1
|
Feng Y, Zhang T, Chang Y. Compression force promotes the osteogenic differentiation of periodontal ligament stem cells by regulating NAT10-mediated ac4C modification of BMP2. J Orthop Surg Res 2024; 19:861. [PMID: 39702283 DOI: 10.1186/s13018-024-05302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Orthodontic treatment applies specific corrective forces to teeth, transmitting stress to periodontal tissue, thereby regulating the growth and development of periodontal ligament stem cells (PDLSCs). Recently, N-acetyltransferase 10 (NAT10) mediated N4-acetylcytidine (ac4C) modification is demonstrated to play a key role in the osteogenic differentiation of stem cells. Therefore, this study aimed explore the effects of Orthodontic treatment on the NAT10 mediated ac4C modification and osteogenic differentiation of PDLSCs. METHODS Compressive force was used to treat PDLSCs to simulate orthodontic force treatment. The ALP and ARS staining was performed to analyze the osteogenic differentiation of PDLSCs. Besides, ac4C dot blot and ac4C-RIP assays were performed to detect the global ac4C levels and BMP2 ac4C levels. The relationship between NAT10 and BMP2 was confirmed by RIP assay and immunofluorescence staining. The mRNA and protein levels of RUNX2, Oxterix and BMP2 were detected by RT-qPCR and western blot assays. RESULTS Compressive force treatment promoted the osteogenic differentiation of PDLSCs, and enhanced the global ac4C levels and NAT10 levels in PDLSCs. NAT10 overexpression further promoted the osteogenic differentiation of compressive force treated PDLSCs. Besides, NAT10 overexpression increased ac4C levels of BMP2 and enhanced the mRNA stability of BMP2. Remodelin treatment significantly decreased the ac4C and mRNA levels of BMP2. Furthermore, BMP2 silencing reversed the role of NAT10 in the compressive force treated PDLSCs. CONCLUSION This study demonstrated that compressive force promotes cell viability and osteogenic differentiation of PDLSCs by regulating BMP2 levels mediated by NAT10. NAT10 mediated ac4C levels of BMP2 is the key signaling axis of orthodontic stress in promoting cell growth and osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Yan Feng
- Department of Oral Orthodontics, Affiliated Stomatological Hospital of Xuzhou Medical University, 130 Huaihai West Road, Xuzhou City, 221000, Jiangsu, China.
| | - Ting Zhang
- Department of Oral Orthodontics, Affiliated Stomatological Hospital of Xuzhou Medical University, 130 Huaihai West Road, Xuzhou City, 221000, Jiangsu, China
| | - Yue Chang
- Department of Oral Orthodontics, The First Affiliated Hospital, Zhengzhou University, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| |
Collapse
|
2
|
Rajeshwari HRS, Bishop E, Ali A, Kishen A. Deciphering 3D periodontal fibroblast-macrophage crosstalk in bioactive nanoparticle-guided immunomodulation for treating traumatic dental avulsion. Bioact Mater 2024; 41:400-412. [PMID: 39184829 PMCID: PMC11342124 DOI: 10.1016/j.bioactmat.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 08/27/2024] Open
Abstract
Prolonged extra-oral period in dental avulsion is often associated with loss of viability of Periodontal fibroblasts (PDLF) and increased risk of ankylosis. Root surface treatment with bioactive agents to reduce the risk of ankylosis can be a potential strategy. The objective of the study was to investigate the impact of an engineered chitosan nanoparticles (CSNP), photosensitizer Rose Bengal (RB) functionalized CSNP (CSRB) and sustained dexamethasone (CSDEX) releasing CSNP for application in management of delayed replantation of avulsed teeth. The 3D PDLF-macrophage (Mϕ) collagen model was developed and exposed to LPS, MCSF, RANKL with and without CSDEX/CSNP. Immunofluorescence and cytokine analysis was done at 2 and 7 days to assess cellular interactions. Maxillary right incisors in male Wistar rats were extracted, exposed to extraoral dry or LPS for 1 h and treated with or without CSDEX/CSRB for 1 min before replantation. Rats were euthanized after 21 days for micro-CT, TRAP, and immunofluorescence analysis. CSDEX/CSNP treatment in 3D model significantly reduced CD80, NFATc1, STAT6 and increased CD206 and periostin expression (p < 0.05). TNFα, MMP9 was downregulated and IL10, TGFβ1, MMP2 upregulated with CSDEX/CSNP (p < 0.05). CSDEX/CSRB in animal study significantly reduced resorption, ankylosis, TRAP activity and osteocalcin expression and increased periostin (p<0.05). CSDEX demonstrated higher anti-inflammatory activity by downregulating TNFα, while CSNP upregulated TGFβ1, periostin, and downregulated MMP9. The combination of matrix stabilization with CSRB with periostin upregulation and sustained releasing CSDEX showed potential for hampering root resorption and ankylosis in dental avulsion.
Collapse
Affiliation(s)
| | - Emily Bishop
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | - Aiman Ali
- Oral and Maxillofacial Pathology and Oral Medicine, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON, M5G 1G6, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
- Department of Dentistry, Mount Sinai Health System, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| |
Collapse
|
3
|
Hirata R, Iwata T, Fujita T, Nagahara T, Matsuda S, Sasaki S, Taniguchi Y, Hamamoto Y, Ouhara K, Kudo Y, Kurihara H, Mizuno N. Periostin regulates integrin expression in gingival epithelial cells. J Oral Biosci 2024; 66:170-178. [PMID: 38048847 DOI: 10.1016/j.job.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Human gingival epithelial cells (HGECs) function as a mechanical barrier against invasion by pathogenic organisms through epithelial cell-cell junction complexes, which are complex components of integrin. Integrins play an important role in the protective functions of HGECs. Human periodontal ligament (HPL) cells regulate periodontal homeostasis. However, periodontitis results in the loss of HPL cells. Therefore, as replenishment, HPL cells or mesenchymal stem cells (MSCs) can be transplanted. Herein, HPL cells and MSCs were used to elucidate the regulatory mechanisms of HGECs, assuming periodontal tissue homeostasis. METHODS Human gingival fibroblasts (HGFs), HGECs, HPL cells, and MSCs were cultured, and the conditioned medium was collected. With or without silencing periostin mRNA, HGECs were cultured under normal conditions or in a conditioned medium. Integrin and periostin mRNA expression was determined using real-time polymerase chain reaction. Integrin protein expression was analyzed using flow cytometry, and periostin protein expression was determined via western blotting. RESULTS The conditioned medium affected integrin expression in HGECs. Higher expression of periostin was observed in MSCs and HPL cells than in HGFs. The conditioned medium that contained periostin protein regulated integrin expression in HGECs. After silencing periostin in MSCs and HPL cells, periostin protein was not detected in the conditioned medium, and integrin expression in HGECs remained unaffected. CONCLUSIONS Integrins in HGECs are regulated by periostin secreted from HPL cells and MSCs. This result suggests that periostin maintains gingival cell adhesion and regulates bacterial invasion/infection. Therefore, the functional regulation of periostin-secreting cells is important in preventing periodontitis.
Collapse
Affiliation(s)
- Reika Hirata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan.
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Shinya Sasaki
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Yuri Taniguchi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Yuta Hamamoto
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Yasusei Kudo
- Department of Oral Bioscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| |
Collapse
|
4
|
Radzki D, Negri A, Kusiak A, Obuchowski M. Matrix Metalloproteinases in the Periodontium-Vital in Tissue Turnover and Unfortunate in Periodontitis. Int J Mol Sci 2024; 25:2763. [PMID: 38474009 DOI: 10.3390/ijms25052763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) is a complex non-cellular three-dimensional macromolecular network present within all tissues and organs, forming the foundation on which cells sit, and composed of proteins (such as collagen), glycosaminoglycans, proteoglycans, minerals, and water. The ECM provides a fundamental framework for the cellular constituents of tissue and biochemical support to surrounding cells. The ECM is a highly dynamic structure that is constantly being remodeled. Matrix metalloproteinases (MMPs) are among the most important proteolytic enzymes of the ECM and are capable of degrading all ECM molecules. MMPs play a relevant role in physiological as well as pathological processes; MMPs participate in embryogenesis, morphogenesis, wound healing, and tissue remodeling, and therefore, their impaired activity may result in several problems. MMP activity is also associated with chronic inflammation, tissue breakdown, fibrosis, and cancer invasion and metastasis. The periodontium is a unique anatomical site, composed of a variety of connective tissues, created by the ECM. During periodontitis, a chronic inflammation affecting the periodontium, increased presence and activity of MMPs is observed, resulting in irreversible losses of periodontal tissues. MMP expression and activity may be controlled in various ways, one of which is the inhibition of their activity by an endogenous group of tissue inhibitors of metalloproteinases (TIMPs), as well as reversion-inducing cysteine-rich protein with Kazal motifs (RECK).
Collapse
Affiliation(s)
- Dominik Radzki
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alessandro Negri
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
5
|
Yong J, Elisabeth Groeger S, Ruf S, Ruiz-Heiland G. Influence of leptin and compression in GAS-6 mediated homeostasis of periodontal ligament cell. Oral Dis 2023; 29:1172-1183. [PMID: 34861742 DOI: 10.1111/odi.14092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
Growth arrest-specific protein 6 (GAS-6) regulates immunomodulatory and inflammatory mechanisms in periodontium and may participate in obesity predisposition. This study aimed to determine whether GAS-6 is associated with the homeostasis of periodontal ligament (SV-PDL) cells in the presence of adipokines or compressive forces. The SV-PDL cell line was used. Western blots were employed for TAM receptors detection. Cells were stimulated using different concentrations of GAS-6. The migration, viability, and proliferation were measured by a standard scratch test, MTS assay, and immunofluorescent staining. The mRNA expression was analyzed by RT-PCR. Release of TGF-β1, GAS-6, and Axl were verified by ELISA. Western blot shows that TAM receptors are expressed in SV-PDL cells. GAS-6 has a promoting effect on cell migration and proliferation. RT-PCR analysis showed that GAS-6 induces Collagen-1, Collagen-3, Periostin, and TGF-β1 mRNA expression whereas it reduces Caspase-3, Caspase-8, Caspase-9, and IL-6 mRNA expression. Further, secreted GAS-6 in SV-PDL is reduced in response to both compressive forces and leptin and upregulated by IL-6. Additionally, ADAM-10 inhibition reduces GAS-6 and Axl release on SV-PDL cells. TAM receptors especially Axl are identified as the receptors of GAS-6. GAS-6/TAM interactions contribute to periodontal ligament cells homeostasis. Leptin inhibits the GAS-6 release independently of ADAM-10 metalloprotease.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Elisabeth Groeger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Gisela Ruiz-Heiland
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Iizumi R, Honda M. Wnt/β-Catenin Signaling Inhibits Osteogenic Differentiation in Human Periodontal Ligament Fibroblasts. Biomimetics (Basel) 2022; 7:biomimetics7040224. [PMID: 36546925 PMCID: PMC9776043 DOI: 10.3390/biomimetics7040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
The periodontal ligament is a collagenous tissue that is important for maintaining the homeostasis of cementum and alveolar bone. In tendon cells, Wnt/β-catenin signaling has been reported to regulate the expression level of Scleraxis (Scx) and Mohawk Homeobox (Mkx) gene and maintain the tissue homeostasis, while its role in the periodontal ligament is unclear. The aim of this study was to investigate the effects of Wnt/β-catenin signaling induced by Wnt-3a stimulation on the inhibition of osteogenic differentiation of human periodontal ligament fibroblasts (HPLFs). During osteogenic differentiation of HPLFs, they formed bone nodules independently of alkaline phosphatase (ALP) activity. After stimulation of Wnt-3a, the expression of β-catenin increased, and nuclear translocation of β-catenin was observed. These data indicate that Wnt-3a activated Wnt/β-catenin signaling. Furthermore, the stimulation of Wnt-3a inhibited the bone nodule formation and suppressed the expression of osteogenic differentiation-related genes such as Runx2, Osteopontin and Osteocalcin, and upregulated the gene expression of Type-I collagen and Periostin (Postn). Scx may be involved in the suppression of osteogenic differentiation in HPLFs. In conclusion, Wnt/β-catenin signaling may be an important signaling pathway that inhibits the osteogenic differentiation in HPLFs by the upregulation of Scx gene expression and downregulation of osteogenic differentiation-related genes.
Collapse
|
7
|
Fraser D, Nguyen T, Kotelsky A, Lee W, Buckley M, Benoit DSW. Hydrogel Swelling-Mediated Strain Induces Cell Alignment at Dentin Interfaces. ACS Biomater Sci Eng 2022; 8:3568-3575. [PMID: 35793542 PMCID: PMC9364318 DOI: 10.1021/acsbiomaterials.2c00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Cell and tissue alignment
is a defining feature of periodontal
tissues. Therefore, the development of scaffolds that can guide alignment
of periodontal ligament cells (PDLCs) relative to tooth root (dentin)
surfaces is highly relevant for periodontal tissue engineering. To
control PDLC alignment adjacent to the dentin surface, poly(ethylene
glycol) (PEG)-based hydrogels were explored as a highly tunable matrix
for encapsulating cells and directing their activity. Specifically,
a composite system consisting of dentin blocks, PEG hydrogels, and
PDLCs was created to control PDLC alignment through hydrogel swelling.
PDLCs in composites with minimal hydrogel swelling showed random alignment
adjacent to dentin blocks. In direct contrast, the presence of hydrogel
swelling resulted in PDLC alignment perpendicular to the dentin surface,
with the degree and extension of alignment increasing as a function
of swelling. Replicating this phenomenon with different molds, block
materials, and cells, together with predictive modeling, indicated
that PDLC alignment was primarily a biomechanical response to swelling-mediated
strain. Altogether, this study describes a novel method for inducing
cell alignment adjacent to stiff surfaces through applied strain and
provides a model for the study and engineering of periodontal and
other aligned tissues.
Collapse
Affiliation(s)
- David Fraser
- Eastman Institute for Oral Health, Department of Periodontology, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Science, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Tram Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Alexander Kotelsky
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Whasil Lee
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, New York 14642, United States.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Mark Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
8
|
Wang K, Xu C, Xie X, Jing Y, Chen P, Yadav S, Wang Z, Taylor R, Wang J, Feng J. Axin2+ PDL Cells Directly Contribute to New Alveolar Bone Formation in Response to Orthodontic Tension Force. J Dent Res 2022; 101:695-703. [PMID: 35001706 PMCID: PMC9124907 DOI: 10.1177/00220345211062585] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt-β-catenin signaling plays a key role in orthodontic tooth movement (OTM), a common clinical practice for malocclusion correction. However, its targeted periodontal ligament (PDL) progenitor cells remain largely unclear. In this study, we first showed a synchronized increase in Wnt-β-catenin levels and Axin2+ PDL progenitor cell numbers during OTM using immunostaining of β-catenin in wild-type mice and X-gal staining in the Axin2-LacZ knock-in line. Next, we demonstrated time-dependent increases in Axin2+ PDL progenitors and their progeny cell numbers within PDL and alveolar bones during OTM using a one-time tamoxifen-induced Axin2 tracing line (Axin2CreERT2/+; R26RtdTomato/+). Coimmunostaining images displayed both early and late bone markers (such as RUNX2 and DMP1) in the Axin2Lin PDL cells. Conversely, ablation of Axin2+ PDL cells via one-time tamoxifen-induced diphtheria toxin subunit A (DTA) led to a drastic decrease in osteogenic activity (as reflected by alkaline phosphatase) in PDL and alveolar bone. There was also a decrease in new bone mass and a significant reduction in the mineral apposition rate on both the control side (to a moderate degree) and the OTM side (to a severe degree). Thus, we conclude that the Axin2+ PDL cells (the Wnt-targeted key cells) are highly sensitive to orthodontic tension force and play a critical role in OTM-induced PDL expansion and alveolar bone formation. Future drug development targeting the Axin2+ PDL progenitor cells may accelerate alveolar bone formation during orthodontic treatment.
Collapse
Affiliation(s)
- K. Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
- Division of Orthodontics, University of Connecticut Health Center, Farmington, CT, USA
| | - C. Xu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X. Xie
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y. Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - P.J. Chen
- Division of Orthodontics, University of Connecticut Health Center, Farmington, CT, USA
| | - S. Yadav
- Division of Orthodontics, University of Connecticut Health Center, Farmington, CT, USA
| | - Z. Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - R.W. Taylor
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - J. Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J.Q. Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
9
|
Hosiriluck N, Kashio H, Takada A, Mizuguchi I, Arakawa T. The profiling and analysis of gene expression in human periodontal ligament tissue and fibroblasts. Clin Exp Dent Res 2022; 8:658-672. [PMID: 35106969 PMCID: PMC9209801 DOI: 10.1002/cre2.533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/24/2021] [Accepted: 12/28/2021] [Indexed: 01/03/2023] Open
Abstract
Objectives The periodontal ligament (PDL) is an important component of periodontium to support dental structure in the alveolar socket. Regeneration of PDL tissue is an effective treatment option for periodontal disease and the profiling of genes involved in this process will be informative. Therefore, our study aims to accurately delineate the profiling of gene expression for PDL tissue regeneration. Materials and Methods We isolated PDL tissues and PDL fibroblasts (PDLFs) from premolar teeth, which were extracted from healthy periodontal status patients undergoing orthodontic treatment. Messenger RNA (mRNA) expression in PDL tissue and PDLFs were analyzed using Cap analysis gene expression, which is a second‐generation sequencing technique to create profiling. We also determined the protein expression using Western blot. Results Collagens (type I, III, and VI), noncollagenous proteins (periostin and osteonectin), and proteoglycans (asporin, lumican, decorin, and osteomodulin) were highly expressed in PDL tissue. Integrin, β1 was also expressed in PDL tissue. On comparison of gene expression between PDL tissue and PDLFs, four PDL marker genes, osteopontin, asporin, periostin, and osteonectin, were decreased in PDLFs. The genes for gene regulation were also highly expressed. Conclusions Our study demonstrated the overall profiling of mRNA expression in PDL tissue and analyzed the important genes which may be useful for providing specific information for the reconstruction of PDL. We also identified the difference in gene expression between PDL tissue and PDLFs which might provide insights towards PDL regeneration.
Collapse
Affiliation(s)
- Nattakarn Hosiriluck
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Hokkaido, Japan
| | - Haruna Kashio
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Hokkaido, Japan
| | - Ayuko Takada
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Hokkaido, Japan
| | - Itaru Mizuguchi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Toshiya Arakawa
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Hokkaido, Japan
| |
Collapse
|
10
|
The Balance between Orthodontic Force and Radiation in the Jawbone: Microstructural, Histological, and Molecular Study in a Rat Model. BIOLOGY 2021; 10:biology10111203. [PMID: 34827196 PMCID: PMC8615105 DOI: 10.3390/biology10111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Patients with head and neck cancer are frequently treated by radiation, which results in a lifelong risk of damage (necrosis) to the jawbones. Some of the irradiated young patients at a later time in life may be interested in orthodontic treatment for esthetic or functional purposes. We undertook this study in order to investigate changes that occur in irradiated jawbones when mild orthodontic force is applied in a rat laboratory model. We found that one low dose of radiation had negatively affected the jawbones and that these changes were visible in X-ray images as well as in microscopic slides. The irradiated bones seemed to be denser in the X-rays and had fewer cells that usually regulate normal bone turnover, compared to non-irradiated bones. However, when orthodontic force was applied after radiation, the changes in the irradiated bones were largely, but not completely, reversed in both X-rays and microscopy to the point that bone properties were approaching those of non-irradiated, orthodontically treated, bones. The findings of this study indicate that orthodontic force may have a beneficial effect on the maintenance of jawbone vitality after radiation, but additional studies using different time-lags between radiation and orthodontic force and higher radiation doses are warranted to support these findings. Abstract Irradiation of facial bones is associated with a lifelong risk of osteonecrosis. In a rat model, maxillae were exposed to a single 5 Gy dose of external beam radiation and orthodontic force was applied for 2 weeks on the first maxillary molar; control rats were treated identically without radiation. Tooth movement in irradiated jaws was 30% less than in controls, representing radiation-related damage. Micro-CT, histological, and molecular outcomes of orthodontic tooth movement were studied. Microstructurally, bone parameters (trabecular thickness, bone volume fraction, bone mineral density) were significantly affected by orthodontic force but not by radiation. Histological parameters were influenced only by orthodontic force, especially by an increase in osteoclasts. A molecular study revealed a differential distribution of cells expressing pre-osteoclast markers (RANK+—majority, CD11b+, CD14+—minority), with changes being influenced by orthodontic force (increased CD11b+ and CD14+ cells) and also by radiation (decreased RANK+ cells). The activation status of osteoclasts (TRAP staining) showed an orthodontic-force-related increase, which probably could not fully compensate for the radiation-associated impairment. The overall balance showed that orthodontic force had elicited a substantial microstructural, histological, and functional normalization process in irradiated maxillae but a radiation-induced impact was still conspicuous. Additional studies are needed to validate these findings.
Collapse
|
11
|
N-acetylcysteine promotes cyclic mechanical stress-induced osteogenic differentiation of periodontal ligament stem cells by down-regulating Nrf2 expression. J Dent Sci 2021; 17:750-762. [PMID: 35756790 PMCID: PMC9201541 DOI: 10.1016/j.jds.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/03/2021] [Indexed: 10/25/2022] Open
|
12
|
Li Y, Zhan Q, Bao M, Yi J, Li Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int J Oral Sci 2021; 13:20. [PMID: 34183652 PMCID: PMC8239047 DOI: 10.1038/s41368-021-00125-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Nowadays, orthodontic treatment has become increasingly popular. However, the biological mechanisms of orthodontic tooth movement (OTM) have not been fully elucidated. We were aiming to summarize the evidences regarding the mechanisms of OTM. Firstly, we introduced the research models as a basis for further discussion of mechanisms. Secondly, we proposed a new hypothesis regarding the primary roles of periodontal ligament cells (PDLCs) and osteocytes involved in OTM mechanisms and summarized the biomechanical and biological responses of the periodontium in OTM through four steps, basically in OTM temporal sequences, as follows: (1) Extracellular mechanobiology of periodontium: biological, mechanical, and material changes of acellular components in periodontium under orthodontic forces were introduced. (2) Cell strain: the sensing, transduction, and regulation of mechanical stimuli in PDLCs and osteocytes. (3) Cell activation and differentiation: the activation and differentiation mechanisms of osteoblast and osteoclast, the force-induced sterile inflammation, and the communication networks consisting of sensors and effectors. (4) Tissue remodeling: the remodeling of bone and periodontal ligament (PDL) in the compression side and tension side responding to mechanical stimuli and root resorption. Lastly, we talked about the clinical implications of the updated OTM mechanisms, regarding optimal orthodontic force (OOF), acceleration of OTM, and prevention of root resorption.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minyue Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Xi X, Zhao Y, Liu H, Li Z, Chen S, Liu D. Nrf2 activation is involved in osteogenic differentiation of periodontal ligament stem cells under cyclic mechanical stretch. Exp Cell Res 2021; 403:112598. [PMID: 33865812 DOI: 10.1016/j.yexcr.2021.112598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/28/2022]
Abstract
During orthodontic treatment, mechanical stretch serves a crucial function in osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Up-regulated reactive oxygen species (ROS) level is a result of cyclic mechanical stretch in many cell types. Nuclear factor erythroid-2-related factor-2 (Nrf2) is a master regulator in various antioxidants expression. However, it is not known whether cyclic mechanical stretch could induce the ROS generation in PDLSCs and whether Nrf2 participated in this process. The present study was aimed to investigate the role of Nrf2 in PDLSCs under cyclic mechanical stretch. Our results showed that cyclic mechanical stretch increased ROS level and the nuclear accumulation of Nrf2 during osteoblast differentiation. Knocking down Nrf2 by siRNA transfection increased ROS formation and suppressed osteogenic differentiation in PDLSCs. T-BHQ, a Nrf2 activator, promoted the osteogenic differentiation in PDLSCs under cyclic mechanical stretch, and improved the microstructure of alveolar bone during orthodontic tooth movement in rats by employing micro-CT system. Taken together, Nrf2 activation was involved in osteogenic differentiation under cyclic mechanical stretch in PDLSCs. T-BHQ could promote the osteogenic differentiation in vitro and in vivo, suggesting a promising option for the remodeling of the alveolar bone during orthodontic tooth movement.
Collapse
Affiliation(s)
- Xun Xi
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Yi Zhao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Hong Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Zixuan Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Shuai Chen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Dongxu Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China.
| |
Collapse
|
14
|
Wang M, Zhang L, Lin F, Zheng Q, Xu X, Mei L. Dynamic study into autophagy and apoptosis during orthodontic tooth movement. Exp Ther Med 2021; 21:430. [PMID: 33747169 PMCID: PMC7967888 DOI: 10.3892/etm.2021.9847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Orthodontic tooth movement (OTM) has been widely observed worldwide. The OTM process is involved in several biological activities and can result in temporary hypoxia. The dynamic changes of autophagy and apoptosis during OTM have not, to the best of our knowledge, been previously reported. In the present study, an OTM animal model was established. Periodontal ligament cells (PDLCs) and osteoclasts were investigated using H&E and tartrate-resistant acid phosphatase staining. The changes in the expression levels of certain autophagy and apoptotic markers were investigated using immunohistochemical staining. A significant decrease in PDLC and an increase in osteoclast numbers were observed 1 day following OTM induction. The expression levels of Beclin-1 and LC3-II peaked at 1 h post-OTM, followed by a gradual decrease. The expression levels of P62 in each experimental group were significantly lower than those noted in the 0 h group. The expression levels of Bcl-2 were markedly increased 1 h following OTM and reached a maximum at 1 day post-OTM. The highest expression levels of Bax and caspase-3 were observed 7 days following OTM induction. The present study provided additional information regarding the involvement of autophagy and apoptotic markers in the OTM process and aided the understanding of the initiation and pathophysiological progression of this condition.
Collapse
Affiliation(s)
- Maoying Wang
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Zhang
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fuwei Lin
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qian Zheng
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaomei Xu
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Mei
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
15
|
Lan KF, Shen YQ, Li Y, Ling CL, Gong YM, Xia SC, Guo XH, Ding X. Chemokine C-C motif ligand 8 in periodontal ligament during orthodontic tooth movement. Arch Oral Biol 2021; 123:104996. [PMID: 33453555 DOI: 10.1016/j.archoralbio.2020.104996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To investigate the roles of chemokine (C-C motif) ligand 8 (CCL8) in periodontal ligament during orthodontic tooth movement (OTM). METHODS Bioinformatics analyzed 100 genes in human periodontal ligament cells that were most upregulated after 48 hours of mechanical stress, and these genes were classified through GO and KEGG databases. Nickel-titanium closed-coil springs were placed between right first molar and incisors to produce 20 cN of orthodontic force in eight-week-old male SD rats for 1 and 2 days, followed by immunohistochemical staining of CCL8. Human periodontal ligament fibroblasts (hPDLFs) were stimulated by 14% cyclic tension force (Flexcell FX-5000 T Tension System) or hypoxia conditions to mimic OTM for 1 and 2 days, then the resulting CCL8 were examined through ELISA. Scratching assay was performed by treating hPDLFs with different concentrations of CCL8 (1 ng/ml, 10 ng/ml, 100 ng/ml). The migration, proliferation, and adhesion abilities of 100 ng/ml CCL8-treated hPDLFs were also examined. qRT-PCR and western blot detected matrix metalloproteinase 3, periostin, and osteoprotegrin expressions of hPDLFs under 100 ng/ml CCL8. RESULTS Bioinformatic analysis demonstrated that CCL8 was upregulated after applying mechanical stress for 48 hours. CCL8 secretion showed upregulation after 24 hours of OTM applicationsin vivo and in vitro. CCL8-treated hPDLFs showed significant positive effects on cell proliferation and matrix metalloproteinase 3. It also inhibited periostin and osteoprotegrin expressions. CONCLUSIONS CCL8 was upregulated in periodontal ligament during initial stage of OTM. Although CCL8 in human periodontal ligaments showed no significant effects on cell migration ability, it did enhance cell proliferation and osteoclastogenesis.
Collapse
Affiliation(s)
- Keng-Fu Lan
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu-Qing Shen
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Li
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chuan-Liang Ling
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi-Ming Gong
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu-Chi Xia
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xue-Hua Guo
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaojun Ding
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; State key laboratory of molecular engineering of polymers, Fudan University., Shanghai 200438, China.
| |
Collapse
|
16
|
Li Z, Yu M, Jin S, Wang Y, Luo R, Huo B, Liu D, He D, Zhou Y, Liu Y. Stress Distribution and Collagen Remodeling of Periodontal Ligament During Orthodontic Tooth Movement. Front Pharmacol 2019; 10:1263. [PMID: 31708784 PMCID: PMC6821875 DOI: 10.3389/fphar.2019.01263] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/30/2019] [Indexed: 01/11/2023] Open
Abstract
Periodontal ligament (PDL), as a mechanical connection between the alveolar bone and tooth, plays a pivotal role in force-induced orthodontic tooth movement (OTM). However, how mechanical force controls remodeling of PDL collagenous extracellular matrix (ECM) is largely unknown. Here, we aimed to evaluate the stress distribution and ECM fiber remodeling of PDL during the process of OTM. An experimental tooth movement model was built by ligating a coil spring between the left maxillary first molar and the central incisors. After activating the coil spring for 7 days, the distance of tooth movement was 0.324 ± 0.021 mm. The 3D finite element modeling showed that the PDL stress obviously concentrated at cervical margin of five roots and apical area of the mesial root, and the compression region was distributed at whole apical root and cervical margin of the medial side (normal stress < -0.05 MPa). After force induction, the ECM fibers were disordered and immature collagen III fibers significantly increased, especially in the apical region, which corresponds to the stress concentration and compression area. Furthermore, the osteoclasts and interleukin-1β expression were dramatically increased in the apical region of the force group. Taken together, orthodontic loading could change the stress distribution of PDL and induce a disordered arrangement and remodeling of ECM fibers. These findings provide orthodontists both mechanical and biological evidences that root resorption is prone to occur in the apical area during the process of OTM.
Collapse
Affiliation(s)
- Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Min Yu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Rui Luo
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Dawei Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
17
|
Abstract
Periostin is a secreted matricellular protein that primarily interacts with type I collagen and fibronectin extracellular matrix proteins, and is widely distributed in tissues rich in collagen-rich connective tissues, including the periodontal ligament. Its expression in these tissues is especially regulated by mechanical load. While the expression and regulation of periostin in the teeth of murine models and cell lines is well known, its presence in human teeth is poorly documented. Here we update and summarize the available data on the distribution of periostin in the human periodontal ligament, gingiva and dental pulp.
Collapse
|
18
|
Expression of biological mediators during orthodontic tooth movement: A systematic review. Arch Oral Biol 2018; 95:170-186. [PMID: 30130671 DOI: 10.1016/j.archoralbio.2018.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/09/2022]
Abstract
OBJECTIVES The aim of the present systematic review was to offer a timeline of the events taking place during orthodontic tooth movement(OTM). MATERIALS AND METHODS Electronic databases PubMed, Web of Science and EMBASE were searched up to November 2017. All studies describing the expression of signaling proteins in the periodontal ligament(PDL) of teeth subjected to OTM or describing the expression of signaling proteins in human cells of the periodontal structures subjected to static mechanical loading were considered eligible for inclusion for respectively the in-vivo or the in-vitro part. Risk of bias assessment was conducted according to the validated SYRCLE's RoB tool for animal studies and guideline for assessing quality of in-vitro studies for in-vitro studies. RESULTS We retrieved 7583 articles in the initial electronic search, from which 79 and 51 were finally analyzed. From the 139 protein investigated, only the inflammatory proteins interleukin(IL)-1β, cyclooxygenase(COX)-2 and prostaglandin(PG)-E2, osteoblast markers osteocalcin and runt-related transcription factor(RUNX)2, receptor activator of nuclear factor kappa-B ligand(RANKL) and osteoprotegerin(OPG) and extracellular signal-regulated kinases(ERK)1/2 are investigated in 10 or more studies. CONCLUSION The investigated proteins were presented in a theoretical model of OTM. We can conclude that the cell activation and differentiation and recruitment of osteoclasts is mediated by osteocytes, osteoblasts and PDL cells, but that the osteogenic differentiation is only seen in stem cell present in the PDL. In addition, the recently discovered Ephrin/Ephs seem to play an role parallel with the thoroughly investigated RANKL/OPG system in mediating bone resorption during OTM.
Collapse
|
19
|
Periostin, dentin matrix protein 1 and P2rx7 ion channel in human teeth and periodontal ligament. Ann Anat 2018; 216:103-111. [DOI: 10.1016/j.aanat.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
|