1
|
Wang K, Zhang R, Li C, Chen H, Lu J, Zhao H, Zhuo X. Construction and assessment of an angiogenesis-related gene signature for prognosis of head and neck squamous cell carcinoma. Discov Oncol 2024; 15:284. [PMID: 39012409 PMCID: PMC11252106 DOI: 10.1007/s12672-024-01084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE Angiogenesis-associated genes (AAGs) play a critical role in cancer patient survival. However, there are insufficient reports on the prognostic value of AAGs in head and neck squamous cell carcinoma (HNSC). Therefore, this study aimed to investigate the correlation between AAG expression levels and survival in HNSC patients, explore the predictive value of signature genes and lay the groundwork for future in-depth research. METHODS Relevant data for HNSC were obtained from the databases. AAGs-associated signature genes linked to prognosis were screened to construct a predictive model. Further analysis was conducted to determine the functional correlation of the signature genes. RESULTS The signature genes (STC1, SERPINA5, APP, OLR1, and PDGFA) were used to construct prognostic models. Patients were divided into high-risk and low-risk groups based on the calculated risk scores. Survival analysis showed that patients in the high-risk group had a significantly lower overall survival than those in the low-risk group (P < 0.05). Therefore, this prognostic model was an independent prognostic factor for predicting HNSC. In addition, patients in the low-risk group were more sensitive to multiple anti-cancer drugs. Functional correlation analysis showed a good correlation between the characteristic genes and HNSC metastasis, invasion, and angiogenesis. CONCLUSION This study established a new prognostic model for AAGs and may guide the selection of therapeutic agents for HNSC. These genes have important functions in the tumor microenvironment; it also provides a valuable resource for the future clinical trials investigating the relationship between HNSC and AAGs.
Collapse
Affiliation(s)
- Kaiqin Wang
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruizhe Zhang
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Changya Li
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Huarong Chen
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiafeng Lu
- Department of Otolaryngology, Anshun People's Hospital, Anshun, Guizhou, China
| | - Houyu Zhao
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Xianlu Zhuo
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Saika M, Nakashiro KI, Tokuzen N, Shirai H, Uchida D. Possible Role of miR-375-3p in Cervical Lymph Node Metastasis of Oral Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:1492. [PMID: 38672573 PMCID: PMC11049256 DOI: 10.3390/cancers16081492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/31/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
No clinically useful predictors of latent cervical lymph node metastasis (LNM) in early oral squamous cell carcinoma (OSCC) are available. In this study, we focused on the microRNAs (miRNAs) involved in the expression of numerous genes and explored those associated with latent cervical LNM in early OSCC (eOSCC). First, microarray and RT-PCR analyses revealed a significant downregulation of miR-375-3p expression in primary eOSCC tissues with latent cervical LNM. Next, we examined the effects of miR-375-3p mimics on the growth and migration of four human OSCC cell lines that do not express miR-375-3p. The overexpression of miR-375-3p significantly suppressed the cell proliferation and migration of human OSCC cells in vitro. Furthermore, miR-375-3p mimics markedly inhibited the subcutaneously xenografted human OSCC tumors. Finally, we found the genes involved in the PI3K-AKT pathway and cell migration as target gene candidates of miR-375-3p in human OSCC cells. These findings suggest that miR-375-3p functions as a tumor suppressive-miRNA in OSCC and may serve as a potential biomarker for the prediction of latent cervical LNM in eOSCC and a useful therapeutic target to suppress OSCC progression.
Collapse
Affiliation(s)
| | - Koh-ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan; (M.S.); (N.T.); (H.S.); (D.U.)
| | | | | | | |
Collapse
|
3
|
Doghish AS, Elshaer SS, Fathi D, Rizk NI, Elrebehy MA, Al-Noshokaty TM, Elballal MS, Abdelmaksoud NM, Abdel-Reheim MA, Abdel Mageed SS, Zaki MB, Mohammed OA, Tabaa MME, Elballal AS, Saber S, El-Husseiny HM, Abulsoud AI. Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of oral cancer. Pathol Res Pract 2024; 253:155027. [PMID: 38101159 DOI: 10.1016/j.prp.2023.155027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Oral cancer (OC) is a widely observed neoplasm on a global scale. Over time, there has been an increase in both its fatality and incidence rates. Oral cancer metastasis is a complex process that involves a number of cellular mechanisms, including invasion, migration, proliferation, and escaping from malignant tissue through either lymphatic or vascular channels. MicroRNAs (miRNAs) are a crucial class of short non-coding RNAs recognized as significant modulators of diverse cellular processes and exert a pivotal influence on the carcinogenesis pathway, functioning either as tumor suppressors or as oncogenes. It has been shown that microRNAs (miRNAs) have a role in metastasis at several stages, including epithelial-mesenchymal transition, migration, invasion, and colonization. This regulation is achieved by targeting key genes involved in these pathways by miRNAs. This paper aims to give a contemporary analysis of OC, focusing on its molecular genetics. The current literature and emerging advancements in miRNA dysregulation in OC are thoroughly examined. This project would advance OC diagnosis, prognosis, therapy, and therapeutic implications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni, Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ahmed S Elballal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Cairo University, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| |
Collapse
|
4
|
Eslami M, Khazeni S, Khanaghah XM, Asadi MH, Ansari MA, Garjan JH, Lotfalizadeh MH, Bayat M, Taghizadieh M, Taghavi SP, Hamblin MR, Nahand JS. MiRNA-related metastasis in oral cancer: moving and shaking. Cancer Cell Int 2023; 23:182. [PMID: 37635248 PMCID: PMC10463971 DOI: 10.1186/s12935-023-03022-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
Across the world, oral cancer is a prevalent tumor. Over the years, both its mortality and incidence have grown. Oral cancer metastasis is a complex process involving cell invasion, migration, proliferation, and egress from cancer tissue either by lymphatic vessels or blood vessels. MicroRNAs (miRNAs) are essential short non-coding RNAs, which can act either as tumor suppressors or as oncogenes to control cancer development. Cancer metastasis is a multi-step process, in which miRNAs can inhibit or stimulate metastasis at all stages, including epithelial-mesenchymal transition, migration, invasion, and colonization, by targeting critical genes in these pathways. On the other hand, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two different types of non-coding RNAs, can regulate cancer metastasis by affecting gene expression through cross-talk with miRNAs. We reviewed the scientific literature (Google Scholar, Scopus, and PubMed) for the period 2000-2023 to find reports concerning miRNAs and lncRNA/circRNA-miRNA-mRNA networks, which control the spread of oral cancer cells by affecting invasion, migration, and metastasis. According to these reports, miRNAs are involved in the regulation of metastasis pathways either by directly or indirectly targeting genes associated with metastasis. Moreover, circRNAs and lncRNAs can induce or suppress oral cancer metastasis by acting as competing endogenous RNAs to inhibit the effect of miRNA suppression on specific mRNAs. Overall, non-coding RNAs (especially miRNAs) could help to create innovative therapeutic methods for the control of oral cancer metastases.
Collapse
Affiliation(s)
- Meghdad Eslami
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Khazeni
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Xaniar Mohammadi Khanaghah
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asadi
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Amin Ansari
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Hayati Garjan
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Dey S, Biswas B, Manoj Appadan A, Shah J, Pal JK, Basu S, Sur S. Non-Coding RNAs in Oral Cancer: Emerging Roles and Clinical Applications. Cancers (Basel) 2023; 15:3752. [PMID: 37568568 PMCID: PMC10417002 DOI: 10.3390/cancers15153752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Oral cancer (OC) is among the most prevalent cancers in the world. Certain geographical areas are disproportionately affected by OC cases due to the regional differences in dietary habits, tobacco and alcohol consumption. However, conventional therapeutic methods do not yield satisfying treatment outcomes. Thus, there is an urgent need to understand the disease process and to develop diagnostic and therapeutic strategies for OC. In this review, we discuss the role of various types of ncRNAs in OC, and their promising clinical implications as prognostic or diagnostic markers and therapeutic targets. MicroRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), and small nucleolar RNA (snoRNA) are the major ncRNA types whose involvement in OC are emerging. Dysregulated expression of ncRNAs, particularly miRNAs, lncRNAs, and circRNAs, are linked with the initiation, progression, as well as therapy resistance of OC via modulation in a series of cellular pathways through epigenetic, transcriptional, post-transcriptional, and translational modifications. Differential expressions of miRNAs and lncRNAs in blood, saliva or extracellular vesicles have indicated potential diagnostic and prognostic importance. In this review, we have summarized all the promising aspects of ncRNAs in the management of OC.
Collapse
Affiliation(s)
| | | | | | | | | | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| | - Subhayan Sur
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| |
Collapse
|
6
|
The paradigm of miRNA and siRNA influence in Oral-biome. Biomed Pharmacother 2023; 159:114269. [PMID: 36682246 DOI: 10.1016/j.biopha.2023.114269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Short nucleotide sequences like miRNA and siRNA have attracted a lot of interest in Oral-biome investigations. miRNA is a small class of non-coding RNA that regulates gene expression to provide effective regulation of post-transcription. On contrary, siRNA is 21-25 nucleotide dsRNA impairing gene function post-transcriptionally through inhibition of mRNA for homologous dependent gene silencing. This review highlights the application of miRNA in oral biome including oral cancer, dental implants, periodontal diseases, gingival fibroblasts, oral submucous fibrosis, radiation-induced oral mucositis, dental Pulp, and oral lichenoid disease. Moreover, we have also discussed the application of siRNA against the aforementioned disease along with the impact of miRNA and siRNA to the various pathways and molecular effectors pertaining to the dental diseases. The influence of upregulation and downregulation of molecular effector post-treatment with miRNA and siRNA and their impact on the clinical setting has been elucidated. Thus, the mentioned details on application of miRNA and siRNA will provide a novel gateway to the scholars to not only mitigate the long-lasting issue in dentistry but also develop new theragnostic approaches.
Collapse
|
7
|
The interplay of cytokine signaling and non-coding RNAs in head and neck squamous cell carcinoma pathobiology. Mol Biol Rep 2022; 49:10825-10847. [DOI: 10.1007/s11033-022-07770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
|
8
|
Osan C, Chira S, Nutu AM, Braicu C, Baciut M, Korban SS, Berindan-Neagoe I. The Connection between MicroRNAs and Oral Cancer Pathogenesis: Emerging Biomarkers in Oral Cancer Management. Genes (Basel) 2021; 12:genes12121989. [PMID: 34946938 PMCID: PMC8700798 DOI: 10.3390/genes12121989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is a common human malignancy that still maintains an elevated mortality rate despite scientific progress. Tumorigenesis is driven by altered gene expression patterns of proto-oncogenes and tumor-suppressor genes. MicroRNAs, a class of short non-coding RNAs involved in gene regulation, seem to play important roles in oral cancer development, progression, and tumor microenvironment modulation. As properties of microRNAs render them stable in diverse liquid biopsies, together with their differential expression signature in cancer cells, these features place microRNAs at the top of promising biomarkers for diagnostic and prognostic values. In this review, we highlight eight expression levels and functions of the most relevant microRNAs involved in oral cancer development, progression, and microenvironment sustainability. Furthermore, we emphasize the potential of using these small RNA species as non-invasive biomarkers for the early detection of oral cancerous lesions. Conclusively, we highlight the perspectives and limitations of microRNAs as novel diagnostic tools, as well as therapeutic models.
Collapse
Affiliation(s)
- Ciprian Osan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
| | - Andreea Mihaela Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400033 Cluj-Napoca, Romania;
| | - Schuyler S. Korban
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
- Correspondence:
| |
Collapse
|
9
|
Qiu K, Song Y, Rao Y, Liu Q, Cheng D, Pang W, Ren J, Zhao Y. Diagnostic and Prognostic Value of MicroRNAs in Metastasis and Recurrence of Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:711171. [PMID: 34646767 PMCID: PMC8503605 DOI: 10.3389/fonc.2021.711171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/01/2021] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs have been proven to make remarkable differences in the clinical behaviors of head and neck squamous cell carcinoma (HNSCC). This study aims to systematically analyze whether differential expression levels of microRNAs are related to recurrence or metastasis in patients with HNSCC. A comprehensive search of the PubMed, EMBASE, and CENTRAL was conducted up to July 24th, 2021. Data were collected and combined from studies reporting recurrence-free survival (RFS) of HNSCC patients with high microRNA expression compared to those with low expression. Besides, studies providing necessary data for evaluating the diagnostic value of microRNAs for detecting recurrence and metastasis based on their expression levels were also included and combined. The pooled hazard ratio (HR) value for the outcomes of RFS in 1,093 HNSCC samples from 10 studies was 2.51 (95%CI: 2.13–2.96). A sensitivity of 0.79 (95% CI: 0.72–0.85) and specificity of 0.77 (95%CI: 0.68–0.83) were observed in three studies, of which 93 patients with recurrence and 82 nonrecurrence controls were included, and the area under the curve (AUC) was 0.85 (95% CI: 0.81–0.88). Additionally, high diagnostic accuracy of microRNAs in detecting lymph node metastasis (LNM) was also reported. In conclusion, two panels of microRNAs showed the potential to predict recurrence or diagnose recurrence in HNSCC patients, respectively, which could facilitate prognosis prediction and diagnosis of clinical behaviors in HNSCC patients.
Collapse
Affiliation(s)
- Ke Qiu
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Song
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Yufang Rao
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiurui Liu
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Danni Cheng
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Wendu Pang
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianjun Ren
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China.,West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Yu Zhao
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Han N, Zhang YY, Zhang ZM, Zhang F, Zeng TY, Zhang YB, Zhao WC. High expression of PDGFA predicts poor prognosis of esophageal squamous cell carcinoma. Medicine (Baltimore) 2021; 100:e25932. [PMID: 34011067 PMCID: PMC8137088 DOI: 10.1097/md.0000000000025932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/17/2021] [Indexed: 01/05/2023] Open
Abstract
Platelet-derived growth factor A (PDGFA), the most known member of PDGF family, plays a crucial role in occurrence and progression of different tumors. However, PDGFA expression and its clinical significance in esophageal squamous cell carcinoma (ESCC) are not clear. The present study aimed to assess the expression and prognostic value of PDGFA in ESCC.The Gene Expression Omnibus databases (GSE53625, GSE23400, and GSE67269) and fresh clinical samples were employed for detecting PDGFA messenger RNA expression in ESCC. The associations of PDGFA expression with clinicopathological characteristics were evaluated by chi-square test. Kaplan-Meier analysis and Cox proportional hazard regression model were performed to determine the prognostic value of PDGFA in ESCC patients. PDGFA-related signaling pathways were defined by gene set enrichment analysis based on Gene Expression Omnibus databases.The PDGFA messenger RNA expression was upregulated in ESCC tissues compared with paired adjacent noncancerous tissues (P < .05) and was positively correlated with T stage (P < .05). Kaplan-Meier survival analysis suggested that ESCC patients with high PDGFA expression were associated with poorer overall survival compared to those with low PDGFA expression (P < .05), especially in advanced T stage (P < .05). Cox analyses showed that high expression of PDGFA was an independent predictor for poor prognosis in ESCC patients. Gene set enrichment analysis identified 3 signaling pathways (extracellular matrix receptor interaction, focal adhesion, and glycosaminoglycan biosynthesis chondroitin sulfate) that were enriched in PDGFA high expression phenotype (all P < .01).PDGFA may serve as an oncogene in ESCC and represent an independent molecular biomarker for prognosis of ESCC patients.
Collapse
Affiliation(s)
- Na Han
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University
| | - Yan-Yan Zhang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University
| | - Zhong-Mian Zhang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University
| | - Fang Zhang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University
| | | | | | - Wen-Chao Zhao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
11
|
Zhu L, Zhang L, Tang Y, Zhang F, Wan C, Xu L, Guo P. MicroRNA-363-3p inhibits tumor cell proliferation and invasion in oral squamous cell carcinoma cell lines by targeting SSFA2. Exp Ther Med 2021; 21:549. [PMID: 33850521 DOI: 10.3892/etm.2021.9981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/10/2020] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to evaluate the expression levels of microRNA (miR)-363-3p and its underlying physiological function in oral squamous cell carcinoma (OSCC). miR-363-3p expression levels were measured in OSCC cell lines using reverse transcription-quantitative PCR. The role of miR-363-3p in OSCC cells was examined using gain-of-function assays in vitro. Cell proliferation was assessed using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine assays and flow cytometry. Cell migration and invasion were evaluated in wound-healing and Transwell Matrigel assays. In addition, bioinformatics analysis predicted binding sites of miR-363-3p on sperm-specific antigen 2 (SSFA2). Luciferase reporter and RNA pull-down assays were conducted to test whether miR-363-3p interacted with SSFA2. miR-363-3p expression was downregulated in OSCC cell lines compared with that in the normal epithelial cell line (NHOK). Additionally, miR-363-3p overexpression suppressed OSCC cell proliferation, migration and invasion in vitro. SSFA2 was verified as a direct target of miR-363-3p, and SSFA2 overexpression partially counteracted the inhibitory effects of miR-363-3p on cell proliferation, migration and invasion in OSCC cell lines. Thus, miR-363-3p may serve as a tumor suppressor via targeting SSFA2 and may represent a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Liangming Zhu
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Lei Zhang
- Jiangcheng Dental Clinic, Wuhu, Anhui 241000, P.R. China
| | - Ying Tang
- Department of Endocrinology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui 241000, P.R. China
| | - Fang Zhang
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Chao Wan
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Liang Xu
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Ping Guo
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
12
|
Rishabh K, Khadilkar S, Kumar A, Kalra I, Kumar AP, Kunnumakkara AB. MicroRNAs as Modulators of Oral Tumorigenesis-A Focused Review. Int J Mol Sci 2021; 22:ijms22052561. [PMID: 33806361 PMCID: PMC7961687 DOI: 10.3390/ijms22052561] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Oral cancers constitute the majority of head and neck tumors, with a relatively high incidence and poor survival rate in developing countries. While the five-year survival rates of the oral cancer patients have increased to 65%, the overall survival for advanced stages has been at 27% for the past ten years, emphasizing the necessity for further understanding the etiology of the disease, diagnosis, and formulating possible novel treatment regimens. MicroRNAs (miRNAs), a family of small non-coding RNA, have emerged as master modulators of gene expression in various cellular and biological process. Aberrant expression of these dynamic molecules has been associated with many human diseases, including oral cancers. The deregulated miRNAs have been shown to control various oncogenic processes, including sustaining proliferative signaling, evading growth suppressors, resisting cell death activating invasion and metastasis, and inducing angiogenesis. Hence, the aberrant expression of miRNAs associated with oral cancers, makes them potential candidates for the investigation of functional markers, which will aid in the differential diagnosis, prognosis, and development of novel therapeutic regimens. This review presents a holistic insight into our understanding of the role of miRNAs in regulating various hallmarks of oral tumorigenesis.
Collapse
Affiliation(s)
- Kumar Rishabh
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Soham Khadilkar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Ishu Kalra
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: authors: (A.P.K.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
- Correspondence: authors: (A.P.K.); (A.B.K.)
| |
Collapse
|
13
|
Circ-HIPK3 regulates YAP1 expression by sponging miR-381-3p to promote oral squamous cell carcinoma development. J Biosci 2021. [DOI: 10.1007/s12038-021-00142-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Tong F, Guo J, Miao Z, Li Z. LncRNA SNHG17 promotes the progression of oral squamous cell carcinoma by modulating miR-375/PAX6 axis. Cancer Biomark 2021; 30:1-12. [PMID: 32924983 DOI: 10.3233/cbm-191070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The prognosis of patients with recurrent and/or metastatic oral squamous cell carcinoma (OSCC) remains poor, and its incidence is especially high in developing countries. Multiple long non-coding RNAs (lncRNAs) are recently identified as crucial oncogenic factors or tumor suppressors. This study aimed to probe into the role of lncRNA small nucleolar RNA host gene 17 (SNHG17) on the progression of OSCC. METHODS The expression level of SNHG17 in OSCC samples was tested using quantitative real-time polymerase chain reaction (qRT-PCR). Human OSCC cell lines CAL-27 and Tca8113 were used in in vitro studies. Cell counting kit-8 (CCK-8) and BrdU assays were used to assess the effect of SNHG17 on OSCC cell proliferation. Flow cytometry was used to study the effect of SNHG17 on OSCC cell apoptosis. Transwell assay was conducted to detect the effect of SNHG17 on migration and invasion. Moreover, luciferase reporter assay was employed to confirm targeting relationship between miR-375 and SNHG17. Additionally, Western blot was used to observe the regulatory function of SNHG17 on PAX6. RESULTS SNHG17 expression in OSCC clinical samples was significantly increased and was correlated with unfavorable pathological indexes. Its overexpression remarkably accelerated proliferation and metastasis of OSCC cells, while reduced apoptosis. Accordingly, knockdown of SNHG17 suppressed the malignant phenotypes of OSCC cells. Overexpression of SNHG17 significantly reduced the expression of miR-375 by sponging it, but enhanced the expression of PAX6. CONCLUSION SNHG17 is a sponge of tumor suppressor miR-375 in OSCC, enhances the expression of PAX6 indirectly, and functions as an oncogenic lncRNA.
Collapse
Affiliation(s)
- Fei Tong
- Department of Orthodontics, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| | - Jun Guo
- Department of Endodontics, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| | - Zhanqi Miao
- Department of Orthodontics, Shenzhen Baoan Shajing People's Hospital, Guangzhou Medical University, Shenzhen, Guangdong, China
| | - Zhihua Li
- Department of Orthodontics, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Ghafouri-Fard S, Gholipour M, Taheri M, Shirvani Farsani Z. MicroRNA profile in the squamous cell carcinoma: prognostic and diagnostic roles. Heliyon 2020; 6:e05436. [PMID: 33204886 PMCID: PMC7653070 DOI: 10.1016/j.heliyon.2020.e05436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/27/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are human malignancies associated with both genetic and environmental factors. MicroRNAs (miRNAs) as a group of small non-coding RNAs have prominent roles in the development of this kind of cancer. Expressions of several miRNAs have been demonstrated to be increased in HNSCC samples vs. non-malignant tissues. In silico prediction tools and functional analyses have confirmed the function of some miRNAs in the modulation of cancer-associated targets, thus indicating these miRNAs as onco-miRs. Moreover, numerous miRNAs have been down-regulated in HNSCC samples. Their targets mostly enhance cell proliferation or inhibit apoptosis. miRNAs signature has practical implications in the diagnosis, staging, and management of HNSC. Most notably, numerous miRNAs have been shown to alter response of tumor cells to anti-cancer drugs such as cisplatin and doxorubicin. Circulating levels of these small transcripts have been suggested as promising biomarkers for diagnosis of HNSCC. In the present manuscript, we sum up the available literature regarding the miRNAs signature in HNSCC and their role as diagnostic/prognostic biomarkers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| |
Collapse
|
16
|
Wu CS, Chang IYF, Hung JL, Liao WC, Lai YR, Chang KP, Li HP, Chang YS. ASC modulates HIF-1α stability and induces cell mobility in OSCC. Cell Death Dis 2020; 11:721. [PMID: 32883954 PMCID: PMC7471912 DOI: 10.1038/s41419-020-02927-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023]
Abstract
High-level expression of ASC (Apoptosis-associated speck-like protein containing a CARD) leads to lymph node metastasis in OSCC, but the underlying mechanism remains unclear. Here, we show that HIF-1α participates in ASC-induced metastasis. We identified 195 cell-motion-associated genes that were highly activated in ASC-overexpressed SAS_ASC cells; of them, 14 representative genes were found to be overexpressed in OSCC tissues in our previously reported RNA-seq dataset, OSCC-Taiwan. Nine of the 14 genes were also upregulated in OSCC-TCGA samples. Among the nine genes, RRAS2, PDGFA, and VEGFA, were correlated with poor overall survival of patients in OSCC-TCGA dataset. We further demonstrated that the promoters of these 14 ASC-induced genes contained binding motifs for the transcription-regulating factor, HIF-1α. We observed that ASC interacted with and stabilized HIF-1α in both the cytoplasm and the nucleus under normoxia. Molecules involved in the HIF-1α pathway, such as VHL and PHD2, showed no difference in their gene and protein levels in the presence or absence of ASC, but the expression of HIF-1α-OH, and the ubiquitination of HIF-1α were both decreased in SAS_ASC cells versus SAS_con cells. The migration and invasion activities of SAS_ASC cells were reduced when cells were treated with the HIF-1α synthesis inhibitor, digoxin. Taken together, our results demonstrate that the novel ASC-HIF-1α regulatory pathway contributes to lymph node metastasis in OSCC, potentially suggesting a new treatment strategy for OSCC.
Collapse
Affiliation(s)
- Chi-Sheng Wu
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China.
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, 33305, Gueishan, Taoyuan, Taiwan.
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China
| | - Jui-Lung Hung
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China
- Department of Nephrology, Chang Gung Memorial Hospital, Lin-kou Medical Center, Taoyuan, Taiwan
| | - Yi-Ru Lai
- Department of Microbiology and Immunology, Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Lin-Kou, 333, Taoyuan, Taiwan, Republic of China
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, 33305, Gueishan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Pai Li
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China
- Department of Microbiology and Immunology, Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Lin-Kou, 333, Taoyuan, Taiwan, Republic of China
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, 333, Taoyuan City, Lin-Kou, Taiwan, Republic of China
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China.
| |
Collapse
|
17
|
Barlak N, Capik O, Sanli F, Karatas OF. The roles of microRNAs in the stemness of oral cancer cells. Oral Oncol 2020; 109:104950. [PMID: 32828020 DOI: 10.1016/j.oraloncology.2020.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023]
Abstract
Oral cancer (OC), which is the most common form of head and neck cancers, has one of the lowest (~50%) overall 5-year survival rates. The main reasons for this high mortality rate are diagnosis of OC in advanced stages in most patients and spread to distant organs via lymph node metastasis. Many studies have shown that a small population of cells within the tumor plays vital roles in the initiation, progression, and metastasis of the tumor, resistance to chemotherapeutic agents, and recurrence. These cells, identified as cancer stem cells (CSCs), are the main reasons for the failure of current treatment modalities. Deregulated expressions of microRNAs are closely related to tumor prognosis, metastasis and drug resistance. In addition, microRNAs play important roles in regulating the functions of CSCs. Until now, the roles of microRNAs in the acquisition and maintenance of OC stemness have not been elucidated in detail yet. Here in this review, we summarized significant findings and the latest literature to better understand the involvement of CSCs in association with dysregulated microRNAs in oral carcinogenesis. Possible roles of these microRNAs in acquisition and maintenance of CSCs features during OC pathogenesis were summarized.
Collapse
Affiliation(s)
- Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Fatma Sanli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
18
|
microRNAs in oral cancer: Moving from bench to bed as next generation medicine. Oral Oncol 2020; 111:104916. [PMID: 32711289 DOI: 10.1016/j.oraloncology.2020.104916] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Oral cancer is the thirteenth most common cancer in the world, with India contributing to 33% of the global burden. Lack of specific non-invasive markers, non-improvement in patient survival and tumor recurrence remain a major clinical challenge in oral cancer. Epigenetic regulation in the form of microRNAs (miRs) that act as tumor suppressor miRs or oncomiRs has gained significant momentum with the advancement in the field, suggesting the potential for clinical application of miRs in oral cancer. The current review of literature identified miR-21, miR-27a(-3p), miR-31, miR-93, miR-134, miR-146, miR-155, miR-196a, miR-196b, miR-211, miR-218, miR-222, miR-372 and miR-373 to be up-regulated and let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-26a, miR-99a-5p, miR-137, miR-139-5p, miR-143-3p, miR-184 and miR-375 to be down-regulated in oral cancer. Mechanistic studies have uncovered several miRs that are deregulated at varying levels and in different stages of oral cancer progression, thus providing clinical utility in better diagnosis as well as usefulness in prognosis by identifying patients with poor prognosis or stratifying patients based on responsiveness to chemo- and radio-therapy. Lastly, exogenous modulation of miR expression using miRNA-based drugs in combination with first-line agents may be adopted as a new therapeutic modality to treat oral cancer. Knowledge of miRs and their involvement in key molecular processes, clinical association, responsiveness to therapy and clinical advancement may highlight additional avenues in order to improve patient morbidity and mortality. Furthermore, combinatorial approaches with miR-therapy may be efficacious in oral cancer.
Collapse
|
19
|
Zhang C, Liao X, Ma Z, Liu S, Fang F, Mai H. Overexpression of β-Adrenergic Receptors and the Suppressive Effect of β 2-Adrenergic Receptor Blockade in Oral Squamous Cell Carcinoma. J Oral Maxillofac Surg 2020; 78:1871.e1-1871.e23. [PMID: 32640209 DOI: 10.1016/j.joms.2020.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE The purpose of this project was to investigate the expression of β-adrenergic receptors in oral squamous cell carcinoma (OSCC) and the tumor suppressive activity of β2-adrenergic receptor (β2-AR) blockade. MATERIALS AND METHODS Samples of 15 normal oral mucosal epithelial tissues, 60 surgically resected OSCC tissues, and 60 adjacent para-carcinoma tissues were collected. The expression of β1-adrenergic receptor and β2-AR was detected by real-time quantitative polymerase chain reaction and the Western blot test. SCC9 and Cal27 cell lines and primary OSCC cells also were included and treated with ICI-118,551 (MedChemExpress, Monmouth Junction, NJ), a selective β2-AR blocker. In addition, the Cal27 cell line was treated with propranolol (a nonselective β-adrenergic receptor blocker) to verify the suppressive effect of β2-AR blockade. For in vivo assays, Cal27 cells were subcutaneously injected in the tongue flank of nude mice. ICI-118,551 was orally administered to the mice in the treatment group daily. High-throughput sequencing was used to screen for changes in gene expression. RESULTS Real-time quantitative polymerase chain reaction and the Western blot test both showed that β1-adrenergic receptor and β2-AR were overexpressed in OSCC tissues and cells. A relationship was found between β2-AR and a more advanced clinical stage, as well as preoperative lymphatic metastasis. After treatment with ICI-118,551 or propranolol, the capacities for proliferation, invasion, and metastasis of OSCC cells were significantly inhibited. Tumor size was significantly different between the ICI-118,551 and control groups. The survival time in the ICI-118,551 group also was prolonged significantly. Moreover, high-throughput sequencing identified 19 affected signaling pathways, including mitogen-activated protein kinase and PI3K-Akt. We confirmed a significant change to the expression of several genes closely related to the progression of cancer. CONCLUSION This study showed that β2-AR is related to a more advanced clinical stage and preoperative lymphatic metastasis. Additionally, a β2-AR blocker has a significant suppressive effect in OSCC.
Collapse
Affiliation(s)
- Chong Zhang
- Resident, Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment; and Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Xianxiang Liao
- Resident, Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment; and Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Zhen Ma
- Resident, Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment; and Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Shiqi Liu
- Resident, Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment; and Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Fang Fang
- Resident, Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment; and Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Huaming Mai
- Professor, Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment; and Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.
| |
Collapse
|
20
|
Zhao X, Shen F, Ma J, Zhao S, Meng L, Wang X, Liang S, Liang J, Hu C, Zhang X. CREB1-induced miR-1204 promoted malignant phenotype of glioblastoma through targeting NR3C2. Cancer Cell Int 2020; 20:111. [PMID: 32280303 PMCID: PMC7137285 DOI: 10.1186/s12935-020-01176-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background Glioblastoma (GBM) is a subclass of brain malignancy with unsatisfactory prognosis. MicroRNAs (miRNAs) are a group of non-coding RNAs (ncRNAs) that exert key function on tumorigenesis and tumor development. Purposes The purpose of this work was to unravel the biological behavior and mechanism of miR-1204 in GBM. Methods Expressions of miR-1204, NR3C2 and CREB1 were detected by RT-qPCR and western blot. Proliferation and apoptosis of GBM cells were detected by CCK-8, colony formation, caspase-3 activity and TUNEL assays. Molecular interplays were examined by ChIP, RIP, and luciferase reporter assays. Results MiR-1204 level was elevated in GBM cell lines. Functionally, miR-1204 aggravated cell proliferation whereas suppressed cell apoptosis in GBM cells. Mechanistically, cAMP Responsive Element Binding Protein 1 (CREB1) bound to the promoter of miR-1204 and activated the transcription of miR-1204. Furthermore, miR-1204 targeted and inhibited Nuclear receptor subfamily 3 group C member 2 (NR3C2), a tumor suppressor gene in GBM cells. Rescue assays indicated that NR3C2 participated in the regulation of miR-1204 on the malignant phenotype of GBM cells. Conclusions We observed for the first time that CREB1-induced miR-1204 promoted malignant phenotype of GBM through targeting NR3C2, indicating that miR-1204 acted as a novel oncogenic miRNA in GBM.
Collapse
Affiliation(s)
- Xinli Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Health Road, Weihui, 453100 Henan China
| | - Fazheng Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Health Road, Weihui, 453100 Henan China
| | - Jiwei Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Health Road, Weihui, 453100 Henan China
| | - Shupeng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Health Road, Weihui, 453100 Henan China
| | - Lei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Health Road, Weihui, 453100 Henan China
| | - Xiangyang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Health Road, Weihui, 453100 Henan China
| | - Shufeng Liang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Health Road, Weihui, 453100 Henan China
| | - Jianing Liang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Health Road, Weihui, 453100 Henan China
| | - Chaoshuai Hu
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Health Road, Weihui, 453100 Henan China
| | - Xinzhong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Health Road, Weihui, 453100 Henan China
| |
Collapse
|
21
|
Fang C, Li Y. Prospective applications of microRNAs in oral cancer. Oncol Lett 2019; 18:3974-3984. [PMID: 31579085 PMCID: PMC6757290 DOI: 10.3892/ol.2019.10751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules that are generally encoded by endogenous genes and exert suppressive effects on post-transcriptional regulation of their target genes by translation repression or degradation of mRNA. This subsequently mediates activation or blocking of downstream signaling pathways associated with oral malignancies. Aberrant levels of certain miRNAs have been identified in cell experiments, clinical carcinomatous specimens, saliva, serum or plasma samples of patients with oral malignancies. miRNAs are associated with multiple aspects of oral cancer, including tumor growth, cellular proliferation, apoptosis, migration, invasion, metastasis, glycometabolism, radiosensitivity and chemosensitivity. miRNAs have the potential to be used in clinical applications as minimally invasive or non-invasive tools for early diagnosis and prognosis by the detection of serum, plasma and saliva levels, and may provide a new ancillary or additional reference index of traditional pathological grading and clinical staging. Furthermore, miRNAs may be used as prognostic biomarkers or targets for novel therapies for oral cancer.
Collapse
Affiliation(s)
- Chuan Fang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yadong Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
22
|
Varghese VK, Shukla V, Jishnu PV, Kabekkodu SP, Pandey D, Sharan K, Satyamoorthy K. Characterizing methylation regulated miRNA in carcinoma of the human uterine cervix. Life Sci 2019; 232:116668. [PMID: 31326568 DOI: 10.1016/j.lfs.2019.116668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022]
Abstract
Gene regulatory mechanisms determine the multistep carcinogenesis process. Two aspects of epigenetics are microRNA (miRNAs) and DNA methylation that regulate distinct biological mechanisms such as metastasis, apoptosis cell proliferation and induction of senescence. Although critical, the interplay between these two epigenetic mechanisms is yet to be completely understood, particularly in cervical cancer. To study the DNA methylation regulation of miRNAs and its potential role in cervical cancer, we investigated the differential methylation pattern of two candidate miRNAs (miR-375 and miR-196a-1) during cervical cancer progression against normal cervical epithelium (NCE) by bisulfite DNA sequencing. miR-375 and miR-196a-1 were hypermethylated in Squamous Cell Carcinoma (SCC) against NCE and Cervical Intra-Epithelial Neoplasia (CIN) (p < 0.05). Treatment with demethylating agent reactivated the miR-375 and miR-196a-1 expression in SiHa, HeLa and CaSki cells. In vitro artificial methylation by M.SssI followed by dual luciferase assay confirmed miR-375 and miR-196a-1 as methylation regulated miRNAs (P < 0.05). miR-375 and miR-196a-1 expression levels were negatively correlated with methylation levels in clinical specimens. We further identified Replication Factor C Subunit 3 (RFC3) and High Mobility Group AT-Hook 1 (HMGA1) as targets of miR-375 and miR-196a-1 respectively by dual luciferase reporter assay. Our analysis indicates that miR-375 and miR-196a-1 are DNA methylation regulated miRNAs whose deregulation may facilitate pathophysiology of cervical cancer.
Collapse
Affiliation(s)
- Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Deeksha Pandey
- Department of Obstetrics and Gynaecology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
23
|
Siriwardena SBSM, Tsunematsu T, Qi G, Ishimaru N, Kudo Y. Invasion-Related Factors as Potential Diagnostic and Therapeutic Targets in Oral Squamous Cell Carcinoma-A Review. Int J Mol Sci 2018; 19:ijms19051462. [PMID: 29758011 PMCID: PMC5983574 DOI: 10.3390/ijms19051462] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 01/06/2023] Open
Abstract
It is well recognized that the presence of cervical lymph node metastasis is the most important prognostic factor in oral squamous cell carcinoma (OSCC). In solid epithelial cancer, the first step during the process of metastasis is the invasion of cancer cells into the underlying stroma, breaching the basement membrane (BM)—the natural barrier between epithelium and the underlying extracellular matrix (ECM). The ability to invade and metastasize is a key hallmark of cancer progression, and the most complicated and least understood. These topics continue to be very active fields of cancer research. A number of processes, factors, and signaling pathways are involved in regulating invasion and metastasis. However, appropriate clinical trials for anti-cancer drugs targeting the invasion of OSCC are incomplete. In this review, we summarize the recent progress on invasion-related factors and emerging molecular determinants which can be used as potential for diagnostic and therapeutic targets in OSCC.
Collapse
Affiliation(s)
- Samadarani B S M Siriwardena
- Department of Oral Pathology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka.
| | - Takaaki Tsunematsu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan.
| | - Guangying Qi
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, China.
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan.
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan.
| |
Collapse
|
24
|
Zeljic K, Jovanovic I, Jovanovic J, Magic Z, Stankovic A, Supic G. MicroRNA meta-signature of oral cancer: evidence from a meta-analysis. Ups J Med Sci 2018; 123:43-49. [PMID: 29482431 PMCID: PMC5901467 DOI: 10.1080/03009734.2018.1439551] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM It was the aim of the study to identify commonly deregulated miRNAs in oral cancer patients by performing a meta-analysis of previously published miRNA expression profiles in cancer and matched normal non-cancerous tissue in such patients. MATERIAL AND METHODS Meta-analysis included seven independent studies analyzed by a vote-counting method followed by bioinformatic enrichment analysis. RESULTS Amongst seven independent studies included in the meta-analysis, 20 miRNAs were found to be deregulated in oral cancer when compared with non-cancerous tissue. Eleven miRNAs were consistently up-regulated in three or more studies (miR-21-5p, miR-31-5p, miR-135b-5p, miR-31-3p, miR-93-5p, miR-34b-5p, miR-424-5p, miR-18a-5p, miR-455-3p, miR-450a-5p, miR-21-3p), and nine were down-regulated (miR-139-5p, miR-30a-3p, miR-376c-3p, miR-885-5p, miR-375, miR-486-5p, miR-411-5p, miR-133a-3p, miR-30a-5p). The meta-signature of identified miRNAs was functionally characterized by KEGG enrichment analysis. Twenty-four KEGG pathways were significantly enriched, and TGF-beta signaling was the most enriched signaling pathway. The highest number of meta-signature miRNAs was involved in the sphingolipid signaling pathway. Natural killer cell-mediated cytotoxicity was the pathway with most genes regulated by identified miRNAs. The rest of the enriched pathways in our miRNA list describe different malignancies and signaling. CONCLUSIONS The identified miRNA meta-signature might be considered as a potential battery of biomarkers when distinguishing oral cancer tissue from normal, non-cancerous tissue. Further mechanistic studies are warranted in order to confirm and fully elucidate the role of deregulated miRNAs in oral cancer.
Collapse
Affiliation(s)
- Katarina Zeljic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- CONTACT Katarina Zeljic , University of Belgrade, Faculty of Biology, Studentski trg 3, 11000 Belgrade, Serbia
| | - Ivan Jovanovic
- Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade, Serbia
| | | | - Zvonko Magic
- Faculty of Medicine, Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade, Serbia
| | - Gordana Supic
- Faculty of Medicine, Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| |
Collapse
|