1
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
2
|
Yan Z, Li P, Xue Y, Tian H, Zhou T, Zhang G. Glutamate receptor, ionotropic, N‑methyl D‑aspartate‑associated protein 1 promotes colorectal cancer cell proliferation and metastasis, and is negatively regulated by miR‑296‑3p. Mol Med Rep 2021; 24:700. [PMID: 34368871 PMCID: PMC8365413 DOI: 10.3892/mmr.2021.12339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/12/2021] [Indexed: 01/15/2023] Open
Abstract
N‑methyl D‑aspartate receptors (NMDARs) are closely associated with the development, growth and metastasis of cancer. Glutamate receptor, ionotropic, N‑methyl D‑aspartate‑associated protein 1 (GRINA) is a member of the of the NMDAR family, and its aberrant expression is associated with gastric cancer. However, the role of GRINA in colorectal cancer (CRC) is not completely understood. In the present study, expression profiles of GRINA in several CRC databases were obtained and further verified using clinical CRC samples. The effects of GRINA overexpression on CRC progression both in vivo and in vitro were assessed. Briefly, cell proliferation was detected using MTT assay, and cell migration and invasion ability were evaluated by wound healing and Transwell assay. In addition, the molecular mechanism underlying the upregulated expression of GRINA in CRC was investigated. The regulatory association between GRINA and miR‑296‑3p was detected by luciferase assay, reverse transcription‑quantitative PCR and western blotting. The results demonstrated that GRINA expression levels were significantly increased in tumor samples compared with those in healthy samples, and upregulated expression of GRINA was associated with a less favorable prognostic outcome in patients with CRC. GRINA overexpression significantly increased CRC cell proliferation, invasion and migration. Additionally, it was determined that GRINA was post‑transcriptionally regulated by microRNA (miR)‑296‑3p. Together, the results of the present study suggested the potential importance of the miR‑296‑3p/GRINA axis and highlighted potential novel targets for the management of CRC.
Collapse
Affiliation(s)
- Zaihua Yan
- Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Peidong Li
- Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuan Xue
- Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hongpeng Tian
- Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Tong Zhou
- Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guangjun Zhang
- Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
3
|
MiRNAs directly targeting the key intermediates of biological pathways in pancreatic cancer. Biochem Pharmacol 2020; 189:114357. [PMID: 33279497 DOI: 10.1016/j.bcp.2020.114357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic Cancer (PC) is a severe form of malignancy all over the world. Delayed diagnosis and chemoresistance are the major factors contributing to its poor prognosis and high mortality rate. The genetic and epigenetic regulations of biological pathways further complicate the progression and chemotherapy response to this cancer. MicroRNAs (MiRNAs) involvement has been observed in all types of cancers including PC. The understanding and categorization of miRNAs according to their specific targets are very important to develop early diagnostic and therapeutic interventions. The current review, emphasizing recent research findings, has categorized miRNAs that directly target the potential onco-factors that act as central converging signal-nodes in five major cancer-related pathways i.e., MAPK/ERK, JAK/STAT, Wnt/β-catenin, AKT/mTOR, and TGFβ in PC. The therapeutic perspectives of miRNAs in PC have also been discussed. This will help to understand the interplay of various miRNAs within foremost signaling pathways and develop a multifactorial approach to treat difficult-to-treat PC.
Collapse
|
4
|
Chen M, Chen C, Luo H, Ren J, Dai Q, Hu W, Zhou K, Tang X, Li X. MicroRNA-296-5p inhibits cell metastasis and invasion in nasopharyngeal carcinoma by reversing transforming growth factor-β-induced epithelial-mesenchymal transition. Cell Mol Biol Lett 2020; 25:49. [PMID: 33292168 PMCID: PMC7640465 DOI: 10.1186/s11658-020-00240-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Aim To explore the effect of miR-296-5p on the metastasis of nasopharyngeal carcinoma (NPC) cells and investigate the underlying mechanism. Methods The expressions of miR-296-5p in NPC tissues and cells were determined using GSE32920 database analysis and real-time PCR and miRNA microarray assays. An miR-296-5p mimic and inhibitor were transfected into NPC cells. Then, immunofluorescence imaging, scratch wound-healing, transwell migration and invasion assays were used to observe the effects of miR-296-5p on cell metastasis and invasion. Real-time PCR and western blotting were carried out to detect the expressions of genes and proteins related to epithelial–mesenchymal transition (EMT). A dual luciferase reporter assay was used to identify whether TGF-β is the target gene of miR-296-5p. Finally, TGF-β expression plasmids were transfected into NPC cells to verify the role of TGF-β in the miR-296-5p-mediated inhibition of nasopharyngeal carcinoma cell metastasis. Results Our results show that miR-296-5p inhibits the migratory and invasive capacities of NPC cells by targeting TGF-β, which suppresses EMT. Importantly, the miR-296-5p level was significantly lower in human NPC tissues than in adjacent normal tissues. It also negatively correlated with TGF-β and was significantly associated with the lymph node metastasis of patients with NPC. Conclusions Our findings show that miR-296-5p represses the EMT-related metastasis of NPC by targeting TGF-β. This provides new insight into the role of miR-296-5p in regulating NPC metastasis and invasiveness.
Collapse
Affiliation(s)
- Meihui Chen
- Institute of Biochemistry and Molecular Biology of Guangdong Medical University, No. 2 Wenming Dong Road, Xiashan District, Zhanjiang, 524023, Guangdong, China.,Department of Clinical Laboratory of Zhanjiang Central Hospital, Zhanjiang, 524023, China
| | - Chen Chen
- Institute of Biochemistry and Molecular Biology of Guangdong Medical University, No. 2 Wenming Dong Road, Xiashan District, Zhanjiang, 524023, Guangdong, China
| | - Haiqing Luo
- Center of Oncology of The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, China
| | - Jing Ren
- Institute of Biochemistry and Molecular Biology of Guangdong Medical University, No. 2 Wenming Dong Road, Xiashan District, Zhanjiang, 524023, Guangdong, China
| | - Qiuqin Dai
- Institute of Biochemistry and Molecular Biology of Guangdong Medical University, No. 2 Wenming Dong Road, Xiashan District, Zhanjiang, 524023, Guangdong, China
| | - Wenjia Hu
- Institute of Biochemistry and Molecular Biology of Guangdong Medical University, No. 2 Wenming Dong Road, Xiashan District, Zhanjiang, 524023, Guangdong, China
| | - Keyuan Zhou
- Institute of Biochemistry and Molecular Biology of Guangdong Medical University, No. 2 Wenming Dong Road, Xiashan District, Zhanjiang, 524023, Guangdong, China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology of Guangdong Medical University, No. 2 Wenming Dong Road, Xiashan District, Zhanjiang, 524023, Guangdong, China.
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology of Guangdong Medical University, No. 2 Wenming Dong Road, Xiashan District, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
5
|
Li L, He Z, Zhu C, Chen S, Yang Z, Xu J, Bi N, Yu C, Sun C. MiR-137 promotes anoikis through modulating the AKT signaling pathways in Pancreatic Cancer. J Cancer 2020; 11:6277-6285. [PMID: 33033511 PMCID: PMC7532504 DOI: 10.7150/jca.44037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022] Open
Abstract
Anoikis resistance is a fundamental feature of the survival of metastatic cancer cells during cancer progression. However, the mechanisms underlying anoikis resistance in pancreatic cancer (PC) are still unclear. MicroRNA-137 (miR-137) is a tumor suppressor that inhibits the proliferation and invasion of cancer cells through targeting multiple oncogenes. However, the effects and molecular mechanism of miR-137 on anoikis of PC are still unclear. Here we demonstrated that miR-137 was downregulated after the induction of anoikis model in time dependent. Function assays revealed that miR-137 promoted the pancreatic cancer cells anoikis in vitro and vivo. According to bioinformation analysis of clinical databases, we predicted that paxillin (PXN) was a target of miR-137. Further, TCGA analysis revealed that PXN was closely associated with the development of PC. Through loss-of-function studies, we demonstrated that PXN was a functional target of miR-137 on anoikis of PC cells. Moreover, we found that PXN promoted the activation of the AKT signaling pathways which was involving in the cancer cells anoikis. Together, our findings reveal that miR-137 plays a novel role during anoikis and may serve as a potential target for the detection and treatment of PC.
Collapse
Affiliation(s)
- Lin Li
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhiwei He
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China
| | - Changhao Zhu
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Shiyu Chen
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhehao Yang
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China
| | - Jing Xu
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China
| | - Ningrui Bi
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China
| | - Chao Yu
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China
| | - Chengyi Sun
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China
| |
Collapse
|
6
|
Fan J, Kang X, Zhao L, Zheng Y, Yang J, Li D. Long Noncoding RNA CCAT1 Functions as a Competing Endogenous RNA to Upregulate ITGA9 by Sponging MiR-296-3p in Melanoma. Cancer Manag Res 2020; 12:4699-4714. [PMID: 32606961 PMCID: PMC7308122 DOI: 10.2147/cmar.s252635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background Melanoma is aggressive and lethal melanocytic neoplasm, and its incidence has increased worldwide in recent decades. Accumulating evidence has showed that various long noncoding RNAs (lncRNAs) participated in occurrence of malignant tumors, including melanoma. The present study was designed to investigate function of lncRNA colon cancer-associated transcript-1 (CCAT1) in melanoma. Methods The expression levels of CCAT1, miR-296-3p and Integrin alpha9 (ITGA9) in melanoma tissues or cells were measured using real-time quantitative polymerase chain reaction (RT-qPCR). The concentrations of glucose and lactate were measured for assessing glycolysis of melanoma cells. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT), flow cytometry, and transwell assays were conducted to assess proliferation, apoptosis, and migration of melanoma cells. Western blot assay was performed to measure the protein expression of ITGA9, hexokinase 2 (HK2), and epithelial–mesenchymal transition (EMT)-related proteins in melanoma tissues or cells. The relationship among CCAT1, miR-296-3p, and ITGA9 was predicted and confirmed by bioinformatics analysis, dual-luciferase reporter, and RNA immunoprecipitation (RIP) assay, respectively. A xenograft experiment was established to assess the effect of CCAT1 knockdown in vivo. Results CCAT1 was effectively increased in melanoma tissues and cells compared with matched controls, and deficiency of CCAT1 impeded cell glycolysis, proliferation, migration while induced apoptosis, which were abrogated by knockdown of miR-296-3p in melanoma cells. In addition, our findings revealed that ITGA9 overexpression abolished miR-296-3p overexpression-induced effects on melanoma cells. Importantly, CCAT1 regulated ITGA9 expression by sponging miR-296-3p. The results of xenograft experiment suggested that CCAT1 silencing inhibited melanoma cell growth in vivo. Conclusion LncRNA CCAT1 promoted ITGA9 expression by sponging miR-296-3p in melanoma.
Collapse
Affiliation(s)
- Jinghua Fan
- Department of Dermatology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaoxiao Kang
- Department of Dermatology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Limin Zhao
- Department of Dermatology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Zheng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jun Yang
- Department of Dermatology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Di Li
- Department of Dermatology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
7
|
Chiricosta L, Silvestro S, Gugliandolo A, Marconi GD, Pizzicannella J, Bramanti P, Trubiani O, Mazzon E. Extracellular Vesicles of Human Periodontal Ligament Stem Cells Contain MicroRNAs Associated to Proto-Oncogenes: Implications in Cytokinesis. Front Genet 2020; 11:582. [PMID: 32582296 PMCID: PMC7287171 DOI: 10.3389/fgene.2020.00582] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
The human Periodontal Ligament Stem Cells (hPDLSCs) exhibit self-renewal capacity and clonogenicity potential. The Extracellular Vesicles (EVs) secreted by hPDLSCs are particles containing lipids, proteins, mRNAs, and non-coding RNAs, among which microRNAs, that are important in intercellular communication. The purpose of this study was the analysis of the non-coding RNAs contained in the EVs derived from hPDLSCs using Next Generation Sequencing. Moreover, our data were enriched using bioinformatic tools. The analysis highlighted the presence of non-coding RNAs and five microRNAs: MIR24-2, MIR142, MIR335, MIR490, and MIR296. Our results show that these miRNAs target the genes classified in two terms of the Gene Ontology: "Ras protein signal transduction" and "Actin/microtubule cytoskeleton organization." Noteworthy, the in-deep analysis of our EVs highlights that the miRNAs could be implicated in the silencing of proto-oncogenes involved in 12 different types of tumors.
Collapse
Affiliation(s)
| | | | | | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti and Pescara, Chieti, Italy
| | | | | | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti and Pescara, Chieti, Italy
| | | |
Collapse
|
8
|
Zhang S, Li C, Liu J, Geng F, Shi X, Li Q, Lu Z, Pan Y. Fusobacterium nucleatum promotes epithelial-mesenchymal transiton through regulation of the lncRNA MIR4435-2HG/miR-296-5p/Akt2/SNAI1 signaling pathway. FEBS J 2020; 287:4032-4047. [PMID: 31997506 PMCID: PMC7540502 DOI: 10.1111/febs.15233] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 12/23/2022]
Abstract
Fusobacterium nucleatum, an anaerobic oral opportunistic pathogen associated with periodontitis, has been considered to be associated with the development of oral squamous cell carcinoma (OSCC). However, the initial host molecular alterations induced by F. nucleatum infection which may promote predisposition to malignant transformation through epithelial–mesenchymal transition (EMT) have not yet been clarified. In the present study, we monitored the ability of F. nucleatum to induce EMT‐associated features, and our results showed that F. nucleatum infection promoted cell migration in either noncancerous human immortalized oral epithelial cells (HIOECs) or the two OSCC cell lines SCC‐9 and HSC‐4, but did not accelerate cell proliferation or cell cycle progression. Mesenchymal markers, including N‐cadherin, Vimentin, and SNAI1, were upregulated, while E‐cadherin was decreased and was observed to translocate to the cytoplasm. Furthermore, FadA adhesin and heat‐inactivated F. nucleatum were found to cause a similar effect as the viable bacterial cells. The upregulated lncRNA MIR4435‐2HG identified by the high‐throughput sequencing was demonstrated to negatively regulate the expression of miR‐296‐5p, which was downregulated in F. nucleatum‐infected HIOECs and SCC‐9 cells. The binding of MIR4435‐2HG and miR‐296‐5p was validated via a dual‐luciferase reporter assay. Additionally, knockdown of MIR4435‐2HG with siRNA leads to a decrease in SNAI1 expression, while miR‐296‐5p could further negatively and indirectly regulate SNAI1 expression via Akt2. Therefore, our study demonstrated that F. nucleatum infection could trigger EMT via lncRNA MIR4435‐2HG/miR‐296‐5p/Akt2/SNAI1 signaling pathway, and EMT process may be a probable link between F. nucleatum infection and initiation of oral epithelial carcinomas.
Collapse
Affiliation(s)
- Shuwei Zhang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xiaoting Shi
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qian Li
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Li H, Guo D, Zhang Y, Yang S, Zhang R. miR-664b-5p Inhibits Hepatocellular Cancer Cell Proliferation Through Targeting Oncogene AKT2. Cancer Biother Radiopharm 2020; 35:605-614. [PMID: 31967930 DOI: 10.1089/cbr.2019.3043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: miR-664b-5p accelerates the development of certain cancers, but the role of miR-664b-5p in hepatocellular carcinoma (HCC) has been less reported. Therefore, the authors aimed to study the role of miR-664b-5p in HCC progression. Materials and Methods: miR-664b-5p expression in liver cancer and adjacent tissues, and in HepG2 and SUN-475 cells, was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Relationship between miR-664b-5p and AKT2 was predicted by TargetScan and confirmed by dual-luciferase reporter assay, and gene or protein expressions were determined by performing qRT-PCR and Western blotting. The viability and apoptosis, and the migration and invasion of HepG2 and SUN-475 cells were determined by CCK-8 assay and flow cytometry, and transwell assay, respectively. Results: Downregulated miR-664b-5p was observed in hepatocellular cancer tissues. Functional analyses revealed that miR-664b-5p mimic suppressed viability, migration, and invasion, but promoted apoptosis in HepG2 and SUN-475 cells. AKT2 was a target of miR-664b-5p, whose mimics inhibited the expression of AKT2. However, upregulated AKT2 promoted viability, migration, and invasion, but inhibited apoptosis in HepG2 and SUN-475 cells, and such effects were reversed by miR-664b-5p mimics. Conclusions: miR-664b-5p acts as a cancer suppressor through negatively regulating AKT2 expression in HepG2 and SUN-475 cells, suggesting that miR-664b-5p could be a protective target for HCC patients.
Collapse
Affiliation(s)
- Hongwei Li
- The First Inpatient Ward of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Dawei Guo
- The First Department of General surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhang
- The First Inpatient Ward of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Shiming Yang
- The First Inpatient Ward of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Rui Zhang
- The First Inpatient Ward of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| |
Collapse
|
10
|
Kong Y, Yang L, Wei W, Lyu N, Zou Y, Gao G, Ou X, Xie X, Tang H. CircPLK1 sponges miR-296-5p to facilitate triple-negative breast cancer progression. Epigenomics 2019; 11:1163-1176. [PMID: 31337246 DOI: 10.2217/epi-2019-0093] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: To investigate the role of circRNAs in triple-negative breast cancer (TNBC) and the underlying mechanisms. Materials & methods: We performed circRNA microarrays to explore the expression profiles of TNBC cell lines. Experiments in vitro and in vivo were conducted to explore the effects of circPLK1 on tumor proliferation and metastasis as well as the interaction between circPLK1, miR-296-5p and PLK1 in TNBC. Results & conclusion: CircPLK1 was significantly upregulated in TNBC and associated with poor survivals. CircPLK1 knockdown inhibited cell growth and invasion in vitro as well as tumor occurrence and metastasis in vivo. CircPLK1-miR-296-5p-PLK1 axis regulates tumor progression by ceRNA mechanism in TNBC, indicating that circPLK1 may serve as a prognostic factor and novel therapeutic target for TNBC.
Collapse
Affiliation(s)
- Yanan Kong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Lu Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Weidong Wei
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Ning Lyu
- Department of Minimally Invasive Interventional Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Yutian Zou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Guanfeng Gao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Xueqi Ou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| |
Collapse
|
11
|
Wang L, Chen R, Zhang Y. miR-296-3p targets APEX1 to suppress cell migration and invasion of non-small-cell lung cancer. Oncol Lett 2019; 18:2612-2618. [PMID: 31402954 DOI: 10.3892/ol.2019.10572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 05/03/2019] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most common cause of cancer-associated mortality worldwide. MicroRNAs (miRs) are a class of small non-coding RNAs that are commonly dysregulated in human cancer. The aim of the current study was to evaluate the effect of miR-296-3p on the cell migration and invasion of NSCLC. Pairs of tumor tissues and para-cancerous tissues (n=50) were collected from patients with NSCLC, and the expression of miR-296-3p was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, tumor cell viability, migration and invasion were examined in vitro using Cell Counting Kit-8, wound healing and Matrigel assays, respectively. Furthermore, potential targets of miR-296-3p were screened for using TargetScan and validated using a dual-luciferase reporter assay. The expression levels of phosphoinositide-3-kinase (PI3K), AKT serine/threonine kinase (AKT), mammalian target of rapamycin (mTOR), matrix metallopeptidase 2 (MMP2) and SRY-box 4 (SOX4) were detected by RT-qPCR and western blot analysis. The data indicated that miR-296-3p was downregulated in tumor tissues compared with adjacent normal tissues. Overexpression of miR-296-3p inhibited NSCLC cell viability, migration and invasion in vitro. Furthermore, apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) was identified as a direct target of miR-296-3p. APEX1 expression was upregulated in tumor tissues compared with para-cancerous tissues, and the mRNA and protein expression levels of APEX1 were decreased following transfection of NSCLC cells with miR-296-3p mimics compared with control cells. Additional investigations revealed that miR-296-3p was involved in regulating the PI3K/AKT/mTOR signaling pathway, and miR-296-3p mimics decreased the mRNA and protein expression levels of MMP2 and SOX4. In summary, the findings demonstrated that miR-296-3p may function as a tumor suppressor, and inhibits the migration and invasion of NSCLC cells by targeting APEX1. miR-296-3p is therefore a potential therapeutic molecular modulator of NSCLC.
Collapse
Affiliation(s)
- Lifeng Wang
- Department of Respiration, Xi'an High-tech Hospital, Xi'an, Shaanxi 710075, P.R. China
| | - Ruilin Chen
- Department of Respiration, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yongqing Zhang
- Department of Respiration, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
12
|
Yang X, Wang W, Zhang X, Zou Q, Cai L, Yu B. Downregulation of miR-183 inhibits the growth of PANC-1 pancreatic cancer cells in vitro and in vivo, and increases chemosensitivity to 5-fluorouracil and gemcitabine. Exp Ther Med 2018; 17:1697-1705. [PMID: 30783438 PMCID: PMC6364144 DOI: 10.3892/etm.2018.7112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is a common malignancy with a poorly understood pathogenesis. Currently, the efficacy of anti-PC therapies is insufficient, partially due to the chemoresistance of cancer cells. The present study aimed to elucidate the role of miR-183 in the proliferation, apoptosis, and chemosensitivity to 5-fluorouracil and gemcitabine of human PC cells and the associated mechanisms. PANC-1 cells were transfected with microRNA (miR)-183 inhibitors, and the effect of miR-183 on cell proliferation was evaluated via MTT assay. Apoptosis and cell cycle distribution were determined by flow cytometry. In vivo tumor xenograft models of PANC-1 cells were generated in BALB/c nude mice to examine the effect of miR-183 downregulation on tumor growth. Furthermore, components of the phosphatase and tensin homolog deleted on chromosome ten (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway were examined via reverse transcription-quantitative polymerase chain reaction and western blotting in the collected cells. Finally, PANC-1 cells were treated with 5-fluorouracil or gemcitabine and transfected with miR-183 inhibitors, and the viability of cells was determined by MTT assay. The results demonstrated that knockdown of miR-183 could significantly decrease proliferation and promote apoptosis of PANC-1 cells. The cells transfected with miR-183 inhibitors were significantly arrested at the G1 phase (P<0.01). Furthermore, miR-183 downregulation led to significant decreases in the mRNA levels of PI3K, Akt and B cell lymphoma-2 (Bcl-2) expression (P<0.001), and significant increases in PTEN and Bcl-2 associated X protein expression in PANC-1 cells (P<0.001). Knockdown of miR-183 was able to significantly increase the chemosensitivity of PANC-1 cells to 5-fluorouracil and gemcitabine. These results indicate that downregulation of miR-183 can inhibit the growth of PC cells in vitro and in vivo, and increase cell sensitivity to 5-fluorouracil and gemcitabine through regulating the PTEN/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaoping Yang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Wei Wang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Xiong Zhang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Qi Zou
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Lei Cai
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Bo Yu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| |
Collapse
|
13
|
The promising role of miR-296 in human cancer. Pathol Res Pract 2018; 214:1915-1922. [DOI: 10.1016/j.prp.2018.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/08/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022]
|
14
|
Lv L, Wang X. MicroRNA-296 Targets Specificity Protein 1 to Suppress Cell Proliferation and Invasion in Cervical Cancer. Oncol Res 2017; 26:775-783. [PMID: 29241478 PMCID: PMC7844729 DOI: 10.3727/096504017x15132494420120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the third most commonly diagnosed malignancy and the fourth leading cause of cancer-related deaths in women worldwide. MicroRNA-296 (miR-296) is aberrantly expressed in a variety of human cancer types. However, the expression levels, biological roles, and underlying molecular mechanisms of miR-296 in cervical cancer remain unclear. This study aimed to detect miR-296 expression in cervical cancer and evaluate its roles and underlying mechanisms in cervical cancer. This study demonstrated that miR-296 was significantly downregulated in cervical cancer tissues and cell lines. Restoring the expression of miR-296 inhibited the proliferation and invasion of cervical cancer cells. Moreover, miR-296 directly targeted the 3'-untranslated regions of specificity protein 1 (SP1) and decreased its endogenous expression at both the mRNA and protein levels. Similar to induced miR-296 expression, SP1 knockdown suppressed the proliferation and invasion of cervical cancer cells. Besides, resumption expression of SP1 rescued the tumor-suppressing roles of miR-296 in cervical cancer. These results indicated that miR-296 may act as a tumor suppressor in cervical cancer by directly targeting SP1. Therefore, SP1 may be developed as a therapeutic target for the treatment of patients with this malignancy.
Collapse
Affiliation(s)
- Lili Lv
- Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Xiaodong Wang
- Department of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
15
|
Zhou B, Shan H, Su Y, Xia K, Zou R, Shao Q. Let-7a inhibits migration, invasion and tumor growth by targeting AKT2 in papillary thyroid carcinoma. Oncotarget 2017; 8:69746-69755. [PMID: 29050238 PMCID: PMC5642513 DOI: 10.18632/oncotarget.19261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy. Increasing evidence showed that microRNAs (miRNAs) play an important role in the PTC progression. In our study, the result showed that let-7a is significantly downregulated in PTC tissues and thyroid cancer cell lines. Overexpression of let-7a suppressed PTC cell proliferation, migration and invasion. Interestingly, we found that AKT2 was a direct target of let-7a and the expression levels of AKT2 were also observed to inversely correlate with let-7a expression in PTC tissues. Furthermore, enhancing AKT2 expression partially reversed the inhibitory effects of let-7a in PTC. Taken together, these findings suggest that let-7a acts as a novel suppressor by targeting the AKT2 gene and might be a candidate target for the development of novel therapeutic strategies to treat papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
| | - Hailin Shan
- Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
| | - Ying Su
- Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
| | - Kai Xia
- Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
| | - Runlong Zou
- Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
| | - Qing Shao
- Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
| |
Collapse
|