1
|
Strawn M, Safranski TJ, Behura SK. Does DNA methylation in the fetal brain leave an epigenetic memory in the blood? Gene 2023; 887:147788. [PMID: 37696423 DOI: 10.1016/j.gene.2023.147788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Epigenetic memory is an emerging concept that refers to the process in which epigenetic changes occurring early-in life can lead to long-term programs of gene regulation in time and space. By leveraging neural network regression modeling of DNA methylation data in pigs, we show that specific methylations in the adult blood can reliably predict methylation changes that occurred in the fetal brain. Genes associated with these methylations represented known markers of specific cell types of blood including bone marrow hematopoietic progenitor cells, and ependymal and oligodendrocyte cells of brain. This suggested that methylation changes that occurred in the developing brain were maintained as an epigenetic memory in the blood through the adult life.
Collapse
Affiliation(s)
- Monica Strawn
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Timothy J Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States; MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, United States; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
2
|
Kim SY, Lee SM, Kim SM, Kim BJ, Koo JN, Oh IH, Oh S, Park CW, Jun JK, Lim JH, Ryu HM, Park JS. Novel method of real-time PCR-based screening for common fetal trisomies. BMC Med Genomics 2021; 14:195. [PMID: 34330281 PMCID: PMC8323267 DOI: 10.1186/s12920-021-01039-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The non-invasive prenatal test (NIPT) is based on next generation sequencing (NGS) and is used for screening for fetal trisomy. However, it is time-consuming and technically difficult. Recently, peptide nucleic acid (PNA) probe-based real-time polymerase chain reaction (RT-PCR) was developed. This study aimed to examine the performance of the RT-PCR-based NIPT for screening of common fetal trisomies METHODS: From stored maternal plasma, RT-PCR was performed using Patio™ NIPT Detection Kit. In melting curve analysis, the height of melting peaks of target chromosome and reference chromosome was calculated as a peak ratio. The adjusted peak ratio of 8 markers with correction factors in each target chromosome was summated and calculated to z-score. The cut-off value for each target chromosome was established for classification (low risk vs. high risk for trisomy) whose performance was obtained in the validation phase. RESULTS 330 plasma samples from pregnant women with normal fetus and 22 trisomy cell-line samples were used to establish the optimal cut-off values for z-score of each target chromosome. In the validation phase, 1023 samples from pregnant women including 22 cases with fetal trisomy and 1001 cases of normal control were used. The RT-PCR-based NIPT showed 95.45% sensitivity [95% confidence interval (CI) 77.16-99.88%], 98.60% specificity (95% CI 97.66-99.23%), and 98.53% accuracy (95% CI 97.59-99.18%) for the identification of trisomy 21, 18, or 13. Of 1023 samples, fifteen cases were mismatched for classification [one case as a false negative (false negative rate: 4.5%) and 14 cases as false positives (false positive rate: 1.4%)]. CONCLUSION The RT-PCR-based NIPT showed high sensitivity and specificity for the detection of common fetal trisomies and it could be a feasible alternative to NGS-based NIPT.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Sun Min Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Byoung Jae Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | | | | | - Sohee Oh
- Department of Biostatistics, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ji Hyae Lim
- Center for Prenatal Biomarker Research, CHA Advanced Research Institute, Gyeonggi-do, Korea
| | - Hyun Mee Ryu
- Center for Prenatal Biomarker Research, CHA Advanced Research Institute, Gyeonggi-do, Korea.
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea.
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
3
|
A Primer on DNA Methylation and Its Potential to Impact Maternal Depression Risk and Assessment During Pregnancy and the Postpartum. J Perinat Neonatal Nurs 2021; 35:4-7. [PMID: 33528179 DOI: 10.1097/jpn.0000000000000528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Depression onset during and after pregnancy is prevalent and associated with significant implications for maternal, child, and family health. Although environmental risk factors important to the expression of pregnancy-related depression are well known, knowledge of the genetic underpinning is limited. Given the joint contribution of environmental and genetic factors to depression risk liability, DNA methylation presents itself as an ideal biomarker to investigate basic mechanisms and opportunities for translational research to care for pregnancy-related depression health outcomes. This article is an introduction to DNA methylation and its potential to serve as a marker of depression risk during pregnancy and the postpartum. This commentary discusses current clinical uses of DNA methylation-based testing and how it may be applied to perinatal depression clinical care and management.
Collapse
|
4
|
Blais J, Giroux S, Caron A, Clément V, Rousseau F. Precision of Fetal DNA Fraction Estimation by Quantitative Polymerase Chain Reaction Quantification of a Differently Methylated Target in Noninvasive Prenatal Testing. Lab Med 2020; 51:279-287. [PMID: 31755528 DOI: 10.1093/labmed/lmz068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The performance of noninvasive prenatal testing (NIPT) assays is critically determined by the proportion of fetal DNA or fetal fraction (FF). Fetomaternal differential methylation of certain genomic regions has been proposed as a universal marker of fetal origin, and previous reports have suggested the use of methylation-sensitive restriction enzyme (MSRE) assays to estimate FF. METHODS We analyzed the performance of FF estimation using an MSRE assay with duplex quantitative polymerase chain reaction (qPCR). Mixtures of genomic DNA from placental cells and from adult women were digested with 2 MSRE and FF estimates obtained, for a total of 221 pairwise treatment/control comparisons. RESULTS The coefficient of variance (CV) of the MSRE assays was high, ranging from 24% to 60%. An alternative in silico FF estimation algorithm, SeqFF, displayed slightly lower variability, with a CV of 22%. CONCLUSION These results cast doubts on the usefulness of the MSRE-based assay of differentially methylated markers for FF estimation. The lack of a universal method capable of precisely estimating FF remains an incompletely solved issue.
Collapse
Affiliation(s)
- Jonatan Blais
- Medical Biochemistry Service, Department of Laboratory Medicine, CHU (Centre hospitalier universitaire) de Québec-Université Laval, Quebec City, Quebec, Canada.,Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.,Human and Molecular Genetics Research Unit, Research Center, CHU de Québec, Quebec City, Quebec, Canada
| | - Sylvie Giroux
- Human and Molecular Genetics Research Unit, Research Center, CHU de Québec, Quebec City, Quebec, Canada
| | - André Caron
- Human and Molecular Genetics Research Unit, Research Center, CHU de Québec, Quebec City, Quebec, Canada
| | - Valérie Clément
- Human and Molecular Genetics Research Unit, Research Center, CHU de Québec, Quebec City, Quebec, Canada
| | - François Rousseau
- Medical Biochemistry Service, Department of Laboratory Medicine, CHU (Centre hospitalier universitaire) de Québec-Université Laval, Quebec City, Quebec, Canada.,Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.,Human and Molecular Genetics Research Unit, Research Center, CHU de Québec, Quebec City, Quebec, Canada.,PEGASUS (Personalized Genomics for Prenatal Abnormalities Screening Using Maternal Blood), Quebec City, Quebec, Canada
| |
Collapse
|
5
|
Rahat B, Ali T, Sapehia D, Mahajan A, Kaur J. Circulating Cell-Free Nucleic Acids as Epigenetic Biomarkers in Precision Medicine. Front Genet 2020; 11:844. [PMID: 32849827 PMCID: PMC7431953 DOI: 10.3389/fgene.2020.00844] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
The circulating cell-free nucleic acids (ccfNAs) are a mixture of single- or double-stranded nucleic acids, released into the blood plasma/serum by different tissues via apoptosis, necrosis, and secretions. Under healthy conditions, ccfNAs originate from the hematopoietic system, whereas under various clinical scenarios, the concomitant tissues release ccfNAs into the bloodstream. These ccfNAs include DNA, RNA, microRNA (miRNA), long non-coding RNA (lncRNA), fetal DNA/RNA, and mitochondrial DNA/RNA, and act as potential biomarkers in various clinical conditions. These are associated with different epigenetic modifications, which show disease-related variations and so finding their role as epigenetic biomarkers in clinical settings. This field has recently emerged as the latest advance in precision medicine because of its clinical relevance in diagnostic, prognostic, and predictive values. DNA methylation detected in ccfDNA has been widely used in personalized clinical diagnosis; furthermore, there is also the emerging role of ccfRNAs like miRNA and lncRNA as epigenetic biomarkers. This review focuses on the novel approaches for exploring ccfNAs as epigenetic biomarkers in personalized clinical diagnosis and prognosis, their potential as therapeutic targets and disease progression monitors, and reveals the tremendous potential that epigenetic biomarkers present to improve precision medicine. We explore the latest techniques for both quantitative and qualitative detection of epigenetic modifications in ccfNAs. The data on epigenetic modifications on ccfNAs are complex and often milieu-specific posing challenges for its understanding. Artificial intelligence and deep networks are the novel approaches for decoding complex data and providing insight into the decision-making in precision medicine.
Collapse
Affiliation(s)
- Beenish Rahat
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Taqveema Ali
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divika Sapehia
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aatish Mahajan
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Elbracht M, Mackay D, Begemann M, Kagan KO, Eggermann T. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum Reprod Update 2020; 26:197-213. [DOI: 10.1093/humupd/dmz045] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
BACKGROUND
Human reproductive issues affecting fetal and maternal health are caused by numerous exogenous and endogenous factors, of which the latter undoubtedly include genetic changes. Pathogenic variants in either maternal or offspring DNA are associated with effects on the offspring including clinical disorders and nonviable outcomes. Conversely, both fetal and maternal factors can affect maternal health during pregnancy. Recently, it has become evident that mammalian reproduction is influenced by genomic imprinting, an epigenetic phenomenon that regulates the expression of genes according to their parent from whom they are inherited. About 1% of human genes are normally expressed from only the maternally or paternally inherited gene copy. Since numerous imprinted genes are involved in (embryonic) growth and development, disturbance of their balanced expression can adversely affect these processes.
OBJECTIVE AND RATIONALE
This review summarises current our understanding of genomic imprinting in relation to human ontogenesis and pregnancy and its relevance for reproductive medicine.
SEARCH METHODS
Literature databases (Pubmed, Medline) were thoroughly searched for the role of imprinting in human reproductive failure. In particular, the terms ‘multilocus imprinting disturbances, SCMC, NLRP/NALP, imprinting and reproduction’ were used in various combinations.
OUTCOMES
A range of molecular changes to specific groups of imprinted genes are associated with imprinting disorders, i.e. syndromes with recognisable clinical features including distinctive prenatal features. Whereas the majority of affected individuals exhibit alterations at single imprinted loci, some have multi-locus imprinting disturbances (MLID) with less predictable clinical features. Imprinting disturbances are also seen in some nonviable pregnancy outcomes, such as (recurrent) hydatidiform moles, which can therefore be regarded as a severe form of imprinting disorders. There is growing evidence that MLID can be caused by variants in the maternal genome altering the imprinting status of the oocyte and the embryo, i.e. maternal effect mutations. Pregnancies of women carrying maternal affect mutations can have different courses, ranging from miscarriages to birth of children with clinical features of various imprinting disorders.
WIDER IMPLICATIONS
Increasing understanding of imprinting disturbances and their clinical consequences have significant impacts on diagnostics, counselling and management in the context of human reproduction. Defining criteria for identifying pregnancies complicated by imprinting disorders facilitates early diagnosis and personalised management of both the mother and offspring. Identifying the molecular lesions underlying imprinting disturbances (e.g. maternal effect mutations) allows targeted counselling of the family and focused medical care in further pregnancies.
Collapse
Affiliation(s)
- Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Deborah Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karl Oliver Kagan
- Obstetrics and Gynaecology, University Hospital of Tübingen, Tübingen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Novel Epigenetic Biomarkers in Pregnancy-Related Disorders and Cancers. Cells 2019; 8:cells8111459. [PMID: 31752198 PMCID: PMC6912400 DOI: 10.3390/cells8111459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
As the majority of cancers and gestational diseases are prognostically stage- and grade-dependent, the ultimate goal of ongoing studies in precision medicine is to provide early and timely diagnosis of such disorders. These studies have enabled the development of various new diagnostic biomarkers, such as free circulating nucleic acids, and detection of their epigenetic changes. Recently, extracellular vesicles including exosomes, microvesicles, oncosomes, and apoptotic bodies have been recognized as powerful diagnostic tools. Extracellular vesicles carry specific proteins, lipids, DNAs, mRNAs, and miRNAs of the cells that produced them, thus reflecting the function of these cells. It is believed that exosomes, in particular, may be the optimal biomarkers of pathological pregnancies and cancers, especially those that are frequently diagnosed at an advanced stage, such as ovarian cancer. In the present review, we survey and critically appraise novel epigenetic biomarkers related to free circulating nucleic acids and extracellular vesicles, focusing especially on their status in trophoblasts (pregnancy) and neoplastic cells (cancers).
Collapse
|
8
|
Mahdavi S, Karami F, Sabbaghi S. Non-invasive prenatal diagnosis of foetal gender through maternal circulation in first trimester of pregnancy. J OBSTET GYNAECOL 2019; 39:1071-1074. [PMID: 31177896 DOI: 10.1080/01443615.2019.1586851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Owing to the lack of perfect accuracy and sufficient sample size in previously performed studies on cell-free foetal DNA (cffDNA) for detection of foetal gender through maternal plasma, this study aimed to investigate the efficiency of using two Y-chromosome specific probes in foetal sex determination during first trimester of pregnancy. Five millilitres of whole blood was drawn from 192 pregnant women (10-12 weeks) and was subjected to isolate cffDNA following separation of plasma. TaqMan Real-time PCR was performed on isolated cffDNA using primer pairs and probes specific for SRY, ZFY and β-globin genes. Co-amplification of ZFY and SRY genes was detected in 103 samples confirmed after the birth. Sensitivity and specificity of the test were calculated to be 100%. Further study on larger sample size is required to confirm the reproducibility of the present test in early and non-invasive determination of foetal sex. IMPACT STATEMENT What is already known on this subject? Foetal gender analysis through maternal plasma has been investigated in some cell-free foetal DNA (cffDNA) analysis. However, the detection rate and method of cffDNA analysis were different among various studies. What do the results of this study add? This study introduced a modified simple probe based real time analysis with perfect detection rate. What are the implications of these findings for clinical practice and/or further research? The proposed method can be used as diagnostic test in all laboratories around the world using real-time PCR to non-invasively determine the foetal gender in the initial weeks of pregnancy following confirmation in larger sample size.
Collapse
Affiliation(s)
- Saeed Mahdavi
- Department of Research and Development, Saeed Pathobiology Laboratory , Tehran , Iran
| | - Fatemeh Karami
- Department of Research and Development, Saeed Pathobiology Laboratory , Tehran , Iran.,Department of Medical Genetic, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Saeed Sabbaghi
- Department of Research and Development, Saeed Pathobiology Laboratory , Tehran , Iran
| |
Collapse
|
9
|
Zhang S, Han S, Zhang M, Wang Y. Non-invasive prenatal paternity testing using cell-free fetal DNA from maternal plasma: DNA isolation and genetic marker studies. Leg Med (Tokyo) 2018; 32:98-103. [PMID: 29626747 DOI: 10.1016/j.legalmed.2018.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 03/01/2018] [Accepted: 03/31/2018] [Indexed: 12/13/2022]
Abstract
Invasive prenatal paternity tests can result in miscarriage and congenital malformations; therefore, a non-invasive method of testing is preferable. However, little progress could be made in this field until the introduction of cell-free fetal DNA (cffDNA) in 2009. In this review, two aspects regarding the history and development of non-invasive prenatal paternity testing (NIPAT) are summarized: (1) extraction and enrichment of cffDNA and (2) genetic marker-based studies. Although column-based kits are used widely for NIPAT, some researchers have suggested that an automated method, such as magnetic extraction, generally has a higher cffDNA yield than that of manual column-based extraction; therefore, its popularity might increase in the near future. In addition, size- and methylation-based enrichment methods are expected to perform better than formaldehyde-based methods. On the other hand, single nucleotide polymorphism-based techniques have contributed to NIPAT, whereas the application of short tandem repeat testing has so far been restricted to pregnant women bearing male fetuses only. Additional methods and techniques are expected to be innovated to facilitate the forensic practice of NIPAT.
Collapse
Affiliation(s)
- Shanshan Zhang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, PR China
| | - Shuyi Han
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, PR China.
| | - Maoxiu Zhang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, PR China
| | - Yunshan Wang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, PR China.
| |
Collapse
|