1
|
Giordo R, Ahmadi FAM, Husaini NA, Al-Nuaimi NRA, Ahmad SM, Pintus G, Zayed H. microRNA 21 and long non-coding RNAs interplays underlie cancer pathophysiology: A narrative review. Noncoding RNA Res 2024; 9:831-852. [PMID: 38586315 PMCID: PMC10995982 DOI: 10.1016/j.ncrna.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a diverse group of functional RNA molecules that lack the ability to code for proteins. Despite missing this traditional role, ncRNAs have emerged as crucial regulators of various biological processes and have been implicated in the development and progression of many diseases, including cancer. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two prominent classes of ncRNAs that have emerged as key players in cancer pathophysiology. In particular, miR-21 has been reported to exhibit oncogenic roles in various forms of human cancer, including prostate, breast, lung, and colorectal cancer. In this context, miR-21 overexpression is closely associated with tumor proliferation, growth, invasion, angiogenesis, and chemoresistance, whereas miR-21 inactivation is linked to the regression of most tumor-related processes. Accordingly, miR-21 is a crucial modulator of various canonical oncogenic pathways such as PTEN/PI3K/Akt, Wnt/β-catenin, STAT, p53, MMP2, and MMP9. Moreover, interplays between lncRNA and miRNA further complicate the regulatory mechanisms underlying tumor development and progression. In this regard, several lncRNAs have been found to interact with miR-21 and, by functioning as competitive endogenous RNAs (ceRNAs) or miRNA sponges, can modulate cancer tumorigenesis. This work presents and discusses recent findings highlighting the roles and pathophysiological implications of the miR-21-lncRNA regulatory axis in cancer occurrence, development, and progression. The data collected indicate that specific lncRNAs, such as MEG3, CASC2, and GAS5, are strongly associated with miR-21 in various types of cancer, including gastric, cervical, lung, and glioma. Indeed, these lncRNAs are well-known tumor suppressors and are commonly downregulated in different types of tumors. Conversely, by modulating various mechanisms and oncogenic signaling pathways, their overexpression has been linked with preventing tumor formation and development. This review highlights the significance of these regulatory pathways in cancer and their potential for use in cancer therapy as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Fatemeh Abdullah M. Ahmadi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nedal Al Husaini
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Noora Rashid A.M. Al-Nuaimi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Salma M.S. Ahmad
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
2
|
Chauhan P, Pramodh S, Hussain A, Elsori D, Lakhanpal S, Kumar R, Alsaweed M, Iqbal D, Pandey P, Al Othaim A, Khan F. Understanding the role of miRNAs in cervical cancer pathogenesis and therapeutic responses. Front Cell Dev Biol 2024; 12:1397945. [PMID: 39263322 PMCID: PMC11387185 DOI: 10.3389/fcell.2024.1397945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Cervical cancer (CC) is the most common cancer in women and poses a serious threat to health. Despite familiarity with the factors affecting its etiology, initiation, progression, treatment strategies, and even resistance to therapy, it is considered a significant problem for women. However, several factors have greatly affected the previous aspects of CC progression and treatment in recent decades. miRNAs are short non-coding RNA sequences that regulate gene expression by inhibiting translation of the target mRNA. miRNAs play a crucial role in CC pathogenesis by promoting cancer stem cell (CSC) proliferation, postponing apoptosis, continuing the cell cycle, and promoting invasion, angiogenesis, and metastasis. Similarly, miRNAs influence important CC-related molecular pathways, such as the PI3K/AKT/mTOR signaling pathway, Wnt/β-catenin system, JAK/STAT signaling pathway, and MAPK signaling pathway. Moreover, miRNAs affect the response of CC patients to chemotherapy and radiotherapy. Consequently, this review aims to provide an acquainted summary of onco miRNAs and tumor suppressor (TS) miRNAs and their potential role in CC pathogenesis and therapy responses by focusing on the molecular pathways that drive them.
Collapse
Affiliation(s)
| | - Sreepoorna Pramodh
- Department of Biomedical Sciences, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Centre for Research Impact and Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Wang J, Zhao F, Wu W, Lyu L, Li W, Zhang C. Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity. Int J Mol Sci 2023; 24:15228. [PMID: 37894909 PMCID: PMC10607623 DOI: 10.3390/ijms242015228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Ellagic acid (EA) is present at relatively high concentrations in many berries and has many beneficial health effects, including anticancer properties. To improve the development and utilization of blackberry fruit nutrients, we divided Hull blackberry fruits into five growth periods according to color and determined the EA content in the fruits in each period. The EA content in the green fruit stage was the highest at 5.67 mg/g FW. Single-factor tests and response surface methodology were used to optimize the extraction process, while macroporous resin adsorption and alkali dissolution, acid precipitation, and solvent recrystallization were used for purification. The highest purity of the final EA powder was 90%. The anticancer assessment results determined by MTT assay showed that EA inhibited HeLa cells with an IC50 of 35 μg/mL, and the apoptosis rate of the cells increased in a dose-dependent manner, with the highest rate of about 67%. We evaluated the changes in the mRNA levels of genes related to the EA-mediated inhibition of cancer cell growth and initially verified the PI3K/PTEN/AKT/mTOR pathway as the pathway by which EA inhibits HeLa cell growth. We hope to provide a theoretical basis for the deep exploration and utilization of this functional food.
Collapse
Affiliation(s)
- Jialuan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Qian Hu Hou Cun No. 1, Nanjing 210014, China; (J.W.); (F.Z.); (W.W.); (L.L.)
| | - Fengyi Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Qian Hu Hou Cun No. 1, Nanjing 210014, China; (J.W.); (F.Z.); (W.W.); (L.L.)
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Qian Hu Hou Cun No. 1, Nanjing 210014, China; (J.W.); (F.Z.); (W.W.); (L.L.)
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Qian Hu Hou Cun No. 1, Nanjing 210014, China; (J.W.); (F.Z.); (W.W.); (L.L.)
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Chunhong Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Qian Hu Hou Cun No. 1, Nanjing 210014, China; (J.W.); (F.Z.); (W.W.); (L.L.)
| |
Collapse
|
4
|
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Motahare Sadat Ayat Mirdamadi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Nasrin Khaniabad
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pouria Daneii
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Zoheir Mohammadian Farsani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
5
|
Wang L, Ye G, Wang Y, Wang C. Stearoyl-CoA desaturase 1 regulates malignant progression of cervical cancer cells. Bioengineered 2022; 13:12941-12954. [PMID: 35609330 PMCID: PMC9275951 DOI: 10.1080/21655979.2022.2079253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The primary regulatory gene for fatty acid synthesis, stearoyl-CoA desaturase 1 (SCD1), has been linked to the progression of several malignancies. Its role in cervical cancer remains unclear till now. This paper aimed to explore the role and mechanism of SCD1 in cervical cancer. The GEPIA database was used to perform a bioinformatics analysis of the role of SCD1 in cervical cancer staging and prognosis. The influences of SCD1 knockdown on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) progress were then investigated. Following transcription factor Kruppel like factor 9 (KLF9) was discovered to be negatively correlated with SCD1, the regulatory role of KLF9 in the effects of SCD1 on cervical cancer cells and the signaling pathway was evaluated. According to the GEPIA database, SCD1 level was associated with the cervical cancer stage, the overall survival level, and the disease-free survival level. Cell proliferation, migration, invasion, and EMT progress were all hindered when its expression was knocked down. Novelty, KLF9 reversed the effects of SCD1 on cells, as well as the Akt/glycogen synthase kinase 3β (GSK3β) signaling pathway. Together, SCD1 was negatively regulated by KLF9 and it activated the Akt/GSK3β signaling pathway to promote the malignant progression of cervical cancer cells. Developing SCD1 inhibitors offers novel ideas for the biological treatment of cervical cancer.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Obstetrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Guoliu Ye
- Department of Obstetrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Wang
- Department of Obstetrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Caizhi Wang
- Department of Obstetrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
6
|
Hunt VM, Chen W. A microRNA-gated thgRNA platform for multiplexed activation of gene expression in mammalian cells. Chem Commun (Camb) 2022; 58:6215-6218. [PMID: 35507371 DOI: 10.1039/d2cc01478e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
To effectively reprogram cellular regulatory networks towards desired phenotypes, it is critical to have the ability to provide precise gene regulation in a spatiotemporal manner. We have previously engineered toehold-gated guide RNA (thgRNA) to enable conditional activation of dCas9-mediated transcriptional upregulation in mammalian cells using synthetic RNA triggers. Here, we demonstrate that microRNA (miR)-gated thgRNAs can be transcribed by type II RNA polymerase to allow multiplexed transcriptional activation using both mRNA and miR. Activation is achieved only by proper miR-mediated processing of the flanking 5' cap and 3' poly A tail and hairpin unblocking by mRNA via strand displacement. This new AND-gate design is exploited to elicit conditional protein degradation based on induced expression of a specific ubiquibody. This new strategy may find many new applications in an RNA-responsive manner.
Collapse
Affiliation(s)
- Victoria M Hunt
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
7
|
Mahabady MK, Mirzaei S, Saebfar H, Gholami MH, Zabolian A, Hushmandi K, Hashemi F, Tajik F, Hashemi M, Kumar AP, Aref AR, Zarrabi A, Khan H, Hamblin MR, Nuri Ertas Y, Samarghandian S. Noncoding RNAs and their therapeutics in paclitaxel chemotherapy: Mechanisms of initiation, progression, and drug sensitivity. J Cell Physiol 2022; 237:2309-2344. [PMID: 35437787 DOI: 10.1002/jcp.30751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
The identification of agents that can reverse drug resistance in cancer chemotherapy, and enhance the overall efficacy is of great interest. Paclitaxel (PTX) belongs to taxane family that exerts an antitumor effect by stabilizing microtubules and inhibiting cell cycle progression. However, PTX resistance often develops in tumors due to the overexpression of drug transporters and tumor-promoting pathways. Noncoding RNAs (ncRNAs) are modulators of many processes in cancer cells, such as apoptosis, migration, differentiation, and angiogenesis. In the present study, we summarize the effects of ncRNAs on PTX chemotherapy. MicroRNAs (miRNAs) can have opposite effects on PTX resistance (stimulation or inhibition) via influencing YES1, SK2, MRP1, and STAT3. Moreover, miRNAs modulate the growth and migration rates of tumor cells in regulating PTX efficacy. PIWI-interacting RNAs, small interfering RNAs, and short-hairpin RNAs are other members of ncRNAs regulating PTX sensitivity of cancer cells. Long noncoding RNAs (LncRNAs) are similar to miRNAs and can modulate PTX resistance/sensitivity by their influence on miRNAs and drug efflux transport. The cytotoxicity of PTX against tumor cells can also be affected by circular RNAs (circRNAs) and limitation is that oncogenic circRNAs have been emphasized and experiments should also focus on onco-suppressor circRNAs.
Collapse
Affiliation(s)
- Mahmood K Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad H Gholami
- Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Amirhossein Zabolian
- Resident of Orthopedics, Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alan P Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amir R Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
8
|
Ghafouri-Fard S, Hussen BM, Mohaqiq M, Shoorei H, Baniahmad A, Taheri M, Jamali E. Interplay Between Non-Coding RNAs and Programmed Cell Death Proteins. Front Oncol 2022; 12:808475. [PMID: 35402235 PMCID: PMC8983884 DOI: 10.3389/fonc.2022.808475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/25/2022] [Indexed: 12/25/2022] Open
Abstract
Programmed cell death (PDCD) family of proteins includes at least 12 members, function of seven of them being more investigated. These members are PDCD1, PDCD2, PDCD4, PDCD5, PDCD6, PDCD7 and PDCD10. Consistent with the important roles of these proteins in the regulation of apoptosis, dysregulation of PDCDs is associated with diverse disorders ranging from intervertebral disc degeneration, amyotrophic lateral sclerosis, immune thrombocytopenia, type 1 diabetes, congenital hypothyroidism, Alzheimer’s disease to different types of cancers. More recently, the interaction between non-coding RNAs and different members of PDCD family is being discovered. In the current study, we described the functional interactions between PDCDs and two classes of non-coding RNAs, namely microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). miR-21 and miR-183 are two miRNAs whose interactions with PDCDs have been assessed in different contexts. The lncRNAs interaction with PDCDs is mainly assessed in the context of neoplasia indicating the role of MALAT1, MEG3, SNHG14 and LINC00473 in this process.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti Universality of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Toronto, ON, Canada
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti Universality of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Elena Jamali,
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti Universality of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Elena Jamali,
| |
Collapse
|
9
|
Chen F, Li G, Wu C, Wang L, Ko CN, Ma DL, Leung CH. Interference Reduction Biosensing Strategy for Highly Sensitive microRNA Detection. Anal Chem 2022; 94:4513-4521. [PMID: 35234447 DOI: 10.1021/acs.analchem.2c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MicroRNAs are potential biomarkers for human cancers and other diseases due to their roles as post-transcriptional regulators for gene expression. However, the detection of miRNAs by conventional methods such as RT-qPCR, in situ hybridization, northern blot-based platforms, and next-generation sequencing is complicated by short length, low abundance, high sequence homology, and susceptibility to degradation of miRNAs. In this study, we developed a nicking endonuclease-mediated interference reduction rolling circle amplification (NEM-IR-RCA) strategy for the ultrasensitive and highly specific detection of miRNA-21. This method exploits the advantages of the optical properties of long-lived iridium(III) probes, in conjunction with time-resolved emission spectroscopy (TRES) and exponential rolling circle amplification (E-RCA). Under the NEM-IR-RCA-based signal enhancement processes, the limit of detection of miRNA-21 was down to 0.0095 fM with a linear range from 0.05 to 100 fM, which is comparable with the conventional RT-qPCR. Unlike RT-qPCR, the strategy was performed at a lower and constant temperature without heating/cooling cycles and reverse transcription. The strategy could clearly discriminate between matched and mismatched targets, demonstrating high specificity. Moreover, the potential application of this method was demonstrated in cancer cells and mouse serum samples, showing good agreement with RT-qPCR results. Apart from miRNA-21 detection, this platform could be also adapted for detecting other miRNAs, such as let-7a and miRNA-22, indicating its excellent potential for biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| |
Collapse
|
10
|
Guo X, Cheng X. miR-140-Modified Bone Marrow Mesenchymal Stem Cells Enhance Chemotherapy Sensitization in Cervical Squamous Cell Carcinoma Cells via Targeting Microtubule Depolymerization Protein 1 (STMN1). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effect of bone marrow mesenchymal stem cells (BMSCs) on the sensitivity of chemotherapy drugs and microRNAs (miRNAs) is still unclear. This study explored the role of miR-140 modified BMSCs in enhancing paclitaxel sensitivity of cervical squamous cell carcinoma (CSCC). Hela cells, BMSCs
cells, and miR-140 modified BMSCs were transfected with miR-140 mimic, miR-140 inhibitor, and miR-140 NC, respectively. After transfection, they were co-cultured with Hela cells and paclitaxel to set up miR-140 mimic group, miR-140 inhibitor group, and miR-140 NC group (without paclitaxel
treatment) followed by analysis of cell proliferation, apoptosis, ROS generation, expression of miR-140, STMN1, STAT3, p-STAT3, and survivin mRNA and protein. miR-140 inhibitor group showed lowest cell proliferation number and expressions of miR-140, STMN1, STAT3, p-STAT3, and survivin mRNA
and protein with highest number of apoptotic cells, which were all reversed in miR-140 mimic group. There was a positive correlation between STMN1 level and miR-140 expression (r = 0.449, P = 0.108). BMSCs modified with miR-140 inhibitor can target STMN1, enhance the sensitivity
of chemotherapy drugs, and exert an inhibitory effect on CSCC cell proliferation, suggesting that STMN1 might be a therapy target for treating CSCC.
Collapse
Affiliation(s)
- Xiaoli Guo
- Obstetrics and Gynecology Hospital Affiliated to Zhejiang University, Hangzhou City, Zhejiang Province, 310006, China
| | - Xiaodong Cheng
- Obstetrics and Gynecology Hospital Affiliated to Zhejiang University, Hangzhou City, Zhejiang Province, 310006, China
| |
Collapse
|
11
|
Yuan DD, Jia CD, Yan MY, Wang J. Circular RNA hsa_circ_0000730 restrains cell proliferation, migration, and invasion in cervical cancer through miR-942-5p/PTEN axis. Kaohsiung J Med Sci 2021; 37:964-972. [PMID: 34562344 DOI: 10.1002/kjm2.12443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) play prominent roles in regulating the progression of cancers. This study is aimed to decipher the role of hsa_circ_0000730 in cervical cancer (CC).The differentially expressed circRNAs of CC were screened out from the Gene Expression Omnibus database. qRT-PCR was used to detect circ_0000730 expression in CC tissues and cell lines, and the Kaplan-Meier curve was adopted to figure out the relationship between circ_000730 expression and the overall survival time of CC patients. BrdU assay and Tanswell assay were utilized to examine the proliferation, migration, and invasion of CC cells. Western blot was adopted to detect PTEN protein expression. Bioinformatics analysis and dual-luciferase reporter assay were used to examine the target relationship between miR-942-5p and circ_0000730 or PTEN, respectively.Circ_0000730 was among the differentially expressed circRNAs in CC. Circ_0000730 was significantly down-regulated in the cancer tissues of 50 CC patients and CC cell lines. Additionally, underexpression of circ_0000730 was associated with the shorter survival time of CC patients. Gain- and loss-of-function assays highlighted that circ_0000730 significantly inhibited the proliferation, migration, and invasion of CC cells. Mechanistically, miR-942-5p was identified as a downstream target of circ_0000730, and circ_0000730 could positively regulate PTEN expression via repressing miR-942-5p in CC cells.Circ_0000730 inhibits the proliferation, migration, and invasion of CC cells via regulating miR-942-5p/PTEN axis. Circ_0000730 probably acts as a tumor suppressor in CC, and it may be a candidate target for the treatment of CC.
Collapse
Affiliation(s)
- Dan-Dan Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, PR China
| | - Cun-De Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, PR China
| | - Ming-Yu Yan
- Department of Respiratory, The Third Affiliated Hospital of Inner Mongolia Medical College, Baotou, PR China
| | - Jian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, PR China
| |
Collapse
|
12
|
Yang J, Yan Z, Wang Y, Xu J, Li R, Li C, Liu S, Shi L, Yao Y. Association study of relationships of polymorphisms in the miR-21, miR-26b, miR-221/222 and miR-126 genes with cervical intraepithelial neoplasia and cervical cancer. BMC Cancer 2021; 21:997. [PMID: 34488676 PMCID: PMC8422721 DOI: 10.1186/s12885-021-08743-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/28/2021] [Indexed: 01/15/2023] Open
Abstract
Background miR-21, miR-26b, miR-221/222 and miR-126 play crucial roles in cervical cancer development. Studies have shown that polymorphisms in miRNA genes can affect miRNA expression, which might be associated with cancer development. Methods Ten single-nucleotide polymorphisms (SNPs) in the miR-21, miR-26b, miR-221/222 and miR-126 genes (rs1292037, rs13137 in miR-21; rs2227255, rs2227258 in miR-26b; rs2858061, rs34678647, rs2858060, rs2745709 in miR-221/222; rs2297537, rs2297538 in miR-126) were selected, and genotyped in a total of 2176 individuals, including 435 patients with cervical intraepithelial neoplasia (CIN), 743 patients with cervical cancer (CC) and 998 healthy persons using TaqMan assays, and their associations with CIN and CC were evaluated. Results Our results showed significant differences for the rs2297538 genotypes between the CIN and CC groups (P = 0.001). In addition, our results also showed significant differences for the rs2297537 alleles between the CIN and CC groups (P = 0.003), and the C allele of rs2297537 might be associated with a decreased risk of CC (OR = 0.72, 95%CI: 0.58–0.90). At the inheritance analysis, between the CIN and control groups, the T/T-T/C genotype in rs1292037 and A/A-A/T genotype in rs13137 might be associated with an increased risk of CIN in the recessive model (OR = 1.61, 95% CI: 1.17–2.20 and OR = 1.58, 95% CI: 1.15–2.15). In addition, the C/C-T/T genotype of rs2745709 might be associated with a decreased risk of CIN in the overdominant model (OR = 0.66, 95% CI: 0.52–0.82). Between, CIN and CC group, the T/T-C/C genotype in rs1292037 and A/A-T/T genotype in rs13137 might be associated with an increased risk of CC in the overdominant model (OR = 1.43, 95% CI: 1.12–1.81 and OR = 1.42, 95% CI: 1.12–1.80). The rs2297538 G/G-A/G genotype might be associated with an increased risk of CC in the recessive model (OR = 2.83, 95% CI: 1.52–5.25). The rs2297537 2C/C + C/G genotype might be associated with a decreased risk of CC (OR = 0.71, 95% CI: 0.57–0.89) in the log-additive model. The rs2745709 T/T-C/C genotype might be associated with an increased risk of CC (OR = 1.44, 95% CI: 1.13–1.83) in the overdominant model. Conclusion Our results indicate that rs2297538 and rs2297537 in miR-126, rs1292037 and rs13137 in miR-21, and rs2745709 in miR-221/222, may have important roles in the development of CIN or CC.
Collapse
Affiliation(s)
- Jia Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Yingying Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Jinmei Xu
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Rui Li
- Department of Obstetrics and Gynaecologic, Kunming Yan'an Hospital, Kunming, 650051, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, China.
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, China. .,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, Yunnan, China.
| |
Collapse
|
13
|
Mitra T, Elangovan S. Cervical cancer development, chemoresistance, and therapy: a snapshot of involvement of microRNA. Mol Cell Biochem 2021; 476:4363-4385. [PMID: 34453645 DOI: 10.1007/s11010-021-04249-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is one of the leading causes of death in women due to cancer and a major concern in the developing world. Persistent human papilloma virus (HPV) infection is the major causative agent for CC. Besides HPV infection, genetic and epigenetic factors including microRNA (miRNA) also contribute to the malignant transformation. Earlier studies have revealed that miRNAs participate in cell proliferation, invasion and metastasis, angiogenesis, and chemoresistance processes by binding and inversely regulating the target oncogenes or tumor suppressor genes. Based on functions and mechanistic insights, miRNAs have been identified as cellular modulators that have an enormous role in diagnosis, prognosis, and cancer therapy. Signatures of miRNA could be used as diagnostic markers which are necessary for early diagnosis and management of CC. The therapeutic potential of miRNAs has been shown in CC; however, more comprehensive clinical trials are required for the clinical translation of miRNA-based diagnostics and therapeutics. Understanding the molecular mechanism of miRNAs and their target genes has been useful to develop miRNA-based therapeutic strategies for CC and overcome chemoresistance. In this review, we summarize the role of miRNAs in the development, progression, and metastasis of CC as well as chemoresistance. Further, we discuss the diagnostic and therapeutic potential of miRNAs to overcome chemoresistance and treatment of CC.
Collapse
Affiliation(s)
- Tandrima Mitra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
14
|
He M, Wang Y, Zhang G, Cao K, Yang M, Liu H. The prognostic significance of tumor-infiltrating lymphocytes in cervical cancer. J Gynecol Oncol 2021; 32:e32. [PMID: 33825354 PMCID: PMC8039170 DOI: 10.3802/jgo.2021.32.e32] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/17/2020] [Accepted: 01/02/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To predict the prognosis of cervical cancer, we constructed a novel model with 5 specific cell types and identified a potential biomarker. Methods We employed CIBERSORT and xCell method to evaluate the abundances of 23 cells types in tumor microenvironment. Five specific cell types were filtrated to determine different immunotypes by applying least absolute shrinkage and selection operator (LASSO) Cox regression method. The expression of immune checkpoints (ICPs) and effectors were validated by immunohistochemistry. Correlation analysis was performed to examine the relevance between PIK3CA mutational status and ICPs. Results Unsupervised clustering of patients on the basis of tumor infiltrating lymphocytes and fibroblasts identified patients with shorter overall survival (OS) (hazard ratio [HR]=3.0729; 95% confidence interval [CI]=1.5103–6.2522; p=0.0118). An immunoscore (IS) signature consisting of 5 immune cell types infiltrating in tumor core (CD8T, activated NK cells, neutrophils, activated mast cells, macrophages) was constructed using LASSO Cox regression analysis. Receiver operating characteristic curves confirmed that the area under the curve of IS was significantly higher to that of International Federation of Gynecology and Obstetrics staging alone (0.637 vs. 0.55). Survival analysis revealed patients in high IS group exhibited a poorer OS (HR=3.0113; 95% CI=1.8746–4.8373; p<0.0001). The multivariate analysis indicated the IS was an independent prognostic factor. In addition, the lower IS related to higher expression of ICPs and neoantigen load. Conclusions The identification of IS in cervical cancer tissues could facilitate patient risk stratification and selection of immunotherapeutic responses, but more prospective studies are needed to assess its reliability.
Collapse
Affiliation(s)
- Mengdi He
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiying Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Guodong Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Kankan Cao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Moran Yang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haiou Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Li Y, Li C, Liu S, Yang J, Shi L, Yao Y. The associations and roles of microRNA single-nucleotide polymorphisms in cervical cancer. Int J Med Sci 2021; 18:2347-2354. [PMID: 33967611 PMCID: PMC8100648 DOI: 10.7150/ijms.57990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/26/2021] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is one of the fourth most common gynecological malignancies and has been identified as the fourth leading cause of cancer death in women worldwide. MicroRNAs (miRNAs) are single-stranded sequences of noncoding RNAs that are approximately 22-24 nucleotides in length. They modulate posttranscriptional mRNA expression and play critical roles in cervical cancer. Single nucleotide polymorphisms (SNPs) in miRNA genes may alter miRNA expression and maturation and have been associated with various cancers. This review mainly focuses on the roles of SNPs in miRNA genes in the development of cervical cancer and summarizes the research progress of miRNA SNPs in cervical cancer and their molecular regulation mechanisms.
Collapse
Affiliation(s)
- Yaheng Li
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Chuanyin Li
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Jia Yang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Yufeng Yao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| |
Collapse
|
16
|
Ghafouri-Fard S, Shoorei H, Abak A, Abbas Raza SH, Pichler M, Taheri M. Role of non-coding RNAs in modulating the response of cancer cells to paclitaxel treatment. Biomed Pharmacother 2020; 134:111172. [PMID: 33360156 DOI: 10.1016/j.biopha.2020.111172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel is a chemotherapeutic substance that is administered for treatment of an extensive spectrum of human malignancies. In spite of its potent short-term effects against tumor cells, resistance to paclitaxel occurs in a number of patients precluding its long-term application in these patients. Non-coding RNAs have been shown to influence response of cancer cells to this chemotherapeutic agent via different mechanisms. Mechanistically, these transcripts regulate expression of several genes particularly those being involved in the apoptotic processes. Lots of in vivo and in vitro assays have demonstrated the efficacy of oligonucleotide-mediated microRNAs (miRNA)/ long non-coding RNAs (lncRNA) silencing in enhancement of response of cancer cells to paclitaxel. Therefore, targeted therapies against non-coding RNAs have been suggested as applicable modalities for combatting resistance to this agent. In the present review, we provide a summary of studies which assessed the role of miRNAs and lncRNAs in conferring resistance to paclitaxel.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Magura J, Moodley R, Mackraj I. The effect of hesperidin and luteolin isolated from Eriocephalus africanus on apoptosis, cell cycle and miRNA expression in MCF-7. J Biomol Struct Dyn 2020; 40:1791-1800. [DOI: 10.1080/07391102.2020.1833757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Judie Magura
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban, South Africa
| | - Roshila Moodley
- School of Chemistry and Physics, University of KwaZulu–Natal, Durban, South Africa
| | - Irene Mackraj
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban, South Africa
| |
Collapse
|
18
|
Galvão MLTDC, Coimbra EC. Long noncoding RNAs (lncRNAs) in cervical carcinogenesis: New molecular targets, current prospects. Crit Rev Oncol Hematol 2020; 156:103111. [PMID: 33080526 DOI: 10.1016/j.critrevonc.2020.103111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Aberrant expression of lncRNAs has been seen as a key factor in a wide range of diseases including cancer. The role of lncRNAs in cervical cancer has not been clearly explained, and has been the subject of recent studies. In this review, we have compiled an updated list of previously reported lncRNAs and established a general profile of these transcripts in accordance with the role they play in cervical carcinogenesis. Thus, information here includes the influence of lncRNAs on cervical tumorigenic process through a disturbance of cellular activities. Additionally, we described recent discoveries about how HPV contributes to lncRNAs expression in cervical cancer and we summarized exploratory studies of strategies adopted to modulate the expression levels of lncRNAs to treat cervical neoplasia, by drawing attention to radio and chemo-resistance. Finally, this paper provides a broad overview that sets out new research directions about the role of lncRNAs in cervical cancer.
Collapse
Affiliation(s)
- Maria Luiza Tabosa de Carvalho Galvão
- Faculty of Medical Sciences, University of Pernambuco, Brazil; Laboratory of Molecular Biology of Viruses, Biological Sciences Institute, University of Pernambuco, Brazil
| | - Eliane Campos Coimbra
- Laboratory of Molecular Biology of Viruses, Biological Sciences Institute, University of Pernambuco, Brazil.
| |
Collapse
|
19
|
El-Daly SM, Gouhar SA, Gamal-Eldeen AM, Abdel Hamid FF, Ashour MN, Hassan NS. Synergistic Effect of α-Solanine and Cisplatin Induces Apoptosis and Enhances Cell Cycle Arrest in Human Hepatocellular Carcinoma Cells. Anticancer Agents Med Chem 2020; 19:2197-2210. [PMID: 31566136 DOI: 10.2174/1871520619666190930123520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023]
Abstract
AIM The clinical application of cisplatin is limited by severe side effects associated with high applied doses. The synergistic effect of a combination treatment of a low dose of cisplatin with the natural alkaloid α-solanine on human hepatocellular carcinoma cells was evaluated. METHODS HepG2 cells were exposed to low doses of α-solanine and cisplatin, either independently or in combination. The efficiency of this treatment modality was evaluated by investigating cell growth inhibition, cell cycle arrest, and apoptosis enhancement. RESULTS α-solanine synergistically potentiated the effect of cisplatin on cell growth inhibition and significantly induced apoptosis. This synergistic effect was mediated by inducing cell cycle arrest at the G2/M phase, enhancing DNA fragmentation and increasing apoptosis through the activation of caspase 3/7 and/or elevating the expression of the death receptors DR4 and DR5. The induced apoptosis from this combination treatment was also mediated by reducing the expression of the anti-apoptotic mediators Bcl-2 and survivin, as well as by modulating the miR-21 expression. CONCLUSION Our study provides strong evidence that a combination treatment of low doses of α-solanine and cisplatin exerts a synergistic anticancer effect and provides an effective treatment strategy against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Dokki, 12622, Cairo, Egypt.,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Shaimaa A Gouhar
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Amira M Gamal-Eldeen
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki 12622, Cairo, Egypt.,Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt.,Clinical Laboratory Department, College of Applied Medical Sciences, Taif University, At Taif 26521, Saudi Arabia
| | - Fatma F Abdel Hamid
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Magdi N Ashour
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Nahla S Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
20
|
Chen J, Chen J, Cheng Y, Fu Y, Zhao H, Tang M, Zhao H, Lin N, Shi X, Lei Y, Wang S, Huang L, Wu W, Tan J. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res Ther 2020; 11:97. [PMID: 32127037 PMCID: PMC7055095 DOI: 10.1186/s13287-020-01610-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxia is a major cause of beta cell death and dysfunction after transplantation. The aim of this study was to investigate the effect of exosomes derived from mesenchymal stem cells (MSCs) on beta cells under hypoxic conditions and the potential underlying mechanisms. Methods Exosomes were isolated from the conditioned medium of human umbilical cord MSCs and identified by WB, NTA, and transmission electron microscopy. Beta cells (βTC-6) were cultured in serum-free medium in the presence or absence of exosomes under 2% oxygen conditions. Cell viability and apoptosis were analysed with a CCK-8 assay and a flow cytometry-based annexin V-FITC/PI apoptosis detection kit, respectively. Endoplasmic reticulum stress (ER stress) proteins and apoptosis-related proteins were detected by the WB method. MiRNAs contained in MSC exosomes were determined by Illumina HiSeq, and treatment with specific miRNA mimics or inhibitors of the most abundant miRNAs was used to reveal the underlying mechanism of exosomes. Results Exosomes derived from MSC-conditioned culture medium were 40–100 nm in diameter and expressed the exosome markers CD9, CD63, CD81, HSP70, and Flotillin 1, as well as the MSC markers CD73, CD90, and CD105. Hypoxia significantly induced beta cell apoptosis, while MSC exosomes remarkably improved beta cell survival. The WB results showed that ER stress-related proteins, including GRP78, GRP94, p-eIF2α and CHOP, and the apoptosis-related proteins cleaved caspase 3 and PARP, were upregulated under hypoxic conditions but were inhibited by MSC exosomes. Moreover, the p38 MAPK signalling pathway was activated by hypoxia and was inhibited by MSC exosomes. The Illumina HiSeq results show that MSC exosomes were rich in miR-21, let-7 g, miR-1246, miR-381, and miR-100. After transfection with miRNA mimics, the viability of beta cells under hypoxia was increased significantly by miR-21 mimic, and the p38 MAPK and ER stress-related proteins in beta cells were downregulated. These changes were reversed after exosomes were pretreated with miR-21 inhibitor. Conclusions Exosomes derived from MSCs could protect beta cells against apoptosis induced by hypoxia, largely by carrying miR-21, alleviating ER stress and inhibiting p38 MAPK signalling. This result indicated that MSC exosomes might improve encapsulated islet survival and benefit diabetes patients.
Collapse
Affiliation(s)
- Jin Chen
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China. .,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China.
| | - Junqiu Chen
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China.,Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Yuanhang Cheng
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Yunfeng Fu
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Hongzhou Zhao
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Minying Tang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Hu Zhao
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Na Lin
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Xiaohua Shi
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Yan Lei
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Shuiliang Wang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China. .,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China.
| | - Lianghu Huang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Weizhen Wu
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China. .,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China.
| | - Jianming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China.,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China
| |
Collapse
|
21
|
Sammarco ML, Tamburro M, Pulliero A, Izzotti A, Ripabelli G. Human Papillomavirus Infections, Cervical Cancer and MicroRNAs: An Overview and Implications for Public Health. Microrna 2020; 9:174-186. [PMID: 31738147 PMCID: PMC7366004 DOI: 10.2174/2211536608666191026115045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/21/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Human Papillomavirus (HPV) is among the most common sexually transmitted infections in both females and males across the world that generally do not cause symptoms and are characterized by high rates of clearance. Persistent infections due at least to twelve well-recognized High-Risk (HR) or oncogenic genotypes, although less frequent, can occur, leading to diseases and malignancies, principally cervical cancer. Three vaccination strategies are currently available for preventing certain HR HPVs-associated diseases, infections due to HPV6 and HPV11 low-risk types, as well as for providing cross-protection against non-vaccine genotypes. Nevertheless, the limited vaccine coverage hampers reducing the burden of HPV-related diseases globally. For HR HPV types, especially HPV16 and HPV18, the E6 and E7 oncoproteins are needed for cancer development. As for other tumors, even in cervical cancer, non-coding microRNAs (miRNAs) are involved in posttranscriptional regulation, resulting in aberrant expression profiles. In this study, we provide a summary of the epidemiological background for HPV occurrence and available immunization programs. In addition, we present an overview of the most relevant evidence of miRNAs deregulation in cervical cancer, underlining that targeting these biomolecules could lead to wide translational perspectives, allowing better diagnosis, prognosis and therapeutics, and with valuable applications in the field of prevention. The literature on this topic is rapidly growing, but advanced investigations are required to achieve more consistent findings on the up-regulated and down-regulated miRNAs in cervical carcinogenesis. Because the expression of miRNAs is heterogeneously reported, it may be valuable to assess factors and risks related to individual susceptibility.
Collapse
Affiliation(s)
| | | | | | | | - Giancarlo Ripabelli
- Address correspondence to this author at the Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy; Tel: +39 0874 404961/743; Fax: +39 0874 404778; E-mail:
| |
Collapse
|
22
|
In Silico and In Cell Analysis of Openable DNA Nanocages for miRNA Silencing. Int J Mol Sci 2019; 21:ijms21010061. [PMID: 31861821 PMCID: PMC6981788 DOI: 10.3390/ijms21010061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
A computational and experimental integrated approach was applied in order to study the effect of engineering four DNA hairpins into an octahedral truncated DNA nanocage, to obtain a nanostructure able to recognize and bind specific oligonucleotide sequences. Modeling and classical molecular dynamics simulations show that the new H4-DNA nanocage maintains a stable conformation with the closed hairpins and, when bound to complementary oligonucleotides produces an opened conformation that is even more stable due to the larger hydrogen bond number between the hairpins and the oligonucleotides. The internal volume of the open conformation is much larger than the closed one, switching from 370 to 650 nm3, and the predicted larger conformational change is experimentally detectable by gel electrophoresis. H4-DNA nanocages display high stability in serum, can efficiently enter the cells where they are stable and maintain the ability to bind, and sequester an intracellular-specific oligonucleotide. Moreover, H4-DNA nanocages, modified in order to recognize the oncogenic miR21, are able to seize miRNA molecules inside cells in a selective manner.
Collapse
|
23
|
Ritter A, Hirschfeld M, Berner K, Rücker G, Jäger M, Weiss D, Medl M, Nöthling C, Gassner S, Asberger J, Erbes T. Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int J Oncol 2019; 56:47-68. [PMID: 31789396 PMCID: PMC6910196 DOI: 10.3892/ijo.2019.4920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Due to the positive association between neoadjuvant chemotherapy (NACT) and the promising early response rates of patients with triple negative breast cancer (TNBC), including probabilities of pathological complete response, NACT is increasingly used in TNBC management. Liquid biopsy-based biomarkers with the power to diagnose the early response to NACT may support established monitoring tools, which are to a certain extent imprecise and costly. Simple serum- or urine-based analyses of non-coding RNA (ncRNA) expression may allow for fast, minimally-invasive testing and timely adjustment of the therapy regimen. The present study investigated breast cancer-related ncRNAs [microRNA (miR)-7, -9, -15a, -17, -18a, -19b, -21, -30b, -222 and -320c, PIWI-interacting RNA-36743 and GlyCCC2] in triple positive BT-474 cells and three TNBC cell lines (BT-20, HS-578T and MDA-MB-231) treated with various chemotherapeutic agents using reverse transcription-quantitative PCR. Intracellular and secreted microvesicular ncRNA expression levels were analysed using a multivariable statistical regression analysis. Chemotherapy-driven effects were investigated by analysing cell cycle determinants at the mRNA and protein levels. Serum and urine specimens from 8 patients with TNBC were compared with 10 healthy females using two-sample t-tests. Samples from the patients with TNBC were compared at two time points. Chemotherapeutic treatments induced distinct changes in ncRNA expression in TNBC cell lines and the BT-474 cell line in intra- and extracellular compartments. Serum and urine-based ncRNA expression analysis was able to discriminate between patients with TNBC and controls. Time point comparisons in the urine samples of patients with TNBC revealed a general rise in the level of ncRNA. Serum data suggested a potential association between piR-36743, miR-17, -19b and -30b expression levels and an NACT-driven complete clinical response. The present study highlighted the potential of ncRNAs as liquid biopsy-based biomarkers in TNBC chemotherapy treatment. The ncRNAs tested in the present study have been previously investigated for their involvement in BC or TNBC chemotherapy responses; however, these previous studies were restricted to patient tissue or in vitro models. The data from the present study offer novel insight into ncRNA expression in liquid samples from patients with TNBC, and the study serves as an initial step in the evaluation of ncRNAs as diagnostic biomarkers in the monitoring of TNBC therapy.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79104 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Markus Medl
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Sandra Gassner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| |
Collapse
|
24
|
Ankenbruck N, Kumbhare R, Naro Y, Thomas M, Gardner L, Emanuelson C, Deiters A. Small molecule inhibition of microRNA-21 expression reduces cell viability and microtumor formation. Bioorg Med Chem 2019; 27:3735-3743. [DOI: 10.1016/j.bmc.2019.05.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
|
25
|
Zhang S, He K, Zhou W, Cao J, Jin Z. miR‑494‑3p regulates lipopolysaccharide‑induced inflammatory responses in RAW264.7 cells by targeting PTEN. Mol Med Rep 2019; 19:4288-4296. [PMID: 30942409 PMCID: PMC6471187 DOI: 10.3892/mmr.2019.10083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/28/2019] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) serve important roles in regulating inflammatory responses at the post-transcriptional level. In the present study, the limma package was used to analyze the GSE43300 array dataset downloaded from the Gene Expression Omnibus database. It was identified that several miRNAs, including miR-494-3p, were upregulated in lipopolysaccharide (LPS)-treated RAW264.7 macrophages compared to control cells. Transfection experiments indicated that overexpressing miR-494-3p inhibited production of LPS-induced proinflammatory cytokines, including interleukin-1β and tumor necrosis factor-α. Conversely, knockdown of miR-494-3p enhanced cytokine expression. Bioinformatics prediction and luciferase assay both revealed that miR-494-3p could directly target phosphatase and tensin homolog (PTEN) and upregulate protein kinase B activity. In addition, miR-494-3p mimics suppressed p65 translocation to the nucleus. Similar effects were observed following PTEN silencing. In conclusion, the results of the present study revealed that miR-494-3p may act as an important immune regulator in LPS-stimulated macrophages, and be an effective therapeutic target for treating infections in the future.
Collapse
Affiliation(s)
- Si Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Kang He
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Weiwei Zhou
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Cao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
26
|
Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M, Bokharaei-Salim F, Karampoor S, Jafari A, Asemi Z, Tbibzadeh A, Namdar A, Mirzaei H. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019; 234:17064-17099. [PMID: 30891784 DOI: 10.1002/jcp.28457] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Cervical cancer is as a kind of cancer beginning from the cervix. Given that cervical cancer could be observed in women who infected with papillomavirus, regular oral contraceptives, and multiple pregnancies. Early detection of cervical cancer is one of the most important aspects of the therapy of this malignancy. Despite several efforts, finding and developing new biomarkers for cervical cancer diagnosis are required. Among various prognostic, diagnostic, and therapeutic biomarkers, miRNA have been emerged as powerful biomarkers for detection, treatment, and monitoring of response to therapy in cervical cancer. Here, we summarized various miRNAs as an employable platform for prognostic, diagnostic, and therapeutic biomarkers in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Brujen, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
27
|
ZIC1 acts a tumor suppressor in breast cancer by targeting survivin. Int J Oncol 2018; 53:937-948. [PMID: 29956756 PMCID: PMC6065452 DOI: 10.3892/ijo.2018.4450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/01/2018] [Indexed: 12/31/2022] Open
Abstract
In this study, we aimed to identify the tumor suppressive roles of zinc finger of the cerebellum 1 (ZIC1) in patients with malignant breast neoplasms and to examine the association between ZIC1 and survivin expression. For this purpose, 140 invasive breast cancer specimens, 1,075 RNA breast cancer samples from The Cancer Genome Atlas (TCGA), 6 human breast cancer cell lines and MCF-10A normal breast epithelial cells were selected in order to compare the expression level of ZIC1 with that of survivin via immunohistochemistry and western blot analysis. Subsequently, the MDA-MB-231 and SK-BR3 cells with a lower ZIC1 expression were transfected with rLV-Zic1-PGK-Puro lentivirus or rLV-ZsGreen-PGK-Puro lentivirus in order to observe any alterations in cell proliferation and apoptosis through MTT assay, colony formation assay, mitochondrial membrane potential assay and flow cytometric analysis, and to analyze the modulation of molecular mechanisms by western blot analysis. In addition, xenograft mouse models were constructed to explore the role of ZIC1 in the growth of implanted tumors. The results revealed that ZIC1 negatively correlated with survivin in tumors and cells, and a higher ZIC1 RNA expression indicated a better overall survival in the 1,075 TCGA RNA breast cancer samples. In vitro, the overexpression of ZIC1 inhibited cell proliferation, reduced mitochondrial membrane potential and promoted the apoptosis of the MDA-MB-231 and SK-BR3 breast cancer cells by inactivating the Akt/mTOR/P70S6K pathway, suppressing survivin expression, modulating the cell cycle, releasing cytochrome c (Cyto-c) into the cytosol and activating caspase proteins. In vivo, an elevated ZIC1 expression suppressed the growth of implanted tumors and downregulated survivin expression in tumors. On the whole, the findings of this study demonstrate that ZIC1 plays a tumor suppressive role in breast cancer, by targeting surviving, significantly downregulating its expression.
Collapse
|
28
|
Liu L, Lai X, Yuan C, Lv X, Yu T, He W, Liu J, Zhang H. Aberrant expression of miR-153 is associated with the poor prognosis of cervical cancer. Oncol Lett 2018; 15:9183-9187. [PMID: 29805649 PMCID: PMC5958641 DOI: 10.3892/ol.2018.8475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that microRNAs (miRNAs) are frequently dysregulated in tumors and are associated with the initiation and progression of various types of cancer. miR-153 has been previously shown to have an anti-tumor effect in the majority of cancer types. However, to date, the expression status and function of miR-153 in cervical cancer (CC) remains unclear. In the present study, the expression of miR-153 in CC tissues and cell lines was examined, revealing that the expression of miR-153 was markedly downregulated in the CC tissues and cell lines investigated, when compared with matched noncancerous tissues and normal cervical epithelial cell line. Furthermore, ectopic expression of miR-153 by miR-153 mimic inhibited cell proliferation; however, transfection with the miR-153 inhibitor promoted the cell proliferation in CC cell lines. Finally, the results showed that the downregulation of miR-153 was associated with poor 5-year over survival in CC patients and it could be regarded as an independent biomarker to predict the prognosis of CC patients. Collectively, these results indicated that miR-153 may function as a tumor suppressor in CC, and it may be a potential novel therapeutic target for CC.
Collapse
Affiliation(s)
- Li Liu
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| | - Xiaojing Lai
- Applied Biotechnology Research Center, Hubei Engineering Research Center of Viral Vector, Wuhan Institute of Bioengineering, Economic Development Zone of Yangluo, Wuhan, Hubei 430415, P.R. China
| | - Changjin Yuan
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| | - Xiuwei Lv
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| | - Tao Yu
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| | - Wenyu He
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| | - Jiaoping Liu
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| | - Haiming Zhang
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| |
Collapse
|
29
|
Li X, Guo L, Liu Y, Su Y, Xie Y, Du J, Wang S, Wang H, Liu Y. MicroRNA-21 promotes wound healing via the Smad7-Smad2/3-Elastin pathway. Exp Cell Res 2017; 362:245-251. [PMID: 29154818 DOI: 10.1016/j.yexcr.2017.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
Abstract
Wound healing is regulated by a complex network of cells, molecules, and cytokines, as well as microRNAs (miRNAs). miRNAs were confirmed to influence the wound healing process, and miR-21, an important member of the miRNA family, was also shown to regulate wound healing. The aim of the present study was to investigate the role of miR-21 in the wound healing process and the possible underlying cell signaling pathways. We isolated GMSCs from WT and miR-21-KO mouse gingiva. Flow cytometric analysis and immunocytofluorescense staining were used to identify the GMSCs acquired from WT and miR-21-KO mice. RT-PCR, western blot analysis and immunohistofluorescence staining were performed to examine the expression of extracellular matrix components and key proteins of cell signaling pathways. TargetScan and pmiR-RB-REPORT vectors were used to verify that Smad7 was a direct target of miR-21. Compared to WT mice, miR-21-KO mice showed slower wound healing. RT-PCR and western blot analysis indicated that Elastin expression was downregulated in miR-21-deficient samples. We confirmed that Smad7 was a direct target of miR-21. miR-21 knockout resulted in increased expression of Smad7 and impaired phosphorylation of the Smad2/3 complex. The expression of the Smad7-Smad2/3-Elastin axis in palate tissues sections acquired from WT and miR-21-KO mice showed the same trend. Based on all these results, we demonstrated that miR-21 promoted the wound healing process via the Smad7-Smad2/3-Elastin pathway.
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, PR China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, PR China
| | - Yongmei Xie
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Songling Wang
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, School of Stomatology, Capital Medical University, PR China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, PR China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China.
| |
Collapse
|
30
|
Zhong B, Guo S, Zhang W, Zhang C, Wang Y, Zhang C. Bioinformatics prediction of miR-30a targets and its inhibition of cell proliferation of osteosarcoma by up-regulating the expression of PTEN. BMC Med Genomics 2017; 10:64. [PMID: 29141684 PMCID: PMC5688649 DOI: 10.1186/s12920-017-0300-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MiRNAs are frequently abnormally expressed in the progression of human osteosarcoma. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is one of the tumor suppressors in various types of human cancer. In the present study, we detected how hsa-miR-30a-3p regulated PTEN and further tested the role of hsa-miR-30a-3p in the cell proliferation of osteosarcoma cells. METHODS The levels of miR-30a were determined by real time PCR. The expression of PTEN was tested by western blotting analysis. Cell distribution of PTEN was observed with confocal laser scanning microscope. Cell viability was determined by MTT assay. RESULTS The expression of miR-30a and PTEN was obviously decreased in MG-63, 143B and Saos-2 cells compared with primary osteoblasts. TargetScan analysis data showed miR-30a might bind with position 30-57 of 3'UTR of PTEN. Transfection with miR-30a-3p increased the level of PTEN in MG-63 cells, while transfection with miR-30a-3p inhibitor significantly decreased the expression of PTEN in osteosarcoma cells. Transfection with miR-30a-3p significantly inhibited cell proliferation of osteosarcoma cells, while miR-30a inhibitor obviously promoted cell viability of MG63 cells and Saos-2 cells. Inhibition of PTEN eliminated the proliferation inhibitory effect of miR-30a-3p. CONCLUSION Thus, all these findings revealed the anti-tumor effects of miR-30a in human osteosarcoma cells, which could be mediated by regulating the level of PTEN.
Collapse
Affiliation(s)
- Biao Zhong
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Shang Guo
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wei Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chi Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yukai Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|