elevated in AML cells and correlated with worse overall survival of the AML patients. However, its specific roles in AML remain elusive. Here we demonstrated that CRIP1 acted as a key oncogene to support AML cell survival and migration. Using a loss-of-function analysis, we found that CRIP1 silencing in U937 and THP1 cells by lentivirus-mediated shRNAs resulted in a decrease in cell growth, migration and colony formation, and an increase in chemosensitivity to Ara-C. CRIP1 silencing induced cell apoptosis and G1/S transition arrest. Mechanically, CRIP1 silencing caused inactivation of Wnt/β-catenin pathway through upregulating axin1 protein. The Wnt/β-catenin agonist SKL2001 markedly rescued the cell growth and migration defect induced by CRIP1 silencing. Our findings reveals that CRIP1 may contribute to AML-M5 pathogenesis and represent a novel target for AML-M5 treatment.
Collapse
Affiliation(s)
- Xiaoling Deng
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Molecular Medicine, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Yanmei Zeng
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Molecular Medicine, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Xiaofen Qiu
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Molecular Medicine, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Mingxing Zhong
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Xiujuan Xiong
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Mansheng Luo
- Clinical laboratory, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Jingdong Zhang
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Xiaoli Chen
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Molecular Medicine, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
2
|
Li M, Gao L, Zhao L, Zou T, Xu H. Toward the next generation of vascularized human neural organoids. Med Res Rev 2023; 43:31-54. [PMID: 35993813 DOI: 10.1002/med.21922] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Thanks to progress in the development of three-dimensional (3D) culture technologies, human central nervous system (CNS) development and diseases have been gradually deciphered by using organoids derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs). Selforganized neural organoids (NOs) have been used to mimic morphogenesis and functions of specific organs in vitro. Many NOs have been reproduced in vitro, such as those mimicking the human brain, retina, and spinal cord. However, NOs fail to capitulate to the maturation and complexity of in vivo neural tissues. The persistent issues with current NO cultivation protocols are inadequate oxygen supply and nutrient diffusion due to the absence of vascular networks. In vivo, the developing CNS is interpenetrated by vasculature that not only supplies oxygen and nutrients but also provides a structural template for neuronal growth. To address these deficiencies, recent studies have begun to couple NO culture with bioengineering techniques and methodologies, including genetic engineering, coculture, multidifferentiation, microfluidics and 3D bioprinting, and transplantation, which might promote NO maturation and create more functional NOs. These cutting-edge methods could generate an ever more reliable NO model in vitro for deciphering the codes of human CNS development, disease progression, and translational application. In this review, we will summarize recent technological advances in culture strategies to generate vascularized NOs (vNOs), with a special focus on cerebral- and retinal-organoid models.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
3
|
Taberner L, Bañón A, Alsina B. Sensory Neuroblast Quiescence Depends on Vascular Cytoneme Contacts and Sensory Neuronal Differentiation Requires Initiation of Blood Flow. Cell Rep 2021; 32:107903. [PMID: 32668260 DOI: 10.1016/j.celrep.2020.107903] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
In many organs, stem cell function depends on communication with their niche partners. Cranial sensory neurons develop in close proximity to blood vessels; however, whether vasculature is an integral component of their niches is yet unknown. Here, two separate roles for vasculature in cranial sensory neurogenesis in zebrafish are uncovered. The first involves precise spatiotemporal endothelial-neuroblast cytoneme contacts and Dll4-Notch signaling to restrain neuroblast proliferation. The second, instead, requires blood flow to trigger a transcriptional response that modifies neuroblast metabolic status and induces sensory neuron differentiation. In contrast, no role of sensory neurogenesis in vascular development is found, suggesting unidirectional signaling from vasculature to sensory neuroblasts. Altogether, we demonstrate that the cranial vasculature constitutes a niche component of the sensory ganglia that regulates the pace of their growth and differentiation dynamics.
Collapse
Affiliation(s)
- Laura Taberner
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Aitor Bañón
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Berta Alsina
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
4
|
Du B, Wang J, Zang S, Mao X, Du Y. Long non-coding RNA MALAT1 suppresses the proliferation and migration of endothelial progenitor cells in deep vein thrombosis by regulating the Wnt/β-catenin pathway. Exp Ther Med 2020; 20:3138-3146. [PMID: 32855682 PMCID: PMC7444359 DOI: 10.3892/etm.2020.9066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Deep vein thrombosis (DVT) is one of the most common circulating vascular diseases with an incidence of ~0.1% worldwide. Although anticoagulant medication remains to be the main therapeutic approach for patients with DVT, existing thrombus and pulmonary embolisms still pose as a threat to patient life. Therefore, effective targeted therapies need to be developed and studies are required to improve understanding of this condition. Endothelial progenitor cells (EPCs) originate from the bone marrow, are located in the peripheral blood and are involved in thrombus resolution. Long non-coding RNAs (lncRNAs) are non-coding RNAs that are >200 nucleotides in length. LncRNAs are associated with the development of numerous vascular diseases. Among these lncRNAs, metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is downregulated in human atherosclerotic plaques. Furthermore, MALAT1 polymorphism resulted in vascular disease in Chinese populations. In the present study, the expression profile and potential functions of MALAT1 in DVT were investigated. The results revealed that MALAT1 was upregulated in DVT tissues. Furthermore, MALAT1 was able to regulate the biological behaviors of EPCs, including proliferation, migration, cell cycle arrest and apoptosis. In addition, the Wnt/β-catenin signaling pathway is a promising downstream target of MALAT1 in DVT. The changes in biological behaviors in EPCs caused by silenced MALAT1 were reversed by inhibition of the Wnt/β-catenin signaling pathway. In summary, the data indicated the roles of MALAT1 in the pathogenesis of DVT, and the MALAT1/Wnt/β-catenin axis could be a novel therapeutic target for the treatment of DVT.
Collapse
Affiliation(s)
- Binghui Du
- Department of Vascular Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jian Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Sheng Zang
- Department of Vascular Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xin Mao
- Department of Vascular Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yaming Du
- Department of Vascular Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
5
|
Paredes I, Himmels P, Ruiz de Almodóvar C. Neurovascular Communication during CNS Development. Dev Cell 2018; 45:10-32. [PMID: 29634931 DOI: 10.1016/j.devcel.2018.01.023] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/22/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
A precise communication between the nervous and the vascular systems is crucial for proper formation and function of the central nervous system (CNS). Interestingly, this communication does not only occur by neural cells regulating the growth and properties of the vasculature, but new studies show that blood vessels actively control different neurodevelopmental processes. Here, we review the current knowledge on how neurons in particular influence growing blood vessels during CNS development and on how vessels participate in shaping the neural compartment. We also review the identified molecular mechanisms of this bidirectional communication.
Collapse
Affiliation(s)
- Isidora Paredes
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Patricia Himmels
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Carmen Ruiz de Almodóvar
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Wnt3a Ectopic Expression Interferes Axonal Projection and Motor Neuron Positioning During the Chicken Spinal Cord Development. J Mol Neurosci 2018; 64:619-630. [PMID: 29574664 DOI: 10.1007/s12031-018-1060-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/13/2018] [Indexed: 12/29/2022]
Abstract
The formation of dorsal-ventral axis of the spinal cord is controlled largely by dorsal signals such as Wnts (which are members of the wingless + MMTV integrants, Int family), besides ventral signals such as sonic hedgehog (Shh). Wnt3a, one of the Wnt family members, is involved in multiple cellular functions, including self-renewal, proliferation, differentiation, and motility. Here, we aim to study the mechanism of the regulation of chicken spinal cord patterning by Wnt3a. In this study, Wnt3a was ectopically expressed in the spinal cord of developing chicken embryos by in ovo electroporation. The results of immunofluorescent staining revealed that Wnt3a ectopic expression caused the abnormality of commissural axonal projection and the formation of nerve fibers was interrupted. It is worth noting that neurons in the ventricular zone, especially motor neurons, could not migrate laterally after the Wnt3a overexpression, which led to the malformation of motor column. In addition, we found that neurons could not protrude axons outwardly after overexpression of Wnt3a in the spinal cord. It was also found that Wnt3a overexpression inhibited the outgrowth of processes in culturing SH-SY5Y cells. In conclusion, we proposed that Wnt3a regulates neuronal morphology, which subsequently disrupts axonal projection and motor neuron positioning during spinal cord development.
Collapse
|
7
|
Wang T, Fang X, Yin ZS. Endothelial progenitor cell-conditioned medium promotes angiogenesis and is neuroprotective after spinal cord injury. Neural Regen Res 2018; 13:887-895. [PMID: 29863020 PMCID: PMC5998635 DOI: 10.4103/1673-5374.232484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Endothelial progenitor cells secrete a variety of growth factors that inhibit inflammation, promote angiogenesis and exert neuroprotective effects. Therefore, in this study, we investigated whether endothelial progenitor cell-conditioned medium might have therapeutic effectiveness for the treatment of spinal cord injury using both in vitro and in vivo experiments. After primary culture of bone marrow-derived macrophages, lipopolysaccharide stimulation was used to classically activate macrophages to their proinflammatory phenotype. These cells were then treated with endothelial progenitor cell-conditioned medium or control medium. Polymerase chain reaction was used to determine mRNA expression levels of related inflammatory factors. Afterwards, primary cultures of rat spinal cord neuronal cells were prepared and treated with H2O2 and either endothelial progenitor cell-conditioned medium or control medium. Hoechst 33258 and propidium iodide staining were used to calculate the proportion of neurons undergoing apoptosis. Aortic ring assay was performed to assess the effect of endothelial progenitor cell-conditioned medium on angiogenesis. Compared with control medium, endothelial progenitor cell-conditioned medium mitigated the macrophage inflammatory response at the spinal cord injury site, suppressed apoptosis, and promoted angiogenesis. Next, we used a rat model of spinal cord injury to examine the effects of the endothelial progenitor cell-conditioned medium in vivo. The rats were randomly administered intraperitoneal injection of PBS, control medium or endothelial progenitor cell-conditioned medium, once a day, for 6 consecutive weeks. Immunohistochemistry was used to observe neuronal morphology. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was performed to detect the proportion of apoptotic neurons in the gray matter. The Basso, Beattie and Bresnahan Locomotor Rating Scale was used to evaluate the recovery of motor function of the bilateral hind limbs after spinal cord injury. Compared with the other two groups, the number of axons was increased, cavities in the spinal cord were decreased, the proportion of apoptotic neurons in the gray matter was reduced, and the Basso, Beattie and Bresnahan score was higher in the endothelial progenitor cell-conditioned medium group. Taken together, the in vivo and in vitro results suggest that endothelial progenitor cell-conditioned medium suppresses inflammation, promotes angiogenesis, provides neuroprotection, and promotes functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Tao Wang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University; Department of Spine Surgery, Hefei Binhu Hospital, the Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiao Fang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zong-Sheng Yin
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
8
|
Hyperbaric oxygen promotes neural stem cell proliferation by activating vascular endothelial growth factor/extracellular signal-regulated kinase signaling after traumatic brain injury. Neuroreport 2017; 28:1232-1238. [DOI: 10.1097/wnr.0000000000000901] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Dai B, Yan T, Zhang A. ROR2 receptor promotes the migration of osteosarcoma cells in response to Wnt5a. Cancer Cell Int 2017; 17:112. [PMID: 29213214 PMCID: PMC5707918 DOI: 10.1186/s12935-017-0482-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 11/18/2017] [Indexed: 02/02/2023] Open
Abstract
Background We have reported that the phosphatidylinositol-3 kinase (PI3K)/Akt/RhoA signaling pathway mediates Wnt5a-induced cell migration of osteosarcoma cells. However, the specific receptors responding to Wnt5a ligand remain poorly defined in osteosarcoma metastasis. Methods Wound healing assays were used to measure the migration rate of osteosarcoma cells transfected with shRNA or siRNA specific against ROR2 or indicated constructs. We evaluated the RhoA activation in osteosarcoma MG-63 and U2OS cells with RhoA activation assay. A panel of inhibitors of PI3K and Akt treated osteosarcoma cells and blocked kinase activity. Western blotting assays were employed to measure the expression and activation of Akt. Clonogenic assays were used to measure the cell proliferation of ROR2-knockdown or ROR2-overexpressed osteosarcoma cells. Results Wnt5a-induced osteosarcoma cell migration was largely abolished by shRNA or siRNA specific against ROR2. Overexpression of RhoA-CA (GFP-RhoA-V14) was able to rescue the Wnt5a-induced cell migration blocked by ROR2 knockdown. The Wnt5a-induced activation of RhoA was mostly blocked by ROR2 knockdown, and elevated by ROR2 overexpression, respectively. Furthermore, we found that Wnt5a-induced cell migration was significantly retarded by RhoA-siRNA transfection or pretreatment of HS-173 (PI3Kα inhibitor), MK-2206 (Akt inhibitor), A-674563 (Akt1 inhibitor), or CCT128930 (Akt2 inhibitor). The activation of Akt was upregulated or downregulated by transfected with ROR2-Flag or ROR2-siRNA, respectively. Lastly, Wnt5a/ROR2 signaling does not alter the cell proliferation of MG-63 osteosarcoma cells. Conclusions Taken together, we demonstrate that ROR2 receptor responding to Wnt5a ligand activates PI3K/Akt/RhoA signaling and promotes the migration of osteosarcoma cells.
Collapse
Affiliation(s)
- Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, 224500 Jiangsu China
| | - Ting Yan
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu China
| | - Ailiang Zhang
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| |
Collapse
|
10
|
Huang L, Wang G. The Effects of Different Factors on the Behavior of Neural Stem Cells. Stem Cells Int 2017; 2017:9497325. [PMID: 29358957 PMCID: PMC5735681 DOI: 10.1155/2017/9497325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023] Open
Abstract
The repair of central nervous system (CNS) injury has been a worldwide problem in the biomedical field. How to reduce the damage to the CNS and promote the reconstruction of the damaged nervous system structure and function recovery has always been the concern of nerve tissue engineering. Multiple differentiation potentials of neural stem cell (NSC) determine the application value for the repair of the CNS injury. Thus, how to regulate the behavior of NSCs becomes the key to treating the CNS injury. So far, a large number of researchers have devoted themselves to searching for a better way to regulate the behavior of NSCs. This paper summarizes the effects of different factors on the behavior of NSCs in the past 10 years, especially on the proliferation and differentiation of NSCs. The final purpose of this review is to provide a more detailed theoretical basis for the clinical repair of the CNS injury by nerve tissue engineering.
Collapse
Affiliation(s)
- Lixiang Huang
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Gan Wang
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|