1
|
Oldham JM, Allen RJ, Lorenzo-Salazar JM, Molyneaux PL, Ma SF, Joseph C, Kim JS, Guillen-Guio B, Hernández-Beeftink T, Kropski JA, Huang Y, Lee CT, Adegunsoye A, Pugashetti JV, Linderholm AL, Vo V, Strek ME, Jou J, Muñoz-Barrera A, Rubio-Rodriguez LA, Hubbard R, Hirani N, Whyte MKB, Hart S, Nicholson AG, Lancaster L, Parfrey H, Rassl D, Wallace W, Valenzi E, Zhang Y, Mychaleckyj J, Stockwell A, Kaminski N, Wolters PJ, Molina-Molina M, Banovich NE, Fahy WA, Martinez FJ, Hall IP, Tobin MD, Maher TM, Blackwell TS, Yaspan BL, Jenkins RG, Flores C, Wain LV, Noth I. PCSK6 and Survival in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2023; 207:1515-1524. [PMID: 36780644 PMCID: PMC10263132 DOI: 10.1164/rccm.202205-0845oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/13/2023] [Indexed: 02/15/2023] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by limited treatment options and high mortality. A better understanding of the molecular drivers of IPF progression is needed. Objectives: To identify and validate molecular determinants of IPF survival. Methods: A staged genome-wide association study was performed using paired genomic and survival data. Stage I cases were drawn from centers across the United States and Europe and stage II cases from Vanderbilt University. Cox proportional hazards regression was used to identify gene variants associated with differential transplantation-free survival (TFS). Stage I variants with nominal significance (P < 5 × 10-5) were advanced for stage II testing and meta-analyzed to identify those reaching genome-wide significance (P < 5 × 10-8). Downstream analyses were performed for genes and proteins associated with variants reaching genome-wide significance. Measurements and Main Results: After quality controls, 1,481 stage I cases and 397 stage II cases were included in the analysis. After filtering, 9,075,629 variants were tested in stage I, with 158 meeting advancement criteria. Four variants associated with TFS with consistent effect direction were identified in stage II, including one in an intron of PCSK6 (proprotein convertase subtilisin/kexin type 6) reaching genome-wide significance (hazard ratio, 4.11 [95% confidence interval, 2.54-6.67]; P = 9.45 × 10-9). PCSK6 protein was highly expressed in IPF lung parenchyma. PCSK6 lung staining intensity, peripheral blood gene expression, and plasma concentration were associated with reduced TFS. Conclusions: We identified four novel variants associated with IPF survival, including one in PCSK6 that reached genome-wide significance. Downstream analyses suggested that PCSK6 protein plays a potentially important role in IPF progression.
Collapse
Affiliation(s)
- Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Richard J. Allen
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Jose M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine and
| | | | - John S. Kim
- Division of Pulmonary and Critical Care Medicine and
| | - Beatriz Guillen-Guio
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Tamara Hernández-Beeftink
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Jonathan A. Kropski
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Yong Huang
- Division of Pulmonary and Critical Care Medicine and
| | - Cathryn T. Lee
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Janelle Vu Pugashetti
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, Davis, California
| | - Angela L. Linderholm
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, Davis, California
| | - Vivian Vo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, Davis, California
| | - Mary E. Strek
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Jonathan Jou
- Department of Surgery, College of Medicine, University of Illinois, Peoria, Illinois
| | - Adrian Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodriguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Richard Hubbard
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Nik Hirani
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Moira K. B. Whyte
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon Hart
- Respiratory Research Group, Hull York Medical School, Castle Hill Hospital, Cottingham, United Kingdom
| | - Andrew G. Nicholson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Lisa Lancaster
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Helen Parfrey
- Cambridge Interstitial Lung Disease Service, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Doris Rassl
- Cambridge Interstitial Lung Disease Service, Royal Papworth Hospital, Cambridge, United Kingdom
| | - William Wallace
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Eleanor Valenzi
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Josyf Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Paul J. Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Maria Molina-Molina
- Servei de Pneumologia, Laboratori de Pneumologia Experimental, Instituto de Investigación Biomédica de Bellvitge, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - William A. Fahy
- Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom
| | | | - Ian P. Hall
- Division of Respiratory Medicine and
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Toby M. Maher
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Division of Pulmonary and Critical Care Medicine, University of Southern California, Los Angeles, California; and
| | - Timothy S. Blackwell
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | | | - R. Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine and
| |
Collapse
|
2
|
Proprotein Convertase Subtilisin/Kexin 6 in Cardiovascular Biology and Disease. Int J Mol Sci 2022; 23:ijms232113429. [DOI: 10.3390/ijms232113429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Proprotein convertase subtilisin/kexin 6 (PCSK6) is a secreted serine protease expressed in most major organs, where it cleaves a wide range of growth factors, signaling molecules, peptide hormones, proteolytic enzymes, and adhesion proteins. Studies in Pcsk6-deficient mice have demonstrated the importance of Pcsk6 in embryonic development, body axis specification, ovarian function, and extracellular matrix remodeling in articular cartilage. In the cardiovascular system, PCSK6 acts as a key modulator in heart formation, lipoprotein metabolism, body fluid homeostasis, cardiac repair, and vascular remodeling. To date, dysregulated PCSK6 expression or function has been implicated in major cardiovascular diseases, including atrial septal defects, hypertension, atherosclerosis, myocardial infarction, and cardiac aging. In this review, we describe biochemical characteristics and posttranslational modifications of PCSK6. Moreover, we discuss the role of PCSK6 and related molecular mechanisms in cardiovascular biology and disease.
Collapse
|
3
|
Zhao X, Zhang X, Wu Z, Mei J, Li L, Wang Y. Up-regulation of microRNA-135 or silencing of PCSK6 attenuates inflammatory response in preeclampsia by restricting NLRP3 inflammasome. Mol Med 2021; 27:82. [PMID: 34301174 PMCID: PMC8299578 DOI: 10.1186/s10020-021-00335-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/24/2021] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE Numerous studies have confirmed the correlation of microRNAs (miRNAs) with human disease, yet few have explored the role of miR-135 in preeclampsia (PE). This study intends to discuss miR-135's function in inflammatory response in PE by modulating proprotein convertase subtilisin/kexin-6 (PCSK6) and NLR pyrin domain containing 3 (NLRP3). METHODS The venous blood and placental tissues were collected from PE pregnant women and 25 normal ones. The levels of miR-135, PCSK6 and NLRP3 in placenta tissues of patients were detected. Hypoxia/reoxygenation HTR-8/SVneo and HPT-8 models were established to mimic PE in vitro, and cell proliferation, colony formation, apoptosis rate, invasion, migration and inflammation were detected through gain-of and loss-of-function assays. RESULTS MiR-135 was down-regulated, and PCSK6 and NLRP3 were up-regulated in PE patients. Up-regulating miR-135 or silencing PCSK6 strengthened colony formation ability, viability, invasion and migration ability, and weakened apoptosis and inflammation of H/R-treated HTR-8/SVneo and HPT-8 cells. Inhibition of NLRP3 negated the effects of silenced PCSK6 in H/R-treated HTR-8/SVneo and HPT-8 cells. CONCLUSIONS Altogether, we demonstrate that up-regulated miR-135 or reduced PCSK6 attenuates inflammatory response in PE by restricting NLRP3 inflammasome, which provides novel therapy for PE treatment.
Collapse
Affiliation(s)
- Xiaolan Zhao
- Genaecology and Obstetrics Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, No. 32, West Second Section First Ring Rd, Chengdu, 610072, China
| | - Xun Zhang
- Genaecology and Obstetrics Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, No. 32, West Second Section First Ring Rd, Chengdu, 610072, China
| | - Zhao Wu
- Genaecology and Obstetrics Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, No. 32, West Second Section First Ring Rd, Chengdu, 610072, China
| | - Jie Mei
- Genaecology and Obstetrics Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, No. 32, West Second Section First Ring Rd, Chengdu, 610072, China
| | - Lingling Li
- Genaecology and Obstetrics Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, No. 32, West Second Section First Ring Rd, Chengdu, 610072, China.
| | - Yujue Wang
- Genaecology and Obstetrics Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, No. 32, West Second Section First Ring Rd, Chengdu, 610072, China.
| |
Collapse
|